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Abstract: One direction in optimizing wind farm production is reducing wake interactions from
upstream turbines. This can be done by optimizing turbine layout as well as optimizing turbine
yaw and pitch angles. In particular, wake steering by optimizing yaw angles of wind turbines in
farms has received significant attention in recent years. One of the challenges in yaw optimization is
developing fast optimization algorithms which can find good solutions in real-time. In this work,
we developed a random search algorithm to optimize yaw angles. Optimization was performed
on a layout of 39 turbines in a 2 km by 2 km domain. Algorithm specific parameters were tuned
for highest solution quality and lowest computational cost. Testing showed that this algorithm can
find near-optimal (<1% of best known solutions) solutions consistently over multiple runs, and that
quality solutions can be found under 200 iterations. Empirical results show that as wind farm density
increases, the potential for yaw optimization increases significantly, and that quality solutions are
likely to be plentiful and not unique.

Keywords: yaw optimization; wake steering; wind farm

1. Introduction

Wind turbine wakes are undesirable as they reduce energy production and increase mechanical
stresses of downstream turbines. These wake interactions can reduce annual energy production up to
10% to 20% [1]. As wind passes through a wind turbine it creates a wake that detrimentally affects the
power generated by turbines downstream. One way to reduce wake effect during planning stage is
place wind turbines strategically within a domain, and this has been well studied [2–21]. Many of these
studies focused on developing novel optimization algorithms to minimize wake effects. Other studies
focused on developing optimization models and algorithms to solve multi-objective functions beyond
purely minimizing wake effects, such cost, cabling, land constraints, noise.

In addition to optimizing turbine locations, yaw optimization and control of individual
turbines can also reduce wake loss and improve the power production [22–32]. By yawing
upstream turbines, wakes can be deflected away from downstream turbines. In particular,
several studies [28,29,31,32] were conducted to study the potential improvement of controlling turbine
yaw angles. Fleming et al. [24] performed an numerical analysis on two turbines and concluded
that the overall power production could be increased with optimized yaw angles. There are some
existing work in yaw angle optimization [25,28,32] which demonstrated that yawing optimization
can reduce wake losses significantly, and that optimizing yaw angles based on wind direction is
more important than optimizing to wind speed. Although yawed turbines will produce less energy,
the downstream wakes are deflected away from turbines downstream, leading to an overall increase
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in energy production. However, optimizing yaw angles within a farm is an non-trivial task, as there
are infinite combinations of yaw angles in every wind farm.

The aim of wind farm yaw control and optimization is to maximize power production by
minimizing wake interactions. One approach is to accurately describe the complex physical interactions
within the wind farm, and directly develop control strategies based on this description [23,27,32,33].
However, due to the complexity of turbulent atmospheric flow, the computational cost required to
accurately simulate all the conditions is immense, thus real-time wind farm power optimization using
high-fidelity flow simulations is not yet possible [29,34].

In recent years, low cost wake models capable of simulating yawed wakes which are suitable for
fast yaw optimization have been developed. Jiménez et al. [23] derived a simple wake deflection model
of turbines in yaw, but subsequent studies [35–37] demonstrated that the model tends to overestimate
wake deflection. Bastankhah and Porté-Agel [26] developed a computationally inexpensive analytical
wake model to predict wake deflection and velocity distribution in the far wake; however, this model
does not adequately account for turbulence intensity, which is important in wake development.
Qian and Ishihara [35] developed a mechanistic analytical wake model accounting for turbulence
intensity, and validated with experimental results. Then, Lopez et al. [38] developed an accurate and
low-cost numerical field model, building on the unyawed wake model by Kuo et al. [39] and the
yawed wake model by Qian and Ishihara [35]. Shapiro et al. [40] derived a new model based on the
aerodynamic lifting line theory.

In conjunction with these wake models and wind farm data, control algorithms can be used to
optimize yaw angles. Several studies have developed optimization-based control approaches to adjust
to the uncertainties, using approaches such as Bayesian optimization [41], genetic algorithm [42],
game theory [43,44], random search [45], sequential optimization [32], gradient descent [28,46],
greedy control [47], particle swarm optimization [48], dynamic programming [49,50]. Most recently,
Howland et al. [37] developed an control scheme based on an empirical fitted analytical wake
model [26,40]. This analytical wake model was calibrated for a six turbine group within a wind
farm in Alberta, Canada based on historical data. Then wake steering is done by solving a yaw
optimization model in real-time using a gradient descent strategy called Adam optimization [51].
Over the period tested, the wind farm production increased by 7–13% near average wind speeds and
decreased production variability by up to 72%.

To solve the optimization problem in real-time, particularly for higher number of turbines,
it is important to reduce computational cost. A number of optimization algorithms have been
developed to optimize wind farm layout [6,16,52–55]. Keeping in mind of the lessons learned from
layout optimization literature, the objective of this work is to develop an optimization algorithm to
optimize yaw angles of a wind farm, with emphasis on solution quality and low computational cost.
In this work, we propose a random search (RS) algorithm, and we apply this algorithm in conjunction
with a steady analytical wake model by Qian and Ishihara [35] to compare its performance with
that of a binary quadratic programming model, in terms computational cost and solution quality.
The remainder of the paper is structured as follows: Section 2 focuses on the wake model used in this
work; Section 3 discusses the proposed RS algorithm and the model to be solved; Section 4 illustrates
and discusses the performance of the algorithm; and Section 5 summarizes the findings.

2. Wake Model

This work is utilizes the wake model by Qian and Ishihara [35] with the proposed optimization
algorithm. This yaw wake model states the relationship between the average wake velocity, Uw,
and velocity deficit, ∆U, and is described as

Uw = U0 − ∆U (1)

where, U0 is the freestream velocity of the wind.
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As shown in Figure 1, ∆U is related to both x (i.e., the distance measured downstream from the
turbine) and yd (i.e., radial distance measured from the center of the yawed wake) in x − y plane,
and ∆U can be found by using

∆U = Sφ (2)

where S in Equation (2) is the streamwise function, and can be found by using,

1
S
= 0.93(CTcos3γ)−0.75 I0.17

a + 0.42(CTcos3γ)0.6 I0.2
a

x
D

+
0.15(CTcos3γ)−0.25 I−0.7

a
(1 + x

D )2 . (3)

Here, γ represents the yaw angle, D represents the diameter of turbine (illustrated in Figure 1),
Ia is the ambient turbulence intensity, and CT is the coefficient of thrust under no yawing conditions.
In this form, Equation (3) is applicable in the far wake region.

Figure 1. x− y plane of Gaussian wake as described by Qian and Ishihara [35].

To capture the change in velocity deficit (Equation (2)) in the spanwise direction, a spanwise
function φ is used, and this is described using a Guassian function,

φ = exp(
−r′2

2σ2 ). (4)

Here, σ is the standard deviation of the wind velocity distribution at each cross-section, and can
be calculated through

σ = 0.11C1.07
T I0.20

a x + 0.23C−0.25
T I0.17

a D (5)

where r′ in Equation (4) is the radial distance measured from the center of the yawed wake in x− z
plane, as illustrated in Figure 2, and can be defined by

r′ =
√
(y + yd)2 + (z− H)2 (6)

Here, H is the hub height; yd is the wake deflection, and its expression depends on its location within
the wake. In the near wake region, yd is assumed to be linear with distance downstream of turbine
and is expressed as

yd(x)
D

= θ0
x
D

(7)

and,

θ0 =
0.3γ

cosγ
(1−

√
1− CTcos3γ) (8)



Energies 2020, 13, 865 4 of 15

where θ0 is the initial skew angle. In the far wake region, yd is expressed as

yd(x)
D

=

√
CTcosγsinγ

2.00C1.07
T I0.20

a

× ln

∣∣∣∣∣ (σ0/D + 0.2
√

CTcos3γ)(σ/D− 0.2
√

CTcos3γ)

(σ0/D− 0.2
√

CTcos3γ)(σ/D + 0.2
√

CTcos3γ)

∣∣∣∣∣
+

yd0
D

(9)

where yd0 is the wake deflection and σ0 is the standard deviation of the velocity distribution at the end
of near wake region, x0, and

x0 =
σ0 − 0.23C−0.25

T I0.17
a D

0.11C1.07
T I0.20

a
(10)

and

σ0 = D

√
CTcos2γ(sinγ + 1.88cos(γ)θ0)

44.4θ0
(11)

Figure 2. x− z plane of Gaussian wake as described by Qian and Ishihara [35].

This analytical model can only be used to calculate the downstream velocity caused by a single
yawed turbine. If a wake of ith

turbine is influenced by n multiple nearby upstream yawed turbines, the downstream velocity,
Ui, needs to be calculated through

Ui = U0

1−

√√√√∑
j

Aw,j4
πD2 (1−

Uij

U0
)2

 . (12)

where, Uij represents the wind velocity at ith turbine due to the wake of jth turbine. If the turbine is
partially immersed in an upstream turbine wake, then Aw,j is the rotor area immersed in the upstream
wake. Details on Aw can be found in the work by González et al. [56].

3. Optimization Formulation and Random Search Algorithm

3.1. Optimization Formulation

The objective of the optimization problem is to maximize power production of a wind farm.
The problem formulation for the optimization problem is as follows:
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maximize
N

∑
i=1

CP,iρA
2

U0

1−

√√√√ n

∑
j=1

Aw,j4
πD2

(
1−

Uij

U0

)2
 (cosγi)

2

3

(13a)

subject to γ ∈ R (13b)

where the number of turbines in a wind farm is N and n is the number of turbines upstream of turbine
i. A single wake model is used to solve for the velocity at turbine i due to the wake of turbine j,
denoted as Uij. In this formulation, each turbine i is allowed to yaw freely, at angle γi. Furthermore,
ρ is density of air, A is rotor area of turbine, and CP,i is the power coefficient of the turbine i. The power
curve of a turbine is dependent on the model and manufacturer, but an ideal curve is used in this
study, and we assume that the coefficient of power of a yawed turbine is proportional to cosine of
yaw angle squared, similar to empirically observations [25,57,58]. That is, CP,i = CP,unyawedcos2γ at an
yaw angle of γ. Note that there is no physical explanation behind this cosine dependence other than it
created a good fit with experimental results.

3.2. Proposed Random Search Algorithm

The authors initially developed an BQP model [59], which allows turbines to yaw a predefined
set of angles. The authors’ experience developing and working with mathematical programming
models for wind farm layout optimization problems suggested that this BQP model can be quickly
solved using state-of-the-art solvers such as Gurobi and CPLEX, and perhaps outperform certain types
of metaheuristic algorithms. However, it became clear that the BQP model is not suitable for fast
optimization purposes as the size of the problem grows exponentially with increasing size of the set
of angles. From our experience developing the BQP model and analyzing results, we realized that
near-optimal (<1% of best known solutions) solutions are plentiful and that systematically guessing
solutions is likely to do well. This leads to the proposed RS algorithm.

The core idea behind the proposed algorithm is to improve solution quality based on best known
solution during the optimization process. Thus, instead of determining the yaw angle, γ, the algorithm
determines an incremental yaw angle with respect to the current yaw angle. This incremental yaw
angle is randomly selected from a range of −β◦ to β◦, where the value of β is predefined. As shown in
Figure 3, the algorithm starts with the determination of the power output of a farm with all non-yawed
turbines, which is considered as the initial farm configuration. This initial configuration is considered
to be the best known configuration. Then, the yaw configuration of the farm is changed by yawing F%
of the turbines to angles ranging from −β◦ to β◦. After that, the power output of the farm with new
configuration is calculated and compared to that of the best configuration. If the new configuration
produces higher power production, then the best known configuration will be replaced by the new
configuration. Based on the best known solution, the turbines will yaw additionally and randomly
between the range of −β◦ and β◦ and compared with the previous solution. This process is repeated
for a specified number of iterations. In other words, the yaw angle of a turbine i, γi, will be the
sum of all the random angles chosen between −β◦ and β◦ from previous iterations. For example,
suppose β = 20◦, and turbine 1 yaws 9◦ (random selected between −20◦ to 20◦) from the initial
yaw angle of 0◦ relative to the wind in the first iteration, then yaws 8◦ (random selected between
−20◦ to 20◦) from its current yaw angle in the second iteration, so the yaw angle of the turbine after
two iterations is 9◦ + 8◦ = 17◦, if both configurations produced higher larger power output than
previous configurations.

This simple algorithm builds upon best known solutions to find the better solutions. To reduce the
computational cost and improve the quality of solutions, determination of the percentage of turbines
to be yawed, F, and the range of angle [−β◦, β◦] are crucial to achieve those objectives. For instance,
if β is large, there is a strong likelihood to find very different solutions than the initial baseline
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solution. Conversely, if β is small, it is likely that the new solution will be similar to the initial baseline
solution. Thus, the value of β can be seen as a mean to control intensification and diversification of the
optimization process. The percentage of turbines yawed in a single iteration, F, is important as well in
terms of solution quality and computational cost. If F is a small value, the change per iteration will be
small and may likely slow down convergence and further increase computational cost. If the value of
F is large, the additional computational cost associated with each mathematical operation may not
become negligible, but there is no guarantee that the solution quality will increase, especially during
the intensification process. The detailed explanation of choice of F and β is illustrated in the Section 4.

Figure 3. Proposed random search algorithm. Note that power output is abbreviated as PO.

The termination criteria in the proposed algorithm is dependent on the number of iterations.
Of course, more complex convergence criteria could be implemented; however, since computational
cost is of importance in real-time yaw control, constraining the computational cost by fixing the
maximum number of iterations is also applicable. Clearly, as the value of maximum iteration increases,
better solutions will always be found, thus we are interested in determining the best possible solutions
within a realistic time frame. The value of maximum iteration was set to be 1000 iterations.
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4. Results

The optimal wind farm layout used in this work is from Grady et al., shown in Figure 4.
This optimized layout is based on a wind speed of 12 m/s uniformly from 36 different wind direction
sectors separated by 10◦, and each wind direction sector is a 10 degree wind sector. For example,
0◦ wind direction sector is a wind sector ranging from −5◦ to 5◦. The diameter of the 39 turbines is
D = 60 m , hub height of 60 m, and CT = 0.88. These parameters are shown in Table 1. The optimal
layout from this simple wind regime shows turbines evenly spread out throughout the domain and
that there are no turbine clusters. We will be performing yaw optimization on this layout to study the
performance of the RS algorithm.

Figure 4. Optimal layout from Grady et al. [60].

Table 1. Wind farm parameters.

Parameters Values

Domain Size (km × km) 2 × 2
Hub Height (m) 60

Rotor Diameter (m) 60
Number of Turbines 39

Rated Turbine Power (kW) 518
Wind Speed (m/s) 12
Thrust Coefficient 0.88
Power coefficient 0.5

Power Curve Theoretical
Turbulence Intensity 0.035

Wind Direction Sector 36, every 10◦

It is important to note that in this study, we only consider fixed values for CT and CP. However,
under experimental condition, these parameters are functions of tip speed ratio and yaw angle. Thus,



Energies 2020, 13, 865 8 of 15

these simplified assumptions would lead to errors in predicting power production. Nevertheless,
as this work is focused on studying the performance of optimization approaches, these simplifications
are justified as they are commonly used in the literature.

The algorithm in this paper was implemented in MATLAB (i.e., MATLAB 2019) and solved using
an HP EliteDesk with a 4 core Intel i5-6500 3.2 GHz processor and 8 GB of RAM. To ensure a high
quality of optimal solution and low computational cost, the maximum number of iterations is set to be
1000. Under current MATLAB implementation, it takes approximately 3 s per iteration on the 4-core
desktop. It is clear that even at 1000 iterations, the computational cost for RS algorithm is significantly
lower than the 16 CPU hours used to solve the BQP model. The optimization problem is solved for
each wind direction at 0.1◦ degree increment, and then averaged over their corresponding sector,
for all 36 different wind direction sectors. The results of this work is compared to that of BQP model,
discussed in the following subsections.

4.1. Identifying β

To investigate the effects of range of incremental yaw angle, β, and their effect on optimality
and computational cost, the following angle ranges are considered, [−20◦, 20◦], [−10◦, 10◦], [−5◦, 5◦],
and [−2◦, 2◦], or β = 20◦, 10◦, 5◦, 2◦. As mentioned in Section 3, larger values of β (e.g., 20◦ and 10◦)
should be used if we wish to explore the search space (diversification) and the smaller values of
β (e.g., 5◦ and 2◦) if we wish to concentrate on promising regions (intensification). During the
diversification process, the focus is to find a number of good solutions earlier in the optimization
process. Then, later in the process, an intensification process would take place to refine solution quality.
Thus, it may not be ideal to consider a single β value throughout the the optimization process.

Thus, we consider a decaying function for β, which varies the value of β during the optimization
process to balance between solution quality and computational time, and the results are compared
with fixed β values. The idea of this decaying function is similar in concept to the probabilistic function
in simulated annealing [61]. The value of β should be larger early on in the optimization process
to take risks and explore different neighborhoods, and gradually decrease with increasing number
of iterations. Then, we define β as β = 7◦e−kg/1000 + m◦, where k is an exponential constant to be
determined and g is the number of iteration, and has an asymptote of m◦. Note that this equation was
developed with an termination point of 1000 iterations (hence the exponent −kg/1000), and that this
should be modified for different maximum iteration. Here we consider the value of m to be 4, and k to
be 5 and 8. We compare the results with the decay function with constant β values, shown in Table 2,
which shows the percent improvement in power (solution quality) after 1000 iterations over five trials,
with the top five objective values underlined. It can be seen that in terms of solution quality, the results
using the decay function are similar to that of fixed β values. Three important observations can be
drawn from these experiments. First, most trials reach nearly identical objective values. There are
likely numerous local optima with similar objective values, and that all approaches will eventually find
one. Second, when β value is small, e.g., 2◦, the number of iterations it takes to find near-optimal (<1%
of best known solutions) solution increases. As the β value increases to 5◦, the number of iterations
required to find near-optimal solution decreases. However, when the value of β increases to 10◦ and
20◦, although good solutions are found early on, solution quality improvement becomes stagnant
later in the optimization process. Third, all β values tried with the exception of 2◦ all resulted in
similar performance, ranging between 6.3% to 6.5%. This means that the algorithm is robust in finding
good solutions and that diversification is likely to be more important than intensification in this type
of problem.
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Table 2. Percent improvement in power with differing β values at D = 60 m with northerly wind
(0◦ direction sector, 10 degree sector, averaged over 0.1◦ increment) after 1000 iterations and five trials.
Best five objective values are underlined and the best average is boldfaced.

Value of β Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
(◦) (%) (%) (%) (%) (%) (%)

2 4.521 4.521 4.635 4.442 4.521 4.528
5 6.437 6.516 6.426 6.457 6.457 6.459
10 6.482 6.429 6.482 6.463 6.458 6.463
20 6.306 6.357 6.309 6.294 6.320 6.317

7e−5g/1000 + 4 6.485 6.484 6.476 6.475 6.485 6.481
7e−8g/1000 + 4 6.431 6.424 6.474 6.419 6.404 6.431

4.2. Identifying F

Identifying the percentage of turbines, F, to be yawed in each iteration is important. It is worth
noting that as the value of F increases, the ability to fine tune solutions decreases as more randomness
is present in each iteration, especially later on in the optimization process. The value of F is varied to
study how it affects solution quality and computational cost. We performed five trials for 13 different
values of F, corresponding to different number of turbines which will be yawed in each iteration.
These trials were performed with a decay function constants of k = 5 and m = 4. As previously
mentioned in Section 3, when the value of F is small, it would take many iterations to find good
solutions as it searches through the search space at a slower pace. When the value of F is very
large, randomness will dominate as a single turbine could be yawed multiple times within a single
iteration, thus producing similar effects as increasing the range of β. Table 3 shows the average solution
(of five trials) found at the end of 100, 200, 300, 500, and 1000 iterations. The values are shown in
terms of percentage increase from unyawed solution, averaged over five trials. The best solutions
after 50 iterations are found with F values in the range of 17.9% and 51.3%. After 200 to 300 iterations,
the best range of F lies between 7.7% to 51.3%. However, after 500 iterations, the best F values reduces
to a range of 7.7% to 25.6%. After 1000 iterations, the ideal range lies between 5.1% to 25.6%. In other
words, higher F value emphasizes on exploring the search space, and will produce better solutions
earlier on in the search, while lower F value intensifies the search, which finds better solutions later
on in the optimization process. However, after 1000 iterations, the quality of solutions found for all F
values tested, with the exception of F = 2.5% and F = 100%, resulted in greater than 6% increase in
performance, illustrating the robustness of the algorithm. For the remainder of this work, the values
F = 5.1, k = 5, and m = 4 are used.

Table 3. Percent improvement in objective value (from unyawed solution) as function of number of
iterations with varying F values at D = 60 m with northerly wind (0◦ direction sector, 10 degree sector,
averaged over 0.1◦ increment), averaged over 5 trials, with k = 5 and m = 4. Best objective value at
each iteration is underlined.

Value of Number of Iteration
F (%) Turbines 50 100 200 300 500 1000

100 39 1.61% 2.71% 3.92% 4.65% 5.31% 5.90%
51.3 20 2.14% 3.38% 4.52% 5.22% 5.78% 6.12%
35.9 14 2.00% 3.64% 4.80% 5.34% 5.93% 6.22%
30.8 12 1.88% 3.31% 4.81% 5.49% 5.93% 6.26%
25.6 10 1.94% 3.15% 4.79% 5.52% 6.09% 6.39%
20.5 8 1.76% 3.33% 4.85% 5.55% 6.09% 6.38%
17.9 7 1.91% 3.28% 4.83% 5.56% 6.14% 6.39%
15.4 6 1.62% 3.01% 4.72% 5.49% 6.11% 6.34%
12.8 5 1.51% 2.84% 4.47% 5.35% 6.12% 6.36%
10.3 4 1.53% 2.66% 4.50% 5.41% 6.09% 6.39%
7.7 3 1.31% 2.53% 4.19% 5.11% 6.07% 6.45%
5.1 2 1.11% 2.10% 3.57% 4.65% 5.74% 6.48%
2.5 1 0.72% 1.37% 2.43% 3.16% 4.21% 5.79%
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4.3. Solution Reproducibility

Randomness is an inherent part of the proposed RS algorithm. To test the RS algorithm’s sensitivity
to initial seeds, five trials were performed to demonstrate that the algorithm is able to explore
the solution space and that the solution quality is insensitive of initial guesses. The results are
shown in Figure 5, and two observations can be made. First, potential improvement is strongly
dependent on wind direction. In particular, it is clear that production improvements are greatest when
winds are blowing from cardinal and intercardinal directions, when turbines are aligned due to the
structured-grid nature of the layout. Second, in each of the five trials, the improvements are nearly
identical for all wind direction sectors. At first glance, this was very surprising as this implied that the
RS algorithm is able to converge to similar objective values with different initial guesses. Upon closer
inspection of the five solutions, it is likely that this type of problem has multiple local optima with
similar solution quality and that the RS algorithm is able to adequately explore the solution space.

Figure 5. Percent improvement in power production by wind direction sector at D = 60m with five
different initial random seeds.

4.4. Solution Quality

To the best of the authors’ knowledge, the only existing parametric studies on wake steering
is the work by Kuo et al. [59], which illustrated that the potential of wake steering is a function
of wind farm density. That work employed a binary quadratic programming (BQP) formulation.
The formulation only allows turbines to yaw a discrete number of angles. Although this discrete
formulation limited the quality of solutions, the formulation allowed well-developed mathematical
programming methods to be applied, as the BQP solution is known to be optimal. This work can
be compared to the BQP formulation in terms of solution quality. Table 4 shows the power density
and the average percent improvement of the proposed work and the BQP model, and Figure 6 shows
the comparison for different wind direction sectors at D = 60 m. Two observations can be drawn
from Table 4. First, as power density increases with turbine diameter, production improvement also
increased, as previously observed in the work by Kuo et al. Second, the production improvement from
RS algorithm significantly outperforms the BQP model. There are two reasons for this, (1) although
the RS algorithm restricts yawing within a range of incremental angle β for each iteration, it does
not restrict turbines from yawing beyond that range. For example, even if β is restricted to 20◦ for
each iteration, it is possible for a turbine to have a final yaw angle of 47◦ after a number of iterations.
However, this is not the case for the BQP formulation, where the range of angle is a global constraint.
(2) The RS algorithm permits a more dynamic range of angles (e.g. varying β values), while the BQP
formulation only allows a predefined set of angles throughout the optimization process.
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Table 4. Power density and percent production improvement of layout from Grady et al. [60]
using binary quadratic programming (BQP) model [59] compared with proposed random search
(RS) algorithm.

Turbine Power Density BQP Production RS Production
Diameter (m) (MW/km2) Improvement (%) [59] Improvement(%)

40 5.05 0.39 0.98
60 11.36 1.45 4.25
80 20.20 3.22 10.72

Figure 6. Percent improvement in power production by wind direction sector, comparing proposed
random search (RS) algorithm and binary quadratic programming (BQP) model [59] for D = 60 m.

4.5. Sensitivity to Wind Direction

It is known that wake effects are very sensitive to changing wind directions, thus in this work,
we perform simulations at 0.1◦ resolution, then the results are averaged over 10 degree wind sectors.
This approach is important as this particular wind farm layout is very structured such that turbines
are mostly aligned in certain angles. This means that if wakes from upstream turbines are directly
aligned with downstream turbines due to perfect alignment with wind direction, then upstream
turbines would need to yaw significantly to reduce wake interactions downstream. This would also
reduce overall gains as upstream turbines would produce less power as a result of larger yaw angles.
If the wind is slightly misaligned with turbine positions, then improvements from yaw optimization
should be larger. We illustrate this sensitivity by presenting the percentage improvement at 0◦ wind
sector, or wind directions from −5◦ to 5◦ at 0.1◦ increment, shown in Figure 7. As discussed, it is
clear that when wind direction moves away from 0◦ (perfect alignment due to structured layout),
the percent improvement from yaw optimization increases as turbines move out of perfect alignment
from incoming wind. Although in this work, the approach of averaging the solutions at 0.1◦ increment
is performed, it is not possible in practice to change the yaw angles for every 0.1◦ change in wind
direction. Furthermore, there is no guarantee that a near-optimal solution for one particular wind
direction will be a near-optimal solution within the wind sector. Thus, the future research direction is to
develop a robust yaw optimization model, similar to that of the robust wind farm layout optimization
model developed [17] for varying wind directions, and that the proposed RS algorithm can be used to
solve the robust model.
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Figure 7. Percent improvement in power production between wind directions −5◦ to 5◦ at 0.1◦

increment for D = 60 m.

5. Conclusions

This paper describes a random search algorithm capable of optimizing yaw angles of wind
turbines. A series of tests have been conducted to understand the algorithm’s performance in
terms of computational cost and solution quality. The proposed RS algorithm has been shown
to significantly outperform previous work of a BQP formulation solved using a state-of-the-art
mathematical programming solver, and the production improvement is tripled compared with BQP
algorithm. Through the empirical study, the following observations have been made, (a) The quality of
solutions is consistent and is reproducible over multiple runs with minor variations; (b) The solution
quality is dependent on the range of yaw angles and the percentage of turbines yawed in each iteration;
(c) During optimization process, it is more preferable to have larger range of yaw angle at the beginning
and gradually tighten the range as the process continues to renew the results; (d) The optimal range
of the percentage of turbines yawed in each iteration is between 5% and 50%; and (e) Near-optimal
solutions (<1% of best known solutions) can be found within 500 iterations, and that excellent (<2% of
best known solutions) solutions can be found under 300 iterations. While testing the capabilities of
the proposed algorithm, four observations related to wind farm yaw optimization were made. First,
as power density increases, the potential to improve production through yaw optimization increases.
Second, good solutions are likely to be plentiful and are not unique. Third, yaw optimization can
further improve power production in an optimized layout. Finally, yaw optimization is sensitive to
changes in wind direction, so robust yaw optimization considering varying wind direction should be
considered in future work.
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