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Abstract: Electric utility companies (EUCs) play an intermediary role of retailers between wholesale
market and end-users, maximizing their profits. Retail pricing can be well deployed with the support
of EUCs to promote demand response (DR) programs for heating, ventilating, and air-conditioning
(HVAC) systems in commercial buildings. This paper proposes a pricing strategy to help EUCs and
building operators achieve an optimal DR of price-elastic HVAC systems, considering peak load
reduction. The proposed strategy is implemented by adopting a bi-level decision model. The nonlinear
thermal response of an experimental building room is modeled using piecewise linear equations,
which helps convert the bi-level model to the single-level model. The pricing strategy is implemented
considering a time-of-use (TOU) pricing scheme, leading to low price volatility. Case studies are
conducted for two types of load curves and the results demonstrate that the proposed strategy helps
EUC promote the price-based DR of the commercial buildings for conventional load curves. However,
EUC cannot reduce the peak load on duck curve caused by the large introduction of photovoltaic
generators, even with price-sensitive HVAC systems in commercial building. This will be addressed
in future studies by inducing DR participation of HVAC systems in residential buildings.

Keywords: bi-level decision model; demand response (DR); electric utility companies (EUCs); heating,
ventilating, and air-conditioning (HVAC) systems; load leveling; peak load reduction; retail price

1. Introduction

The power consumption in the distribution network is predicted to significantly increase owing
to the electrification of transport and heating [1]. In addition, the peak load is expected to double
by 2050 [2]. The peak load in the conventional load curve usually occurs during the daylight hours.
Therefore, the issue of peak load may seem to be insignificant in the new load curve changed by large
introduction of photovoltaics (PV). However, the large introduction of PV has caused the peak load
to occur after sunset, but the importance of peak load reduction remains unchanged [3]. Increasing
the peak load requires to upgrade conventional substations and lines or adding new substations and
lines. As this increases the operating costs, the distribution system operators (DSOs) or electric utility
companies (EUCs) try to reduce the peak load in the distribution network [4].

In this environment, a EUC should maintain the operating stability of the distribution network
while maximizing its profit. With the development of information technology, the demand side
has become increasingly important to solve the problem such as peak load reduction in a power
system. To accomplish one’s role, the EUC uses the demand response (DR), which is the behavior of
consumers adjusting their normal power consumption patterns through voluntary participation owing
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to monetary incentives [5]. The end-users provide the EUC with a time shift in demand resulting from
reducing their convenience and receive incentives from the EUC. For example, the consumers provide
the grid operator with time shift in demand obtained at the expense of their comfort, and the grid
operator uses it to reduce peak load [6]. The applications of DR to peak load reduction were widely
considered in many studies in [7–10].

HVAC systems have several advantages as DR resources. Heating, ventilating, and air-conditioning
(HVAC) systems represent approximately 37% of all electricity usage in commercial buildings,
accounting for more than 13% of the total electricity demand in the United States in 2017 [11].
In particular, advances in variable speed drives (VSDs) and building energy management systems
(BEMSs) have improved the control technology of HVAC systems [12]. This paper adopts a direct
control method of HVAC system [12,13], where the reference power input is adjusted to maintain the
indoor temperature within an acceptable range. Since the reference power input is almost the same as
power input of HVAC system because of the fast time response of the VSD. In addition, the HVAC
systems are essential facilities for commercial buildings and do not require additional installation.

Many studies have been carried out on the DR of HVAC systems. The studies on DR can be
broadly divided into studies on control of DR resources as price takers and studies on optimal pricing
for inducing demand response. For example, in [14,15], the electricity prices were assumed to be
determined in advance. In [14], the building operator schedules the optimal power consumption
profiles of HVAC systems that minimize their total operation cost. [15] proposed an optimal control
algorithm for HVAC systems, considering non-interruptible loads. In [16,17], the retail prices for
the distribution network operation were optimally determined, considering the DR services of
HVAC systems. HVAC system models were implemented via an approach using equivalent thermal
parameters (ETPs). In particular, the EUC minimized the operation cost considering the line congestion
and power balance in [16,17].

We propose optimal pricing decision model to reduce the peak load using HVAC system in
this paper. Our paper has been compared with several previous studies on the development of
retail pricing strategies for distribution network management via optimal operation of DR resources,
particularly, with respect to the three comparative criteria such as decision models, DR resource models,
and network load curves [10,16–23].

For example, with the type of decision models, bi-level decision models were formulated in this
paper, and in [18–21], whereas single-level decision models were developed in [16,17] and [10,22,23],
depending on the types of decision-makers and their objective functions. The single-level decision
models in [16,17] and [10,22,23] could not reflect the characteristic of DR resources because the price
demand function and price sensitivity were assumed to be simple linear or quadratic function. While
the bi-level decision models in [18–21] could consider the optimal demand of DR resources for retail
electricity price because the hierarchical relationships between decision-makers could be reflected
by bi-level optimization problem. In other words, the bi-level decision model reflects the conflicting
objective functions of the autonomous decision-makers based on Stackelberg game theory.

The bi-level decision models are too complicated to implement, so simple DR resource models are
applied in [18–21]. DR resources were simply modeled as point sources or ESSs in [18–21] and [10,23],
without sufficient consideration of their physical characteristics. Thermal loads, on the other hand,
are difficult to model owing to their nonlinear nature, and the thermal loads were simply modelled
using ETP approach [16,17]. ETP approach is modelled using lumped thermal capacitance and
resistance. On the other hand, we have explicitly incorporated the experimental data-driven models of
the building room and HVAC unit to reflect their physical properties into the bi-level pricing strategy.

In addition, the network load curves can be categorized into two groups, depending on the large
introduction of PV. As more PV is introduced into the distribution network, the conventional load
curve changed its shape with a lower load during periods of sunshine. For brevity, this new load
curve is referred to as a duck curve hereafter in this paper. The duck curve has a negative effect on
the network because the demand increases rapidly and the peak load of the duck curve occurs after
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sunset, when PV is no longer available. However, few studies have attempted to solve the duck curve
problem using DR resources.

In this paper, we propose a bi-level optimal pricing model for the EUC to reduce the peak load of
two types of load curves using the experimental data-driven model of an HVAC system in commercial
buildings. Specifically, in the upper level, the EUC maximize its profit based on advantages of locational
marginal pricing (LMP) and time-of-use (TOU) rates. While in the lower level, building end-users
schedule the optimal power inputs of HVAC systems to minimize the electricity bills according to the
optimal retail rates. This allows the EUC to obtain more accurate and useful insights into the load
shifting or curtailment capacities of HVAC systems, when the proposed pricing strategy is applied to
DR programs in practice. Moreover, this enables building managers to ensure the thermal comfort of
occupants and, consequently, participate more fully in DR programs due to improved comprehension
of the inherent thermal energy storage capacity in their building structures.

In addition, the proposed pricing strategy is applied to the peak load reduction of two types
of load curve patterns: a conventional load curve and duck curve. The proposed pricing method
induces DR of HVAC system in commercial buildings, and through this, we analyzed the effect of
the proposed pricing strategy on the peak load reduction. Further, the proposed pricing model was
demonstrated through explicit analysis of various case studies such as change of DR purpose and
constraints’ parameter.

Section 2 explains the pricing strategy framework using the thermal response of the HVAC
system in a commercial building. Section 3 presents the optimization problem formulation for the
proposed method. Section 4 discusses the simulation case study results for the proposed pricing
strategy. Section 5 provides our conclusions.

2. Pricing Strategy Using the Thermal Response of HVAC Systems in Commercial Buildings

2.1. Framework of the Proposed Pricing Strategy

Figure 1 shows the framework of the proposed optimal retail pricing strategy. The EUC buys
electricity from the day-ahead wholesale market at LMP and sells it to consumers at two retail prices,
namely TOU and real-time pricing (RTP). The LMP represents the price to buy and sell power at
different locations within wholesale electricity markets. In this paper, LMP can be considered simply
as a wholesale electricity price. The TOU rates typically applies to usage over broad blocks of hours
where the electricity price for each period is predetermined and constant. In this paper, we consider
the TOU as simply the retail price paid by the end-users. The conventional building operator operates
the HVAC systems to maintain a set temperature regardless of the electricity price. The conventional
HVAC systems do not participate in the DR service and pay for electricity at the conventional price
scheme, TOU (i.e., common price scheme at the distribution level) [24]. However, the proposed retail
price on an hourly basis is applied to HVAC systems participating price-based DR service. We have
assumed that the end-users are rational to adjust the power inputs of HVAC systems, so that they
minimize the electricity bills as long as the thermal comforts are satisfied; i.e., the indoor temperatures
are maintained within the acceptable ranges. In addition, smart grid technologies such as advanced
metering infrastructures (AMIs) and behind-the-meter energy storage systems have been developing
rapidly and continuously during the last decade. Moreover, significant attention has been given to
developing energy-efficient devices, homes, or buildings and integrating a large number of renewable
energy resources into power grid, to mitigate global warming and climate change. The development
of such technologies and applications makes end-users become more aware of the rational use of
electricity. For the same reason, the assumption on minimizing the end-users’ electricity bills can be
commonly made in many previous studies on price-based DR scheduling [15] and [25,26]. The EUC
ensures that the proposed price is always less than the TOU to induce DR participation of HVAC
systems in commercial buildings. Therefore, the 24-h operating costs of the price-sensitive HVAC units
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are cheaper than those of the conventional units. The EUC can effectively attract more HVAC units to
its DR program participating the proposed pricing program.
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Figure 1. Overall framework of the proposed pricing strategy for heating, ventilating, and
air-conditioning (HVAC) system.

As shown in Figure 1, the EUC determines the optimal profile of the retail price for the scheduling
time (i.e., 24 h) to maximize its net profit, which is equivalent to the difference between the total revenue
of selling electricity to HVAC systems and the total cost of purchasing electricity from the wholesale
market. The EUC seeks to reduce peak loads to bypass costly additional facility (i.e., substations or
lines) expansion. Therefore, the EUC changes the retail price to exploit the demand-side flexibility
of the price-sensitive HVAC loads for peak load reduction. For the optimal profile of retail price,
the building operators schedule the optimal power consumptions of HVAC systems so as to minimize
their electricity bills while ensuring the thermal comforts of occupants.

For the proposed framework, a bi-level optimization problem is formulated to reflect the
hierarchical decision models of the EUC and the consumers (i.e., leader and followers) in the upper-
and lower-decision levels, respectively. In this sense, the proposed pricing framework is related to
the Stackelberg games in economics [27]. The optimization problem is transformed to an equivalent
single-level problem using the Karush–Kuhn–Tucker (KKT) condition and the penalty method [9].
The EUC solves the single-level problem to maximize its profit, considering that the consumers
minimize their electricity bills while satisfying the occupants’ thermal comfort.

In addition, an accurate but simple thermal dynamic model (i.e., an experimental, data-driven
model of the actual HVAC system) needs to be developed to estimate the indoor temperature variations
for the power input changes of HVAC system, which requires a comprehensive understanding of
the thermal dynamics of the target buildings under time-varying indoor and outdoor environmental
conditions. We also need to pay careful attention when integrating the thermal dynamic model into
the optimization problem, so that common solvers in the off-the-shelf software programs can be
readily applied to find the optimal solution within a reasonable computational time. Comprehensive
models of building thermal dynamics can be developed using a range of commercial software, for
example, TRNSYS, Dymola/Modelica, and EnergyPlus. However, these comprehensive models are
often too sophisticated and slow to be applied to the 24-h optimal scheduling problem where the EUC
communicates with a number of buildings located throughout the distribution network. To resolve this
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challenge, the experimental data-driven models of a building room and HVAC system were adopted
and integrated into the optimal scheduling problem in the proposed retail pricing strategy.

2.2. Modeling the Thermal Response of HVAC Systems in Commercial Buildings

In this paper, the thermal dynamic response of an HVAC system in a small office building of
United States was modeled based on the experimental building room thoroughly described in [13].
As shown in Figure 2, it is divided into a climate room and a test room, both in a larger laboratory room
with a constant indoor temperature. The test room includes lights and general heat sources to simulate
internal heat gains for a common office room. In [13], the thermal dynamic model of the test room was
implemented using a regression-based inverse transfer function to characterize the linear dependencies
on the external and internal environmental parameters during the past and current times as

Tht =
t−1∑

k=t−τ

ahkThk +
t∑

k=t−τ

(shkTak + dhkTxk + fhkQhk + ghkQck + khkQrk),∀h, ∀t (1)
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Figure 2. Experimental room setup for estimating the thermal dynamic response to the input power of
an HVAC system.

In (1), Tht is the indoor temperature adjusted by HVAC system h, Tat is the adjacent room
temperature, and Txt is the ambient temperature. In addition, Qht is the cooling rate provided by HVAC
unit h, and Qct and Qrt are the heat gains from convective and radiative internal loads, respectively.
The coefficients aht–kht depend on building orientation, structure, and materials. The adjacent and
ambient temperatures, as well as the internal heat gains, can be measured and forecast using historical
data acquired during normal building operation [14]. In this study, we focus on the relations between
Tht and Qht by simplifying (1) to (2) where lht represents the building environmental parameters.
The coefficients aht, sht, dht, fht, ght, and kht in (1) were estimated as shown in Table 1. The coefficients
were obtained by developing and validating simulation models in [28].

Tht =
t−1∑

k=t−τ

ahkThk +
t∑

k=t−τ

( fhkQhk + lhk),∀h, ∀t (2)

Table 1. Coefficients for the inverse transfer function (ITF) model (1) that were experimentally obtained
in [28].

ah(t–3) ah(t−2) ah(t−1) sh(t−3) sh(t−2) sh(t−1) sht
−5.08 × 10−1 6.84 × 10−1 8.13 × 10−1 1.07 × 10−3 1.07 × 10−3 1.07 × 10−3 1.07 × 10−3

dh(t−3) dh(t−2) dh(t−1) dht fh(t−3) fh(t−2) fh(t−1) fht
−9.31 × 10−3

−1.06 × 10−2 1.34 × 10−2 1.32 × 10−2 1.46 × 10−3
−3.54 × 10−3

−1.25 × 10−3 3.75 × 10−3

gh(t−3) gh(t−2) gh(t−1) ght kh(t−3) kh(t−2) kh(t−1) kht
1.46 × 10−3

−3.54 × 10−3
−1.25 × 10−3 3.75 × 10−3 4.08× 10−5

−1.24 × 10−3 1.49 × 10−4 1.44× 10−3
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Although the small test building, shown in Figure 2, has been used here for simplicity, the thermal
dynamic modeling and, hence, the proposed optimal pricing strategy can be easily applied to large-scale,
multi-zone commercial buildings using different thermal coefficients in (1) and (2) [13,29].

The thermal dynamic model is incorporated particularly with the model of a variable speed heat
pump (VSHP), which is a common example of an HVAC system. This leads the cooling rate provided
by the VSHP unit h at time t to be represented [13] as:

Qht = z3,ht

 NL∑
m=1

δmht


3

+ z2,ht

 NL∑
m=1

δmht


2

+ z1,ht

NL∑
m=1

δmht + z0,ht,∀h, ∀t (3)

In (3) and (4), δmht is the mth power segment of the VSHP unit h at time t and z0,ht–z3,ht are the
coefficients dependent on the steady-state operating conditions (i.e., δmht and Txt) of the VSHP unit h
at time t. As discussed in [13], Qht is also affected by the mixed-air temperature in the air-handling
unit, which in general is maintained at 26 ◦C. We assumed that the return air temperature is kept the
same as the indoor temperature if a supply air lower than 25 ◦C (i.e., maximum indoor temperature)
is introduced into the room. Therefore, the return air temperature is lower than 26 ◦C. Under these
conditions, it is assumed that the return air is mixed with a small amount of outdoor air in order
to reduce the loss of cooling energy in buildings and to maintain indoor air quality above a certain
level [30]. In [30], the mixed air temperature was set to constant 26 ◦C, but it showed the same effect
even if the mixed air temperature is higher than 26 ◦C. By combining (2) and (3), the indoor temperature
for the input power of the VSHP can be simply expressed as

Tht =
t∑

k=1

fk(δmhk),∀h, ∀t (4)

Figure 3 shows an example of the nonlinear curves obtained using (4). In Figure 3, Tz,ht is defined
as the indoor temperature at time t for Qhk = 0 for 0 ≤ k ≤ t; i.e., the HVAC system is turned off during
the period. Furthermore, Fmhtj is the linear gradient of Tht at time t = j for the mth power segment
of HVAC system h at time t = k (i.e., k ≤ j). NL represents the number of piecewise linear blocks.
The nonlinear thermal dynamic response of the building room to the input power variation of HVAC
unit can be approximated to (5) using a piecewise linearization approach where the operating range
from 0 to Ph,max of HVAC system is divided into NL segments.

Tht � Tz,ht +

NL∑
m=1

t∑
j=1

Fmhtjδmhj, ∀h, ∀t (5)

Energies 2020, 13, x FOR PEER REVIEW 6 of 19 

 

 
(3)

In (3) and (4), δmht is the mth power segment of the VSHP unit h at time t and z0,ht–z3,ht are the 
coefficients dependent on the steady-state operating conditions (i.e., δmht and Txt) of the VSHP unit h 
at time t. As discussed in [13], Qht is also affected by the mixed-air temperature in the air-handling 
unit, which in general is maintained at 26 °C. We assumed that the return air temperature is kept the 
same as the indoor temperature if a supply air lower than 25 °C (i.e., maximum indoor temperature) 
is introduced into the room. Therefore, the return air temperature is lower than 26 °C. Under these 
conditions, it is assumed that the return air is mixed with a small amount of outdoor air in order to 
reduce the loss of cooling energy in buildings and to maintain indoor air quality above a certain level 
[30]. In [30], the mixed air temperature was set to constant 26 °C, but it showed the same effect even 
if the mixed air temperature is higher than 26 °C. By combining (2) and (3), the indoor temperature 
for the input power of the VSHP can be simply expressed as 

 
(4)

Figure 3 shows an example of the nonlinear curves obtained using (4). In Figure 3, Tz,ht is defined 
as the indoor temperature at time t for Qhk = 0 for 0 ≤ k ≤ t; i.e., the HVAC system is turned off during 
the period. Furthermore, Fmhtj is the linear gradient of Tht at time t = j for the mth power segment of 
HVAC system h at time t = k (i.e., k ≤ j). NL represents the number of piecewise linear blocks. The 
nonlinear thermal dynamic response of the building room to the input power variation of HVAC unit 
can be approximated to (5) using a piecewise linearization approach where the operating range from 
0 to Ph,max of HVAC system is divided into NL segments. 

 
(5)

This approach aims to develop a set of linear constraints on the indoor temperature variation, as 
discussed in Section 3, which can be applied to the KKT conditions. Consequently, the bi-level 
decision model for the proposed optimal pricing strategy can be converted into the single-level 
decision model. 

 
Figure 3. Estimation of the indoor temperature as a function of HVAC input power using piecewise 
linear approximation. 

3. Optimization Problem Formulation 

For the proposed framework discussed in Section 2, the optimal electricity price schedule and 
corresponding input power profile of HVAC units can be determined by solving the upper-level 
problem and lower-level problem, respectively. 

3.1. Upper-Level Problem 

3 2

3, 2, 1, 0,
1 1 1

, ,
L L LN N N

ht ht mht ht mht ht mht ht
m m m

Q z z z z h tδ δ δ
= = =

   
      
   

= + + + ∀ ∀       

1
( ) ,

t

k mhk
k

ht f h tT δ
=

∀ ∀= ,    

,
1 1

,,    
LN t

ht z ht mhtj mhj
m j

h tT T F δ
= =

∀ ∀≅ +

Figure 3. Estimation of the indoor temperature as a function of HVAC input power using piecewise
linear approximation.
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This approach aims to develop a set of linear constraints on the indoor temperature variation, as
discussed in Section 3, which can be applied to the KKT conditions. Consequently, the bi-level decision
model for the proposed optimal pricing strategy can be converted into the single-level decision model.

3. Optimization Problem Formulation

For the proposed framework discussed in Section 2, the optimal electricity price schedule and
corresponding input power profile of HVAC units can be determined by solving the upper-level
problem and lower-level problem, respectively.

3.1. Upper-Level Problem

argmax
Ct

JDP = NHVAC

NT∑
t=1

(Ct −Mt)

NH∑
h=1

NL∑
m=1

δmht (6)

NHVAC = RH

NT∑
t=1

PT,t/
NT∑
t=1

NH∑
h=1

PC,ht,∀h, ∀t (7)

Mt ≤ Ct ≤ Ut,∀t (8)

PR,t = PT,t −NHVAC

NH∑
h=1

PC,ht,∀t (9)

NHVAC

NH∑
h=1

NL∑
m=1

δmht + PR,t ≤ Ppeak,∀t (10)

The EUC determines the optimal retail price Ct to maximize its profit JDP by solving the upper-level
problem (6)–(10). In (6), the EUC’s profit JDP is calculated as the difference between the revenue
of selling the electricity to the price-sensitive HVAC systems at Ct and the cost of purchasing the
electricity at Mt from the wholesale market. NT is the number of scheduling time intervals in a day.
The conventional HVAC systems were assumed to consume pre-determined input power PC,ht for 5 ≤
t ≤ 19 to maintain the indoor temperature at 22.5 ◦C during 8 ≤ t ≤ 19. The EUC’s profit JDC =

∑
t (Ut

–Mt) ×
∑

h, PC,ht in business with the conventional HVAC systems is constant, because the TOU price
Ut is also determined in advance. It can then be added to (6), resulting in the total profit of the EUC JD
= JDP + JDC.

In (7), the ratio of the power consumption of HVAC systems in the commercial buildings to the
total power consumption in the distribution network is set to RH and used to determine the total
number of commercial HVAC systems in the distribution network. NH is the number of the types of
HVAC systems and NHVAC is the total number of HVAC systems in the distribution system divided
by NH.

The EUCs are regulated not to maximize their profit by manipulating the prices; therefore, we set
(8) to prevent EUC from setting its price to maximize profit. In addition, (8) represents the upper and
lower limits of Ct at time t, which are equivalent to Ut and Mt, respectively. This allows consumers to
reduce their electricity bills via the proposed retail pricing scheme, and, consequently, the EUC can
attract a number of HVAC loads to its optimal price-based DR strategy, procuring substantial load
flexibility. The constraints (8) can also reduce the exposure consumers have to highly volatile prices
and alleviate the EUC’s market power by preventing the EUC from increasing its profit excessively,
which appears to be unfair to consumers. It was assumed in [31] that the EUC and consumers reach
such an agreement to bring (8) into effect.
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In (9), PR,t is defined as the remainder load other than the load used in conventional HVAC systems.
NHVAC ·

∑
h
∑

m δmht + PR,t is established to estimate the peak limit Ppeak because of price-sensitive
HVAC loads in (10).

3.2. Lower-Level Problem

argmin
δmht

JBP =

NT∑
t=1

Ct

NH∑
h=1

NL∑
m=1

δmht (11)

δmh,max · bmht ≤ δmht ≤ δmh,max, for m = 1, ∀h, ∀t (12)

δmh,max · bmht ≤ δmht ≤ δmh,max · b(m−1)ht, for 2 ≤ m ≤ NL − 1, ∀h, ∀t (13)

0 ≤ δmht ≤ δmh,max · b(m−1)ht, for m = NL, ∀h, ∀t (14)

0 ≤
NL∑

m=1

δmht ≤ Ph,max,∀h, ∀t (15)

DL ≤

 NL∑
m=1

δmht −

NL∑
m=1

δmh(t−∆tunit)

/∆tunit ≤ DU,∀h, ∀t (16)

Tht,min ≤ Tz,ht +

NL∑
m=1

t∑
j=1

Fmhtj · δmhj ≤ Tht,max,∀h, ∀t (17)

For the price-sensitive HVAC units, the optimal power inputs
∑

m δmht for all h are scheduled to
minimize their operating cost JBP, given Ct, by solving the lower-level problem (11)–(17). The operations
of the conventional HVAC units result in the constant operating cost JBC =

∑
tUt ×

∑
h PC,ht, which can

be simply added to (11) as JB = JBP + JBC without affecting the optimal schedules of δmht. To complete
the piecewise linear approximation, (12)–(14) are established to describe the boundary conditions on
δmht, as shown in Figure 3, using the binary variables bmht. For example, for b2ht = 1, b3ht = 0, and
b4ht = 0, δ3ht can be scheduled to the value between 0 and δ3h,max, whereas δ4ht is forced to be zero.
Moreover, (15) specifies that the scheduled power inputs

∑
m δmht of HVAC systems need to be less

than their rated power Ph,max, and (16) specifies the limits DL and DU on the positive and negative
ramp rates of

∑
m δmht, respectively, during the unit time interval ∆tunit = 1 h. In general, DU needs to

be carefully determined by considering practical operation of heat pumps (HPs) to prevent severe
operational stress on HP compressors. Furthermore, the inequality constraints (17) specify that the
indoor temperature Tht should be maintained within an acceptable range between Tht,min and Tht,max

so as to satisfy the occupants’ thermal comfort. Note that Tht is approximated using a piecewise linear
equation (5) for the application of the KKT conditions.

3.3. Equivalent Single-Level Problem

∇δmhtL(Ct, δmht, ηλmht, βρmht,αψht,µωht) = 0,∀m, ∀h, ∀t, ∀λ, ∀ρ, ∀ψ, ∀ω (18)

0 ≤ dλ(δmht, bmht)⊥ηλmht ≥ 0,∀m, ∀h, ∀t, ∀λ (19)

0 ≤ hρ(δmht)⊥βρmht ≥ 0,∀m, ∀h, ∀t, ∀ρ (20)
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0 ≤ gψ(δmht)⊥αψht ≥ 0,∀m, ∀h, ∀t, ∀ψ (21)

0 ≤ yω(Tht)⊥µωht ≥ 0,∀h, ∀t, ∀ω (22)

We apply the KKT conditions to the lower level problem. The binary variables bmht in (12)–(14)
were relaxed to real variables as 0 ≤ bmht ≤ 1 without changing the optimal input power schedules of
δmht. In other words, the linear programming relaxation turns out to be exact [32], because the slopes
of the piecewise linearized curves in Figure 3 are monotonously reduced, as HVAC load is increased.
For the temperature control, it is still cost-effective to increase the input power of HVAC system
gradually from

∑
m δmht = 0 to the rated value

∑
m δmht = Ph,max. Using the KKT conditions, (11)–(17)

can be equivalently replaced with (18)–(22). ηλmht, βρmht, αψht, and µωht are Lagrangian multipliers.
The original bi-level problem can then be reformulated with the single-level objective function (23):

argmax
Ct,δmht

JDP =

NT∑
t=1

Ct

NH∑
h=1

NL∑
m=1

δmht − J
(
δmht, Mt

)
(23)

Owing to the non-linearity of the first term in (23) and the complementarity of (19)–(22),
an interior-point solver in conjunction with a penalty method has been applied, as discussed in [33],
by converting (19)–(22) to (25) where Θ is the upper bound of the total sum. The equivalent single-level
problem can then be expressed as

argmax
Ct,δmht

JDP = NHVAC

NT∑
t=1

Ct

NH∑
h=1

NL∑
m=1

δmht −NHVAC

NT∑
t=1

Mt

NH∑
h=1

NL∑
m=1

δmht−π ·Θ (24)

Subject to (7)–(10) and (12)–(18)

Nλ∑
λ=1

NH∑
h=1

NT∑
t=1

NL∑
m=1

ηλmht · dλ(δmht, bmht) +
Nρ∑
ρ=1

NH∑
h=1

NT∑
t=1

NL∑
m=1

βρmht · hρ(δmht)

+
Nψ∑
ψ=1

NH∑
h=1

NT∑
t=1

NL∑
m=1

αψht · gψ(δmht) +
Nω∑
ω=1

NH∑
h=1

NT∑
t=1

µωht · yω(Tht) ≤ Θ
(25)

µωht ≥ 0, αψht ≥ 0, βρmht ≥ 0, ηλmht ≥ 0,∀m, ∀h, ∀t, ∀ω, ∀ψ, ∀ρ, ∀λ (26)

In (24), π is defined as the penalty factor. For a positive constant π, Θ becomes zero when (19)–(22)
are satisfied [9,33].

4. Simulation Case Studies and Results

4.1. Test System and Simulation Conditions

In the case studies, the effect of the proposed pricing strategy on the peak load reduction are
explicitly investigated for the cases of conventional load demand and duck curve, and the data in
Figure 4b–d are from United States (i.e., test site). A 24-h load demand curve during summertime
was adopted from [34] and scaled down, so that the distribution network has the peak load demand
of 7.04 MW at t = 17 h, as shown by the blue line in Figure 4a. The PV production time-series (i.e.,
red line in Figure 4a) was acquired from [35] and scaled up to 20% of the peak of the conventional
load curve (i.e., the blue line in Figure 4a). The load curve that changed with the introduction of PV is
represented by the green line shown in Figure 4a. The peak load of the green line is 6.61 MW at t = 20 h.
The 24-h curve of the ambient air temperature [36], shown in Figure 4b, is similar to the conventional
load demand curve. In particular, both the maximum temperature and the peak load took place at
t = 17 h. In addition, Figure 4c indicates the curves of the wholesale price Mt [37] and retail price Ut



Energies 2020, 13, 862 10 of 20

for the TOU scheme [38]. It was assumed that the EUC was informed of Mt one day ahead to schedule
the optimal Ct considering the price-based DR of HVAC units. For the optimal Ct, the input power of
HVAC systems was then determined, given the NH profiles of the building thermal loads, which were
developed as shown in Figure 4d based on the real data in [30] and [39]. Specifically, the VSHP load
profiles in a real commercial building were measured and then scaled down with the different ratios to
determine the rated power inputs of the VSHPs. For the rated inputs, the corresponding cooling rates
Qht were then estimated using (3), and the scaled fractions of Qht were applied to the control of Tht.
As shown in Figure 4d, the NH type profiles of thermal energy loads Qct and Qrt were then determined
for the test buildings. In this paper, we assumed that the internal heat gain could be forecasted as
Figure 4d. Based on the real profiles of

∑
m δmht, Qht, and Txt, for simplicity, it was assumed that the

group of buildings has the same thermal load profile. Figure 4d shows that the thermal loads were
increased at t = 7 h (when people started coming to work) and were maintained at high levels until
t = 19 h, when the workers left the buildings. Table 2 lists the rated values of

∑
m δmht and Qht of HVAC

units and maximum value of (Qct + Qrt) per building room.
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profiles in the distribution network, (b) ambient temperature Txt, (c) locational marginal pricing (LMP)
and time-of-use (TOU) price, and (d) internal heat gains Qct + Qrt for building rooms.

Table 2. Power capacity and cooling rate of the HVAC systems and maximum heat gain per
building room.

No Ph,max [kW] Qh,max [kW] (Qc + Qr)max [W] No Ph,max [kW] Qh,max [kW] (Qc + Qr)max [W]
1 26 118 708 9 27 123 727
2 24 109 725 10 29 132 639
3 26 118 675 11 25 114 653
4 24 109 698 12 19 86 709
5 21 95 721 13 22 100 721
6 19 86 723 14 20 91 717
7 23 105 704 15 24 109 701
8 21 95 713

As mentioned in Section 3, NH types of HVAC systems were used and the total number of HVAC
systems included in the distribution network was NH × NHVAC. In this paper, NH was set to 15 as
shown in Table 2. As mentioned in Section 1, more than 13% of the total energy usage is consumed
by commercial HVAC systems, so the case studies were simulated with RH = 0.13. In the case of the
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conventional load profiles, NHVAC is set to 6 by (7), and in the case of duck curve, NHVAC is set to 4.6
by (7).

Figure 5a shows that the input power of the conventional HVAC systems varied over the
scheduling time period to maintain Tht at Tset = 22.5 ◦C during the working hours (i.e., 8 h ≤ t ≤ 19 h),
as shown in Figure 5b, given the time-varying thermal conditions Txt, Qct, and Qrt of the buildings.
It was assumed that the conventional HVAC systems are operated during 5 h ≤ t ≤ 19 h.
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Figure 5. (a) Time-varying power inputs of the conventional (or, equivalently, price-inelastic) HVAC
units and (b) the corresponding indoor air temperatures for the 15 different curves of the time-varying
internal heat gains.

In addition, the load factor and load leveling index are introduced to analyze the effect of the
proposed pricing strategy on the peak load reduction. In [40], the load factor can be defined as the
ratio of the average demand to the peak load as:

load f actor =

NT∑
t=1

Pt/NT

max
t∈Ntime

Pt
(27)

The load leveling index is the MSE with respect to the reference value as [41]:

MSEload leveling =
1

NT

NT∑
t=1

(Pt−

NT∑
t=1

Pt/NT)
2 (28)

4.2. Case Study A: Two Types of Load Profiles

Figure 6a shows the optimal schedules of Ct for the proposed pricing strategy considering peak
load reduction applied to conventional load curve, and Figure 6b,d show the corresponding data on
the total power inputs of the price-elastic HVAC units and the indoor temperatures in the building
rooms. In Figure 6c, the red line shows the total load curve when HVAC systems are operated in the
conventional manner, and the blue line shows the total load curve when HVAC systems are operated
by the price sensitive method.
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Figure 6. Optimal profiles for the proposed strategy considering peak load reduction with conventional
load curve: (a) The optimal retail price, (b) total input power of the price-elastic HVAC units, (c) total
load profiles, and (d) indoor temperature variations in 15 building rooms.

In Figure 6a, the EUC maintained Ct as sufficiently low in the early morning (i.e., 1 h ≤ t ≤ 8 h),
taking into account that the end-users aim to minimize the operating cost of their HVAC systems.
This led to the pre-cooling of HVAC systems, reducing the indoor temperature before people come to
work. Specifically, the large input power of the HVAC systems was scheduled during the time period
of 3 h ≤ t ≤ 7 h, even though the ambient temperature and thermal energy loads were maintained
high during 8 h ≤ t ≤ 19 h. Owing to the low retail price in the early morning, HVAC loads were
shifted away from on-peak hours to off-peak hours (i.e., early morning), leading to the pre-cooling
operation and a reduction in the EUC’s profit and building operators’ operation cost. In Figure 6d,
the pre-cooled indoor temperature increased gradually from 20 ◦C at t = 8 h to 25 ◦C at t = 12 h, as the
ambient temperature and internal heat gains increased. Because of the limited thermal capacity in the
building structures, HVAC loads started increasing at t = 13 h for satisfying occupants’ comforts (i.e.,
temperature constraints). During 11 h ≤ t ≤ 19 h, the EUC sets Ct to the upper limit to compensate
for the reduction in the EUC’s profit, resulting from the low value of Ct for the pre-cooling. Specially,
the EUC sets Ct to the upper limit to lower power consumption during on-peak hours (i.e., 16 h ≤ t
≤ 19 h). To prevent excessive compensation of the EUC’s profit, the upper limit was set as the TOU
price Ut, as shown in (8), mitigating the retail price volatility and ensuring the financial benefit of the
consumers participating in the proposed pricing scheme. In Figure 6c, the peak load of the total load
containing the conventional HVAC system is 7.04 MW, while the peak load of the total load containing
the proposed price-sensitive HVAC system is 6.75 MW and the reduction rate is approximately 4.18%.
In the proposed method, the peak of the total load curve takes place at t = 20 h. The peak load
reduction rate cannot be increased further because HVAC system does not need to operate for 20 h ≤ t
≤ 24 h owing to the mitigation of the indoor temperature constraints. However, the difference between
the peak and minimum load values shows that the proposed method does not improve in terms of
load leveling with 2.33 MW for the conventional HVAC system and 2.32 MW for the price-sensitive
HVAC system.

Table 3 summarizes the JBP and JBC for individual HVAC units for the proposed pricing scheme and
the TOU pricing scheme, respectively, for peak load reduction of the conventional load curve. The 24-h
operating costs JBP of the price-sensitive HVAC units are cheaper than those of the conventional units.
This demonstrates that using the proposed pricing scheme, the EUC can effectively attract more HVAC
units to its DR program.
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Table 3. Reductions of the operating costs (JBP,h and JBC,h) for individual HVAC units.

HVAC unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1) JBP,h [$] 4.85 4.92 4.15 4.75 5.30 4.58 4.28 4.44 4.70 4.61 3.52 4.35 5.26 3.59 3.81
(2) JBC,h [$] 10.72 11.11 9.14 10.38 11.74 10.33 9.42 10.00 10.41 10.22 7.99 9.51 11.80 7.94 8.36

((2)-(1))/(2) [%] 54.78 55.67 54.62 54.24 54.88 55.67 54.58 55.54 54.80 54.91 55.96 54.29 55.42 54.79 54.48

As shown in Figure 7, the optimal schedules of Ct and
∑

m δmht were determined by proposed
pricing strategy considering peak load reduction applied to duck curve. The peak load of the duck
curve occurs at t = 20 h, as shown in Figure 7c. The commercial HVAC system does not need to be
operated for 20 h ≤ t ≤ 24 h owing to mitigation of the indoor temperature conditions. As a result,
the commercial HVAC system cannot affect the load curve after 20 h. In the proposed method (i.e.,
blue line) in Figure 7c, the difference between the peak load and the minimum value of the load curve
is larger than the conventional strategy (i.e., red line). In other words, even if the EUC utilizes the
commercial HVAC system as a DR resource, the peak load of duck curve cannot be reduced.
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4.3. Case Study B: Purpose of Demand Response

We demonstrated that the proposed pricing strategy could be applied to other purpose such as
load leveling besides peak load reduction. The simple constraint (i.e., Pmin < NHVAC·

∑
m δmht + PR,t)

was added to (10) to show that price-sensitive HVAC systems can have positive effects even in terms of
load leveling, and, the simulation results of applying the proposed pricing strategy to the conventional
load curve are shown in Figure 8. To satisfy the added constraint, the EUC lowered Ct for 6 h ≤ t ≤
13 h to induce the power consumption of HVAC system. In particular, the blue line in Figure 8a had a
minimum value at t = 6 h, and the EUC set Ct close to the lower limit to increase power consumption
during this time period. For HVAC system, the input power of the previous time zone affects the
indoor temperature of the subsequent time zone, as shown in (4). Therefore, an increase in power
consumption for 6 h ≤ t ≤ 8 h could violate the indoor temperature conditions at t = 8 h; this problem
could be solved by increasing Ct for 1 h ≤ t ≤ 3 h to reduce the power consumption for 1 h ≤ t ≤ 3 h.
The difference between the peak load and minimum values is 1.51 MW, a significant reduction from
2.33 MW for conventional HVAC systems.
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Figure 9 shows the simulation results of applying the proposed pricing strategy considering load
leveling to the duck curve. The blue line in Figure 9c shows that the difference between the peak load
and the minimum load is similar to that of the conventional method (i.e., red line); however, the blue
line also shows a more rapid change in power consumption for 16 h ≤ t ≤ 20 h. In other words, the total
load profile (i.e., blue line) of the price-sensitive HVAC systems requires larger ramp rate of generators
for 16 h ≤ t ≤ 20 h. As a result, even if the EUC utilizes the commercial HVAC system as a DR resource,
the duck curve cannot be improved in terms of load leveling, as shown in Figure 9c.
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Figure 9. Optimal profiles for the proposed pricing strategy considering load leveling with the duck
curve: (a) The optimal retail price, (b) total input power of the price-elastic HVAC units, (c) total load
profiles, and (d) indoor temperature variations in 15 building rooms.

Figure 9 shows the simulation results of applying the proposed pricing strategy considering the
load leveling to the duck curve. The blue line in Figure 9c shows that the difference between the peak
load and the minimum load is similar to that of the conventional method (i.e., red line); however,
the blue line also shows a more rapid change in power consumption for 16 h ≤ t ≤ 20 h. In other words,
the total load profile (i.e., blue line) of the price-sensitive HVAC systems requires larger ramp rate of
generators for 16 h ≤ t ≤ 20 h. As a result, even if the EUC utilizes the commercial HVAC system as a
DR resource, the duck curve cannot be improved in terms of load leveling, as shown in Figure 9c.
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4.4. Case Study C: Parameter Sensitivity

In Section 4.4, we performed the simulation with several value of TOU pricing to demonstrate
the applicability of the proposed pricing strategy, because the TOU pricing varies depending on the
country or month. Figure 10 shows the effect of the price cap Ut on the optimal profile of the Ct.
Figure 10a,b show that as Ut

max increased, Ct increased accordingly; however, the overall profiles of Ct

and, consequently, the overall profiles of the EUC’s profit remained similar. Note that in Figure 10c,
the difference value between Ut

max and Ut
min were maintained at the same values. Figure 10b,d show

the optimal profiles of Ct for the different profiles of Ut shown in Figure 10a,c, respectively. The Ct

profiles, apart from the magnitudes, look similar for all cases particularly during the time period
from 1 h to 19 h; note that HVAC systems were turned off in the period 20 h ≤ t ≤ 24 h because of
low occupancy.
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4.5. Discussion

The results for various case studies are summarized in Tables 4 and 5. In Table 4, the proposed
method reduced the peak load of the conventional load curve by 4.12% compared to the conventional
method. In terms of load leveling, the proposed method, which only considers the peak load reduction,
reduced the difference between the peak load and the minimum load by 0.43% compared to the
conventional method, and reduced by 35.19% when the constraint for the load leveling is added.
The load factor has similar values in the cases of (a)–(c). The proposed method did not improve the
load curve in terms of load factor. However, the proposed method reduced the load leveling index by
39.59% in the case of (b) and 62.80% in the case of (c), compared to the conventional method. The load
leveling index is further reduced in the case of (c) where load leveling constraints are added compared
to the case of (b) with only constraints of peak load reduction. The proposed method effectively
achieved peak load reduction and load leveling. These allow for the postponement of investments in
grid upgrades or in new substation capacity. The EUC’s profit for commercial HVAC systems (i.e., JDP)
with the constraint for the peak load reduction is 56.51% less than that of the conventional method.
The JDP is reduced by 67.38% with the addition of load leveling constraint. In other words, by load
leveling and reducing the peak load, the profit for commercial HVAC systems is greatly reduced.
While the JDP is greatly reduced, the total profit of the distribution network decreased by 6.81% (peak
load reduction) and 7.94% (load leveling), respectively. Although this may initially limit the profit of
the EUC, the reduction in profit can be sufficiently compensated for by the savings in the network
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operating costs that result from the improved load flexibility, e.g., a decrease in the installation costs of
new substations and lines.

Table 4. Comparison of the data obtained applying the proposed method and conventional method to
the conventional load curve.

Case A: Conventional Load Curve Reduction Rate

(a) Conventional (b) Peak Reduction (c) Load Leveling [(a)–(b)]/[a] [(a)–(c)]/[a]

peak [MW] 7.04 6.75 6.75 4.12% 4.12%
peak–min. [MW] 2.33 2.32 1.51 0.43% 35.19%

load factor 0.8396 0.8341 0.8388 0.66% 0.10%
MSE load leveling [%] 6911.12 4175.25 2571.28 39.59% 62.80%

JDP [$] 457.21 198.82 149.14 56.51% 67.38%
total profit [$] 3795.47 3537.08 3493.97 6.81% 7.94%

Table 5. Comparison of the data obtained applying the proposed method and conventional method to
the duck curve.

Case B: Duck Curve Reduction Rate

(a) Conventional (b) Peak Reduction (c) Load Leveling [(a)–(b)]/[a] [(a)–(c)]/[a]

peak [MW] 6.61 6.61 6.61 0% 0%
peak-min. [MW] 1.89 2.25 1.94 −19.05% −2.65%

load factor 0.8358 0.8029 0.8012 3.94% 4.14%
MSE load leveling [%] 3753.35 4877.88 4208.09 −29.96% −12.12%

JDP [$] 350.53 159.45 109.58 54.51% 68.74%
total profit [$] 3580.88 3389.79 3339.93 5.34% 6.73%

Table 5 reveals the proposed method did not reduce the peak load of the duck curve. The proposed
method for peak load reduction increases the difference between peak and minimum value by −19.05%.
Applying the constraint for the load leveling increases the difference between the peak and minimum
value by −2.65%. The proposed strategy reduced the load factor in the cases (b) and (c), and has an
adverse effect on the load curve in terms of load factor. In addition, the proposed method increased
the load leveling index by −29.96% in the case of (b) and −12.12% in the case of (c), compared to the
conventional method. However, in the proposed method, the retail price is lower than the TOU price in
the conventional method, which reduces the JDP. As a result, the peak load reduction or load leveling
of the duck curve cannot be achieved by using the DR of the commercial HVAC systems. This will be
addressed in future studies by inducing DR participation of DR resources such as HVAC systems in
residential buildings.

5. Conclusions

This paper proposed an optimal retail pricing scheme to support the EUC and building operators
in determining the day-ahead optimal retail price and the corresponding input power of price-elastic
HVAC units, respectively, reducing the peak load in the distribution network. A bi-level decision
model was adopted to develop the proposed scheme, i.e., in the upper level, the EUC determines
the optimal price to maximize its profit and in the lower level, the building operators schedule the
optimal input power of HVAC units to minimize their operating costs. The proposed bi-level optimal
pricing model was applied to two types of load curves using the experimental data-driven model of
an HVAC system in commercial buildings. The optimal retail price was determined to reduce peak
load demand, avoiding the cost for reinforcing power equipment and distribution lines. The upper
bound of the retail price was set using the TOU pricing rates to achieve the low price volatility in
the DR program. The nonlinear thermal dynamic response of an experimental building room to the
input power of the VSHP was modeled using a set of piecewise linear equations, which enabled
the application of the KKT conditions and the transformation of the bi-level decision model to the
single-level model. The results of the case studies demonstrated the effectiveness of the proposed
strategy with the following main features:
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• The EUC induced the pre-cooling of HVAC systems, considering that the consumers minimize the
operating cost of HVAC units. To compensate for the reduction of the EUC’s profit because of the
pre-cooling, the EUC determined high retail price during on-peak times. In addition, the building
operators scheduled small input power of HVAC system during the on-peak hours to minimize
the electricity bills.

• For the conventional load curve, the peak load could be successfully reduced using the pre-cooling
of HVAC units. The corresponding reduction of the EUC’s profit can be justified by the opportunity
cost of installing an additional line or substation and the reduction in consumers’ electricity bills.

• For the duck curve, as participation in DR of the commercial HVAC systems does not result in
peak load reduction or load leveling, residential HVAC systems will also need to be addressed
by inducing participation in DR. In addition, we will research additional case studies on the
application of the proposed pricing strategy to large-scale, multi-zone buildings.
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Abbreviations

The following abbreviations are used in this manuscript:

A. Acronyms:

DR Demand response ESS Energy storage system
ETP Equivalent thermal parameter EUC Electric utility company

HVAC
Heating, ventilation, and
air-conditioning

LMP Locational marginal pricing

PV Photovoltaic TOU Time-of-use
VSHP Variable speed heat pump VSD Variable speed drive

B. Sets and Indices:

t, h, m
Subscripts for time, HVAC units,
and piecewise linear

ω, ψ, ρ, λ
Subscripts for
Lagrangian multipliers

Ntime
number of scheduling time intervals
in a day

C. Parameters:

NL
Total number of piecewise
linear blocks

NT
Total number of scheduling time
intervals in a day

NH

Total number of price-sensitive
HVAC units in the
distribution network

NHVAC

Total number of HVAC systems
in the distribution network
divided NH

RH

the ratio of the power
consumption of HVAC systems in
the commercial buildings to the
total power consumption in the
distribution network

Fmhtj

Linear gradient of Tht at time t =

j resulting from power segment
m of HVAC unit h at time t
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aht, sht, dht, fht, ght, kht,
Coefficients used for the thermal
dynamic model of the building
including HVAC unit h at time t

Tz,ht

Indoor temperature at time t
when no cooling is supplied by
HVAC unit h for the period from
1 to t

z0,h t –z3,ht
Coefficients of the cooling rate
supplied by HVAC unit h at time t

Txt, Tat
Ambient and adjacent room
temperatures at time t

PR,t

Total power consumption minus
conventional HVAC systems’
power consumption

PC,ht

Input power of conventional
HVAC unit h in the distribution
network at time t

Ph,max
Maximum input power of HVAC
unit h

π Penalty factor value

δmh,max
Maximum input power of segment
m of HVAC unit h

Ut, Mt
TOU price and wholesale
market price at time t

DL, DU
Upward and downward ramp rates
of price-sensitive HVAC unit h

PT,t
Total power consumption in the
distribution network at time t

Ppeak, Pmin Peak upper and lower limit ∆tunit Unit time interval

Tht,min,
Tht,max

Minimum and maximum limits of
indoor temperature controlled by
HVAC unit h at time t

Nω, Nψ,
Nρ, Nλ

Number of
Lagrangian multipliers

Qct, Qrt
Internal convective and radiative heat
gains at time t

D. Variables:

Tht
Indoor temperature controlled by
HVAC unit h at time t [◦C]

δmht

Power input of price-sensitive
HVAC unit h in segment m at
time t

Qht
Cooling rate of HVAC unit h
at time t

Ct Day-ahead retail price at time t

bmht

Binary variables for piecewise linear
approximation to indoor
temperature variation by the
power input of HVAC unit h in
segment m at time t

JDC, JDP

EUC’s profits from the sales of
electricity to conventional and
price-sensitive HVAC units

µωht, αψht,
βρmht, ηλmht

Lagrangian multipliers ϑ
Upper bound of the sum of
complementary slackness terms

JD, JB
Total profit of EUC and electricity
bills of HVAC units

JBC,(h), JBP,(h)

Electricity bills of conventional
and (hth) price-sensitive
HVAC units
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