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Abstract: An energy-management system requires accurate prediction of the electric load for
optimal energy management. However, if the amount of electric load data is insufficient, it is
challenging to perform an accurate prediction. To address this issue, we propose a novel electric
load forecasting scheme using the electric load data of diverse buildings. We first divide the electric
energy consumption data into training and test sets. Then, we construct multivariate random forest
(MRF)-based forecasting models according to each building except the target building in the training
set and a random forest (RF)-based forecasting model using the limited electric load data of the target
building in the test set. In the test set, we compare the electric load of the target building with that
of other buildings to select the MRF model that is the most similar to the target building. Then, we
predict the electric load of the target building using its input variables via the selected MRF model. We
combine the MRF and RF models by considering the different electric load patterns on weekdays and
holidays. Experimental results demonstrate that combining the two models can achieve satisfactory
prediction performance even if the electric data of only one day are available for the target building.

Keywords: short-term load forecasting; building electric energy consumption forecasting; cold-start
problem; transfer learning; multivariate random forests; random forest

1. Introduction

The continuing environmental problems caused by the enormous amount of carbon dioxide
produced by the burning of fossil fuels, such as coal and oil, for energy production has resulted in
considerable focus on smart grid technologies owing to their effective use of energy [1,2]. A smart
grid is an intelligent electric power grid that combines information and communication technology
with the existing electric power grid [3]. The smart grid can optimize energy use by sharing electric
energy production and consumption information with consumers and suppliers in both directions
and in real time [4]. The most fundamental approach for sustainable development of smart grids is
electric power generation using renewable energy sources, such as photovoltaic and wind energy [5,6].
Furthermore, an energy management system (EMS) in smart grids requires an optimization algorithm
for the advanced operation of an energy storage system (ESS) [7]; it also has to plan various strategies
by considering consumer-side decision making [8].

Artificial intelligence (AI) technology-based applications are a highly relevant area for smart grid
control and management [6–8]. In particular, short-term load forecasting (STLF) is a core technology of
the EMS [9]; moreover, accurate electric load forecasting is required for stable and efficient smart grid
operations [10]. From the perspective of a supplier, it is challenging to provide optimal benefits in a
cost-effective analysis while storing a large amount of electric energy in the ESS; however, the smart
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grid can plan effectively by predicting future electric energy consumption and receiving the required
energy from internal and external energy sources [11]. It is also possible to optimize the renewable
energy generation process [11,12]. From the perspective of a consumer, the EMS can quickly cope with
situations such as blackouts and can help to save energy costs because it confirms the electric energy
consumption and peak hours during the day [12].

Electric energy consumption patterns are complicated according to the types of buildings [13];
moreover, the electric energy consumption is frequently changed owing to uncertain external factors [14].
Therefore, it is challenging to predict the exact electric energy consumption in buildings [15]. Besides,
when forecasting electric energy consumption, the complex correlations associated with an electric
load between the current time and the previous time should be appropriately considered [7,11]. To
adequately reflect previously uncertain external factors and electric energy consumption, AI techniques
can be used to predict future building electric energy consumption based on diverse information,
such as historical electric loads, locations, populations, weather factors, and events [16]. Moreover,
the importance of multistep-ahead electric load forecasting has increased to quickly determine new
uncertainties in power systems [17].

Most AI techniques use large amounts of data to construct STLF models. However, as sufficient
electric load data of buildings connected to smart grids for a short time or new/renovated buildings are
not collected, it is challenging to construct STLF models using these data sets. We defined this problem
of lack of data as a cold-start problem. The cold-start problem [18] can occur in computer-based
information systems that require automated data modeling. In particular, this problem involves the
issue where the system cannot derive inferences from insufficient information regarding users or items.
In future, because of the expansion of the smart grid market, it is expected that new data sets will
be collected from newly constructed or renovated buildings. Hence, EMSs require a novel building
electric energy consumption forecasting model that can be applied to these buildings.

In this paper, we propose a novel STLF model that combines random forest (RF) models while
considering two cases (i.e., weekdays and holidays) to solve the cold-start problem. To achieve this,
we first collected sufficient electric energy consumption data sets from 15 buildings. The collected
data sets were divided into training and test sets; moreover, we developed a transfer learning-based
STLF model based on multivariate random forests (MRF) in the training set. We also constructed
a RF-based STLF model using the building electric energy consumption data of only 24 h and then
combined the two models by considering the schedule. Consequently, we assumed the building electric
energy consumption for only 24 h in the test set and performed multistep-ahead hourly electric load
forecasting (24 points) of the target building to prepare for uncertainty.

The rest of this paper is organized as follows: in Section 2, we review several STLF models based
on AI techniques using sufficient and insufficient data sets, respectively. In Section 3, we describe
the input variable configuration for STLF models. In Section 4, we describe the RF-based STLF
model construction in detail. Section 5 presents and discusses the experimental results to evaluate
the prediction performance of the proposed model. In Section 6, we provide a conclusion and future
research directions.

2. Related Works

In this section, we introduce the research on electric energy consumption forecasting for buildings
with and without sufficient data sets. Table 1 summarizes the information about the selected papers,
and these studies are described in detail subsequently.

Several studies have predicted electric energy consumption for buildings with sufficient data
sets based on traditional machine-learning and deep-learning (DL) methods. Candanedo et al. [19]
proposed data-driven prediction models for a low-energy house using the data from home appliances,
lighting, weather conditions, time factors, etc. They used multiple linear regression (MLR), support
vector regression (SVR), RF, and gradient boosting machine (GBM) to construct 10 minute-interval
electric energy consumption forecasting models. They confirmed that time factors were essential
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variables to build the prediction models; moreover, the GBM model exhibited better prediction
performance than other models. Wang et al. [20] presented an hourly electric energy consumption
forecasting model for two institutional buildings based on RF. They considered time factors, weather
conditions, and the number of occupants as the input variables of the RF model. They compared
the prediction performance of the RF model with that of the SVR model and confirmed that the RF
model presented better prediction performance than the SVR model. Li et al. [21] proposed an extreme
stacked autoencoder (SAE), which combined the SAE with an extreme learning machine (ELM) to
improve the prediction results of building energy consumption. The electric energy consumption data
were collected from one retail building in Fremont, CA. The authors predicted the building electric
energy consumption at 30 min and 60 min intervals and compared the prediction performance of
their proposed model with that of backward propagation neural network (BPNN), SVR, generalized
radial basis function neural network, and MLR. Their proposed model demonstrated better prediction
performance than other models. Almalaq et al. [22] presented a hybrid prediction model based on
a genetic algorithm (GA) and long short-term memory (LSTM). GA was employed to optimize the
window size and the number of hidden neurons for the LSTM model construction. Their proposed
model predicted two public data sets of residential and commercial buildings and compared the
prediction performance with autoregressive integrated moving average (ARIMA), decision tree (DT),
k-nearest neighbor, artificial neural network (ANN), GA-ANN, and LSTM models. They confirmed
that their proposed model exhibited better prediction performance than other models.

Several studies reported the construction of electric energy consumption forecasting models
for buildings with insufficient data sets based on pooling, transfer learning, and data generation.
Shi et al. [23] proposed a household electric load forecasting model using a pooling-based deep
recurrent neural network (PDRNN). The pooling method was used to overcome the limitation of
the complexity of household electric loads, such as volatility and uncertainty. Then, LSTM with five
layers and 30 hidden units in each layer was employed to build an electric load-forecasting model
using the pooling method. They compared the prediction performance of the PDRNN with that
of ARIMA, SVR, recurrent neural network (RNN), etc. and confirmed that their proposed method
outperformed ARIMA by 19.5%, SVR by 13.1%, and RNN by 6.5% in terms of the root mean square
error. Ribeiro et al. [24] proposed a transfer-learning method, called Hephaestus, for cross-building
electric energy consumption forecasting based on time-series multi-feature regression with seasonal
and trend adjustments. Hephaestus was applied in the pre- and post-processing phases; then, standard
machine learning algorithms such as ANN and SVR were used. This method adjusted the electric
energy consumption data from various buildings by removing the effects of time through time-series
adaptation. It also provided time-independent features through non-temporal domain adaptation. The
authors confirmed that Hephaestus can improve electric energy consumption forecasting for a building
by 11.2% by using additional electric energy consumption data from other buildings. Hooshmand
and Sharma [25] constructed a transfer learning-based electric energy consumption forecasting model
in small data set regimes. They collected publicly available electric energy consumption data and
classified different types of customers. Then, normalization was utilized for training the trends and
seasonality of time series efficiently. They built a convolutional neural network (CNN) architecture
through the pre-training step that learns from a public data set with the same type of buildings as the
target building. Subsequently, they retrained only the last fully connected layer using the data set of the
target building to predict the energy consumption data of the target building. They demonstrated that
their proposed model consistently demonstrated lower prediction performance error when compared
to seasonal ARIMA, fresh CNN, and pre-trained CNN models. Tian et al. [26] proposed parallel
building electric energy consumption forecasting models based on generative adversarial networks
(GANs). They initially generated the parallel data through GAN by using a small number of the
original data sets and then configured the mixed data set, which included the original data and the
parallel data. Finally, they utilized the mixed data set to train several machine learning algorithms
such as BPNN, ELM, and SVR. Experimental results exhibited that the parallel data consisted of
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similar distributions of the original data, and the prediction models trained by the mixed data set
demonstrated better prediction performance than those trained using the original data, information
diffusion technology, heuristic mega-trend-diffusion, and bootstrap methods.

The differences between the methods described above and our method are as follows:
The forecasting models in previous studies [19–22] presented excellent prediction performance

using a sufficient data set of target buildings. However, our forecasting model can exhibit a satisfactory
prediction performance even if the electric load data of the target building is insufficient.

The forecasting models in previous studies [19–24,26] could not predict the electric loads for
various buildings. However, our forecasting model predicts the electric loads for 15 buildings;
consequently, it can be considered as a generalized forecasting model.

The previous studies based on DL techniques [21–23,25,26] demonstrate a certain amount of
computational cost to optimize the various hyperparameters of DL models for the target building. We
use the RF with minimal tuning of hyperparameters to construct satisfactory forecasting models for
several buildings.

The previous studies based on transfer learning [24,25] considered the types of the building to
construct the forecasting models. However, we built a transfer learning-based forecasting model even
without knowledge of the type of buildings. Besides, even if the electric load of only 24 h for the target
building is known, our forecasting model can predict multistep electric load forecasting.

Table 1. Summary of several approaches for building electric energy consumption forecasting (MLR:
multiple linear regression, SVR: support vector regression, GBM: gradient boosting machine, RF:
random forest, SAE: stacked autoencoder, ELM: extreme learning machine, GA: genetic algorithm,
LSTM: long short-term memory, PDRNN: pooling-based deep recurrent neural network, ANN: artificial
neural network, CNN: convolutional neural network, GAN: generative adversarial network, BPNN:
backward propagation neural network).

Author (Year) Type of Target
Buildings

Dataset for
Target Buildings Time Granularity AI Techniques

Candanedo et al. [19] (2017) Residential Sufficient 10 min MLR, SVR, GBM, RF
Wang et al. [20] (2018) Educational Sufficient 1 h RF

Li et al. [21] (2017) Commercial Sufficient 30 min, 1 h SAE, ELM

Almalaq et al. [22] (2018) Residential, Commercial Sufficient Residential: 1 min,
Commercial: 5 min GA, LSTM

Shi et al. [23] (2018) Residential Insufficient 30 min PDRNN
Ribeiro et al. [24] (2018) Educational Insufficient Daily ANN, SVR

Hooshmand and Sharma [25]
(2019)

Commercial, Industrial,
Educational Insufficient 15 min CNN

Tian et al. [26] (2019) Commercial Insufficient 30 min, 1 h GAN, BPNN, ELM,
SVR

3. Input Variable Configuration

Our goal is to predict the electric energy consumption of buildings that were recently built. To
address this issue, we constructed two STLF models, one using the sufficient electric load data of
other buildings and the other using the limited electric load data of the target building. In this section,
we describe the construction of input variables for practical model training. Section 3.1 describes
the electric energy consumption data sets of the 15 buildings that we collected. Section 3.2 shows
the input variable configuration for the RF-based forecasting model using the small data set of the
target building. Section 3.3 exhibits the input variable configuration for the transfer learning-based
forecasting models using the sufficient data sets from different buildings.

3.1. Data Sets of Electric Energy Consumption from Buildings

We randomly received the hourly electric energy consumption data collected from smart meters
connected with 15 sites from the Korea Electric Power Corporation (KEPCO). One smart meter, which
is installed per site, usually represents one building or a couple of connected buildings. In this paper,
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we defined a smart meter as a building. The period of data collection was from 1 January 2015 to
31 July 2018. As the collected building data were provided under anonymity and because of the
de-identification owing to privacy, we could not determine the types, characteristics, and locations of
the buildings. The collected smart meter data had an average missing value rate of 0.6%; we imputed
these missing values using linear interpolation. The statistical analysis of the collected smart meter
data for each building is listed in Table 2.

Table 2. Statistics of electric energy consumption data from each building (Unit: kWh).

Building # Minimum 1st Quartile Median Mean 3rd Quartile Maximum

1 109.7 202.8 230.4 291.6 344.4 821.8
2 96.6 212.3 313.5 399.7 583.1 1148.7
3 51.6 163.0 240.9 251.5 313.0 870.0
4 27.8 429.5 547.3 572.5 694.3 1295.3
5 94.3 176.2 226.3 251.1 323.0 527.0
6 99.4 216.1 240.0 257.7 289.4 602.0
7 16.8 545.9 590.6 650.2 706.6 1453.6
8 26.8 113.2 128.8 185.0 247.7 532.4
9 187.1 423.7 492.4 518.8 593.3 1140.2

10 190.6 560.9 667.5 780.9 850.7 2478.1
11 105.8 237.8 291.7 301.7 348.2 614.2
12 570.2 973.4 1153.4 1193.7 1373.8 2464.2
13 884.6 1359.2 2222.4 2627.6 3626.5 6835.2
14 1408.0 1801.0 2161.0 2478.0 2984.0 5393.0
15 80.5 117.5 160.5 204.6 259.5 756.1

Herein, we made one assumption. Even though we have sufficient electric energy consumption
data sets for other buildings, we have the electric energy consumption data set of only 24 h for the
target building. Thus, as we know the electric load of the target building for only 24 h (24 points), we
predicted the electric energy consumption for the subsequent 24 h.

3.2. Case 1: Time Factor-Based Forecasting Modeling

As mentioned above, we assumed that the electric energy consumption data of only 24 h for the
target building was known. Hence, we explain the input variable configuration for the prediction
model utilizing the electric energy consumption data of only 24 h. Generally, while constructing a
STLF model, various factors, such as time factors, weather information, and historical electric loads,
are reflected as input variables [27,28]. However, we cannot utilize weather information as an input
variable because we do not know the location of the buildings. The historical electric load is used to
reflect recent trends and patterns [28,29]; moreover, it can be applied when it is composed of sufficient
data sets. However, as we assumed that the historical electric load is composed of data of only 24 h,
reflecting on the historical electric load is inappropriate. This implies that we do not know any recent
trends or patterns. In the case of time factors, there are various factors, namely month, day, hour, day
of the week, and holiday. However, the data set was too small to effectively reflect the characteristics
of months, days, days of the week, and holidays. Therefore, we considered only “hour” as an input
variable to construct the STLF model.

Hourx = sin
((360

24

)
×Hour

)
(1)

Houry = cos
((360

24

)
×Hour

)
(2)

However, in the case where 11 pm and 12 am of the subsequent day are adjacent, but the
difference is 23, it is challenging to train the input variable of the STLF model effectively. Thus, we use
Equations (1) and (2) to enhance the sequence data in the one-dimensional space to the continuous
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data in the two-dimensional space [11,30]. These variables can more adequately reflect the continuous
characteristic, similar to the shape of the clock, as shown in Figure 1.

Energies 2020, 13, x FOR PEER REVIEW 6 of 38 

 

However, in the case where 11 pm and 12 am of the subsequent day are adjacent, but the 
difference is 23, it is challenging to train the input variable of the STLF model effectively. Thus, we 
use Equations (1) and (2) to enhance the sequence data in the one-dimensional space to the continuous 
data in the two-dimensional space [11,30]. These variables can more adequately reflect the continuous 
characteristic, similar to the shape of the clock, as shown in Figure 1. 

 

Figure 1. Example of the enhancement of one-dimensional space to two-dimensional space. 

Tables 3 and 4 lists the results of the statistical analysis of the building electric energy 
consumption for one-dimensional and two-dimensional spaces. In Table 3, we can observe that the 
two-dimensional space reflects the building electric energy consumption more effectively than the 
one-dimensional space. In Table 4, we can see that almost of p-values of the F-statistic are <2.2 × 10 , which are highly significant. This means that at least, one of the predictor variables is 
significantly related to the outcome variable. We used 24-hour information to construct the STLF 
model and then applied the same time information to predict the building electric energy 
consumption over the next 24 hours. 

Table 3. R-squared statistics and standard error for each building. 

Building 
# 

One-Dimensional Space Two-Dimensional Space 

Multiple R-
squared 

Adjusted R-
squared 

Standard 
error 

Multiple R-
squared 

Adjusted R-
squared 

Standard 
error 

1 0.0062 0.0062 132.4 0.2785 0.2784 112.8 
2 0.0314 0.0314 228.5 0.3395 0.3395 188.7 
3 0.0378 0.0378 114.9 0.2542 0.2541 101.2 
4 5.969 × 10  −3.126 × 10  206.7 0.0571 0.0570 200.7 
5 0.0003 0.0003 88.4 0.0052 0.0052 88.2 
6 0.3599 0.3599 45.0 0.2838 0.2838 47.6 
7 0.0126 0.0126 179.9 0.1485 0.1485 167.1 
8 0.0049 0.0048 110.6 0.2652 0.2651 95.0 
9 0.3985 0.3985 91.7 0.2879 0.2879 99.8 

10 0.0212 0.0211 361.5 0.2433 0.2432 317.9 
11 0.0415 0.0415 81.9 0.3233 0.3232 68.8 
12 0.1056 0.1055 280.3 0.2751 0.2750 252.3 
13 0.0886 0.0886 1361.0 0.5962 0.5961 905.8 
14 0.0899 0.0899 829.1 0.4772 0.4772 628.4 
15 0.0321 0.0321 116.5 0.4514 0.4514 87.7 
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Tables 3 and 4 lists the results of the statistical analysis of the building electric energy consumption
for one-dimensional and two-dimensional spaces. In Table 3, we can observe that the two-dimensional
space reflects the building electric energy consumption more effectively than the one-dimensional
space. In Table 4, we can see that almost of p-values of the F-statistic are < 2.2 × 10−16, which are
highly significant. This means that at least, one of the predictor variables is significantly related to the
outcome variable. We used 24-hour information to construct the STLF model and then applied the
same time information to predict the building electric energy consumption over the next 24 h.

Table 3. R-squared statistics and standard error for each building.

Building #
One-Dimensional Space Two-Dimensional Space

Multiple
R-Squared

Adjusted
R-Squared

Standard
Error

Multiple
R-Squared

Adjusted
R-Squared

Standard
Error

1 0.0062 0.0062 132.4 0.2785 0.2784 112.8
2 0.0314 0.0314 228.5 0.3395 0.3395 188.7
3 0.0378 0.0378 114.9 0.2542 0.2541 101.2
4 5.969× 10−7

−3.126× 10−5 206.7 0.0571 0.0570 200.7
5 0.0003 0.0003 88.4 0.0052 0.0052 88.2
6 0.3599 0.3599 45.0 0.2838 0.2838 47.6
7 0.0126 0.0126 179.9 0.1485 0.1485 167.1
8 0.0049 0.0048 110.6 0.2652 0.2651 95.0
9 0.3985 0.3985 91.7 0.2879 0.2879 99.8

10 0.0212 0.0211 361.5 0.2433 0.2432 317.9
11 0.0415 0.0415 81.9 0.3233 0.3232 68.8
12 0.1056 0.1055 280.3 0.2751 0.2750 252.3
13 0.0886 0.0886 1361.0 0.5962 0.5961 905.8
14 0.0899 0.0899 829.1 0.4772 0.4772 628.4
15 0.0321 0.0321 116.5 0.4514 0.4514 87.7
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Table 4. F-statistics and p-value for each building.

Building # One-Dimensional Space Two-Dimensional Space

F-Statistics p-Value F-Statistics p-Value

1 197 < 2.2× 10−16 6057 < 2.2× 10−16

2 1018 < 2.2× 10−16 8067 < 2.2× 10−16

3 1234 < 2.2× 10−16 5348 < 2.2× 10−16

4 0.019 0.8911 950 < 2.2× 10−16

5 8.994 0.002711 82.410 < 2.2× 10−16

6 1.765× 104 < 2.2× 10−16 6220 < 2.2× 10−16

7 400 < 2.2× 10−16 2737 < 2.2× 10−16

8 153 < 2.2× 10−16 5664 < 2.2× 10−16

9 2.08× 104 < 2.2× 10−16 6345 < 2.2× 10−16

10 678 < 2.2× 10−16 5046 < 2.2× 10−16

11 1359 < 2.2× 10−16 7498 < 2.2× 10−16

12 3705 < 2.2× 10−16 5956 < 2.2× 10−16

13 3052 < 2.2× 10−16 2.317× 104 < 2.2× 10−16

14 3102 < 2.2× 10−16 1.433× 104 < 2.2× 10−16

15 1040 < 2.2× 10−16 1.291× 104 < 2.2× 10−16

3.3. Case 2: Transfer Learning-Based Forecasting Modeling

In addition to the electric energy consumption data set of the target building for only 24 h, we
also have sufficient electric energy consumption data sets of other buildings. Hence, we can reflect
on various characteristics to use as input variables for a transfer learning-based model construction.
Consequently, we used a time factor and historical electric load as input variables. We first divided the
electric energy consumption data of all buildings into training and test sets. In the training set, we used
the electric energy consumption data of different buildings to train the transfer learning-based STLF
models and these models were applied to the electric energy consumption data of the target building
when it was used in the test set. For time factors, we used the month, week, day, hour, day of the week,
and holiday information. In the case of months, weeks, days, and days of the week, we enhanced the
time factors from the one-dimensional space to two-dimensional space, as shown in Equations (3) to
(10) [30,31]. Here WN is the week number based on the ISO 8601 standard [32], and LDM represents
the last day of the month.

Dayx = sin
(( 360

LDM

)
×Day

)
(3)

Dayy = cos
(( 360

LDM

)
×Day

)
(4)

Weekx = sin
(( 360

WN

)
×Week

)
(5)

Weeky = cos
(( 360

WN

)
×Week

)
(6)

Monthx = sin
((360

12

)
×Month

)
(7)

Monthy = cos
((360

12

)
×Month

)
(8)

Day_o f _the_Weekx = sin
((360

7

)
×Day_o f _the_Week

)
(9)

Day_o f _the_Weeky = cos
((360

7

)
×Day_o f _the_Week

)
(10)

The holidays included Saturdays, Sundays, and national holidays and exhibited predominantly
low electric energy consumption during working hours, unlike working days [33]. In the case of
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holidays, we used one-hot encoding to reflect the property as “1” on the holiday and “0” otherwise.
Hence, we applied nine time factors as input variables at the prediction time point.

In addition, we applied not only the historical electric load data but also the day of the week and
holiday, which are a part of the data, to reflect both the historical electric load of the building and its
characteristics. Consequently, we configured 15 input variables at the prediction point time. Table 5
lists the information on these variables; where D represents the day.

Table 5. List of input variables for the transfer learning-based forecasting model.

No. Input Variable Variable Type

1 Hourx Continuous [−1, 1]
2 Houry Continuous [−1, 1]
3 Dayx Continuous [−1, 1]
4 Dayy Continuous [−1, 1]
5 Weekx Continuous [−1, 1]
6 Weeky Continuous [−1, 1]
7 Monthx Continuous [−1, 1]
8 Monthy Continuous [−1, 1]
9 Day_o f _the_Weekx Continuous [−1, 1]

10 Day_o f _the_Weeky Continuous [−1, 1]
11 Holiday Binary [1: Holiday, 0: Weekday]
12 Electric_LoadD−1 Continuous
13 Day_o f _the_Weekx,D−1 Continuous [−1, 1]
14 Day_o f _the_Weeky,D−1 Continuous [−1, 1]
15 HolidayDay−1 Binary [1: Holiday, 0: Weekday]

As our goal is to predict all-time points 24 h later, we constructed all the input variables by
utilizing each input variable for the prediction time point. Thus, we used a total of 360 input variables,
i.e., (15 (number of input variables) × 24 (prediction time points)) for the STLF model construction, as
shown in Figure 2.
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• T represents the current time.

⋯

Figure 2. Input variable configuration for the transfer learning-based forecasting model.

4. Forecasting Model Construction

In this section, we describe the STLF model construction using the limited data set of the target
building and the data sets of other buildings; moreover, we also present the method to select the
prediction value derived from the transfer learning-based model. In addition, we combined the two
STLF models and thus present a total of 15 STLF models. Figure 3 illustrates a brief system architecture
of our proposed model.
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4.1. Case 1: Time Factor-Based Forecasting Model

To construct an STLF model using only “hour” as an input (independent) variable, we used one
statistical technique and two machine learning algorithms. Even though SVM, DL, and boosting
methods exhibit excellent prediction performance in STLF [7–9,34–37], they require a significant
amount of time to optimize the various hyperparameters and also require sufficient data sets. We did
not consider these methods because we constructed an STLF model using a data set from the building
electric energy consumption data of only 24 h. Thus, we considered MLR, DT, and RF, which allow
simple model construction and exhibit satisfactory prediction performance [38,39]. We used two-time
factors, namely, Hourx and Houry, as independent variables and the electric energy consumption for
the target building as the dependent (output) variable. Therefore, we predicted multistep-ahead hourly
electric loads using the time factor-based forecasting model via a sliding window time series analysis,
as shown in Figure 4.
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Figure 4. Example of multistep-ahead electric load forecasting via a sliding window method.

4.1.1. Multiple Linear Regression (MLR)

MLR is a common statistical technique that is widely used in many STLF models [39]. MLR [39]
analyzes the relationship between a continuous dependent variable and one or more independent



Energies 2020, 13, 886 10 of 37

variables. The value of the dependent variable can be predicted using a range of values of the
independent variables based on an identity function that describes, as closely as possible, the
relationship between these variables. In addition, MLR determines the overall fit of the prediction
model and the relative contribution of each independent variable to the total variance. Equation (11)
represents the method to construct the MLR-based STLF model. Yi is the forecast energy consumption
at time i and β0 is the intercept of population Y. β1 and β2 are population slope coefficients. By defining
the weights of the MLR model based on β1 and β2 at the prediction time, we can construct a more
sophisticated STLF model. Herein, β0, β1, and β2 are calculated when the prediction model is built by
using the electric loads at the previous one day from the prediction points. Because our model focuses
on the prediction of multistep electric loads using a sliding window method, the weights of β0, β1, and
β2 are adjusted every hour.

Yi = β0 + β1 ×Hourx + β2 ×Houry (11)

4.1.2. Decision Tree (DT)

A DT [40] is used to construct classification or regression models in the form of a tree structure. It
separates a data set into smaller subsets while an associated DT is being incrementally extended. The
final result is a tree with a decision node that has two or more branches and a leaf node that denotes
a classification or decision. The topmost decision node in a tree corresponds to the best predictor,
called root node. DTs can present a higher explanatory power because they determine the independent
variables that have a more powerful impact when predicting the values of the target variable [41].
However, continuous variables (i.e., building electric energy consumption) used in the prediction of
the time series are considered as discontinuous values. Hence, prediction errors are likely to occur
near the boundary of separation.

4.1.3. Random Forest (RF)

RF [41] is an ensemble learning method that combines different DTs that classify a new instance
by the majority vote. Each DT node utilizes a subset of attributes randomly selected from the original
set of characteristics. As RF can handle large amounts of data effectively, it exhibits a high prediction
performance in the field of STLF [14]. Besides, when compared to other AI techniques, such as DL
and gradient-boosting algorithms, RF requires less fine tuning of its hyperparameters [42]. The basic
hyperparameters of RF include the number of trees to grow (nTree) and the number of variables
randomly sampled as candidates at each split (mTry). The correct value for nTree is usually not of
much concern because increasing the number of trees in the RF raises the computational cost and does
not contribute significantly to prediction performance improvement [14,41]. However, it is interesting
to note that picking too small a value of mTry can lead to overfitting. We consider only two input
variables, mTry and nTree, which are set to 2 and 128 [43], respectively.

4.2. Case 2: Transfer Learning-Based Forecasting Model

Transfer learning [44] is a process that utilizes the knowledge gained while solving one issue to a
different but related issue. To achieve this, a base machine-learning method is first trained on a base
data set or task. Then, the method repurposes or transfers the learned features to the second target
data set or task. This process can operate if the features are general and the intentions are suitable for
both base and target tasks rather than being specific to the base task. We previously configured the
input variable for transfer learning-based STLF model construction. We first divided the training and
test sets. In the training set, we used electric energy consumption data of other buildings to train the
transfer learning-based forecasting model. Then, the model predicted the multistep electric load for
the target building using its input variables in the test set. Finally, we selected appropriate prediction
results for the target building from the other 14 forecasting models. We describe the details in the
subsections below.
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4.2.1. Multivariate Random Forests (MRF)

Neural network techniques have been used to predict multistep electric loads [45–47]. However,
they require scaling (e.g., robust normalization, standardization, and min-max normalization) before
building a prediction model [11]. Thus, when the transfer learning-based STLF model is applied to the
target building, the electric load of the target building can exhibit a different range than the electric
load of other buildings. Consequently, if STLF models that are trained by scaling are used to predict
future electric load for the target building, it is challenging to accurately apply them into the electric
load range of the target building.

Consequently, we used MRF (when the number of output features > one) for transfer learning-based
STLF model construction. MRF [48] can provide multivariate outcomes and can generate an ensemble of
multivariate regression trees through bootstrap resampling and predictors subsampling for univariate
RF. In MRF, node cost is measured as the sum of squares of the Mahalanobis distance, whereas in
univariate trees (i.e., RF), the node cost is measured as the Euclidean distance (ED) [49]. MRF can
provide excellent prediction performance without scaling for multiple output predictions [50,51].
Therefore, we used the input variables without scaling to train the MRF models and predicted the
electric load of the target building using the input variable of the target building without scaling.
To construct the MRF models, we set mTry and nTree as 120 (number of input variables/3) and 128,
respectively [14]. Thus, when a total of 14 prediction results are derived from each MRF model, we
did not use all of them and instead selected only one prediction result that exhibits the most similar
time series through the similarity analysis between the target building and the other buildings. Then,
we used the prediction result as the model that demonstrates the most similar time series to predict
the electric load of the target building. Here, we consider a total of three techniques and describe the
details in the subsections below.

4.2.2. Similarity Measures

We used three similarity measures, i.e., Pearson correlation coefficient (PCC), cosine similarity
(CS), and ED, to analyze the similarity of the time series between the target building and other buildings.
These methods are commonly used for similarity analysis [13].

PCC [52], which is a measure of the linear correlation between two variables, x and y, is the
covariance of these variables divided by the product of the standard deviations in the data of equal or
proportional scales. It has a value between +1 and −1, according to the Cauchy–Schwarz inequality,
where +1 is a perfect positive linear correlation, 0 indicates no linear correlation, and −1 is a perfect
negative linear correlation. For the paired data

{
(x1, y1), · · · , (xn, yn)

}
consisting of n pairs, rxy, which

is a substituting estimation of the covariances and variances based on a sample, is defined according to
Equation (12). Here, n is the sample size, xi and yi are the individual sample points indexed with time
i. x and y are the sample means of x and y, respectively. For our experiments, because we considered
hourly electric load for only 24 h, n is 24. xi and yi are the hourly electric loads indexed with i of the
target and different buildings, respectively. Herein, we apply the prediction model of the building
whose PCC is closest to one by comparing the target building with other buildings.

rxy =

∑n
i=1(xi − x) × (yi − y)√∑n

i=1(xi − x)2
×

∑n
i=1(yi − y)2

(12)

CS [53] indicates the similarity between vectors measured using the cosine of the angle between
two vectors in the inner space. The cosine when the angle is 0◦ is one, and the cosine of all other angles
is smaller than one. Therefore, this value is used to determine the similarity of the direction, not the
magnitude of the vector. The value is +1 when the two vectors are in exactly the same direction. The
value is 0 when the angle is 90◦, and the value is −1 when the vectors are in completely opposite
directions, i.e., an angle of 180◦. At this time, the size of the vector does not affect the value. The CS can
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be applied to any number of dimensions and is often used to measure similarity in a multidimensional
amniotic space. Given the vector values of the attributes A and B, CS (cos(θ)) can be expressed by
the scalar product and magnitude of the vector, as shown in Equation (13). For our experiments, as
mentioned earlier, n is 24. Ai and Bi are the hourly electric loads indexed with i of the target and
different buildings, respectively. Herein, we apply the prediction model of the building whose CS is
closest to one by comparing the target building with other buildings.

similarity = cos(θ) =
A·B
‖A‖‖B‖

=

∑n
i=1 Ai × Bi√∑n

i=1(Ai)
2
×

√∑n
i=1(Bi)

2
(13)

ED [54,55] is a common method for calculating the distance between two points. This distance
can be used to define the Euclidean space, and the corresponding norm is called the Euclidean norm.
A generalized term for the Euclidean norm is the L2 norm or L2 distance [55]. In a Cartesian coordinate
system, where there are points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) in Euclidean n space,
the distance between two points p and q is calculated using two Euclidean norms, which is defined
according to Equation (14). The distance between any two points on the real line is the absolute value
of the numerical difference of their coordinates. It is common to identify the name of a point with its
Cartesian coordinate. When the two points p and q are the same, the distance value is zero. For our
experiments, as mentioned earlier, n is 24. pi and qi are the hourly electric loads indexed with i of the
target and different buildings, respectively. Herein, we apply the prediction model of the building
whose ED is closest to zero by comparing the target building with other buildings.

d(p, q) = d(q, p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + · · ·+ (qn − pn)

2 =

√√ n∑
i=1

(qi − pi)
2 (14)

4.3. Case 3: Combining Short-Term Load-Forecasting Models

We considered the following situations to apply more suitable forecasting models for each case.
As mentioned above, the electric load patterns vary significantly depending on the days of the week
and holidays [32]. For instance, in chronological sequence, the difference in electric loads between
Friday and Saturday is large. The difference in electric loads between Sunday and Monday is also
large. Therefore, if the time factor-based forecasting model predicts the electric load on the weekend
by using the electric load on a weekday, the forecast value presents multiple error rates because it
exhibits the weekday pattern. In addition, when constructing a time factor-based forecasting model by
using only a low electric load, such as that on Sunday or a national holiday, it can cause high error
rates because of a high electric load on Monday. To address these issues, we combined the time factor-
and transfer-learning-based forecasting models. We applied the prediction models by considering
two cases at the 24 prediction points and illustrated examples of the electric load forecasting using the
combined STLF model in Figure 5 and hence we constructed a total of 15 STLF models, as shown in
Table 6.

• Case 1: For each prediction point, we applied the time vector-based forecasting model when both
the prediction point and the day before the prediction point are weekdays.

• Case 2: For each prediction point, we applied the transfer learning-based forecasting model when
the prediction point and/or the day before the prediction point are holidays.
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Figure 5. Examples of multistep-ahead electric load forecasting using the combined short-term load
forecasting (STLF) model by considering two cases.
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Table 6. Construction of various forecasting models (MLR: multiple linear regression, DT: decision tree,
RF: random forest, MRF: multivariate random forests, PCC: Pearson correlation coefficient, CS: cosine
similarity, ED: Euclidean distance).

Model # Methods Description

M01 MLR Time factor-based forecasting model using MLR
M02 DT Time factor-based forecasting model using DT
M03 RF Time factor-based forecasting model using RF

M04 MRF_PCC MRF-based transfer learning model by applying PCC
to analyze the time series similarity

M05 MRF_CS MRF-based transfer learning model by applying CS
to analyze the time series similarity

M06 MRF_ED MRF-based transfer learning model by applying ED
to analyze the time series similarity

M07 MLR + MRF_PCC Case 1: MLR Case 2: MRF_PCC
M08 MLR + MRF_CS Case 1: MLR Case 2: MRF_CS
M09 MLR + MRF_ED Case 1: MLR Case 2: MRF_ED
M10 DT + MRF_PCC Case 1: DT Case 2: MRF_PCC
M11 DT + MRF_CS Case 1: DT Case 2: MRF_CS
M12 DT + MRF_ED Case 1: DT Case 2: MRF_ED
M13 RF + MRF_PCC Case 1: RF Case 2: MRF_PCC
M14 RF + MRF_CS Case 1: RF Case 2: MRF_CS
M15 RF + MRF_ED Case 1: RF Case 2: MRF_ED

5. Experimental Results

5.1. Performance Evaluation Metric

To evaluate the prediction performance of the proposed model, we used the mean absolute
percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE). The MAPE
value usually presents accuracy as a percentage of the error and can be easier to comprehend than the
other statistics because this number is a percentage [11,40]. The MAPE can be defined according to
Equation (15). The RMSE is used to aggregate the residuals into a single measure of predictive ability, as
shown in Equation (16). The RMSE is the square root of the variance, which denotes the standard error.
The MAE is used to evaluate how close forecast or prediction values are to the actual observed values,
as shown in Equation (17). The MAE is calculated by averaging the absolute differences between the
prediction values and the actual observed values. The MAE gives the average magnitude of forecast
error, while the RMSE gives more weight to the most significant errors. Lower values of MAPE, RMSE,
and MAE indicate better prediction performance of the forecasting model. Here, n is the number of
observations and At and Ft are the actual and forecast values, respectively.

MAPE =
1
n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣× 100 (15)

RMSE =

√∑n
t=1(Ft −At)

2

n
(16)

MAE =
1
n

n∑
t=1

|Ft −At| (17)

5.2. Prediction Performance Evaluation

To evaluate the performance of the forecasting models, we conducted the experiments with an
Intel®Core™ i7-8700k CPU with 32GB DDR4 RAM and preprocessed the datasets in RStudio version
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1.1.453 with R version 3.5.1. We also carried out the construction of the forecasting models using ‘tree’
(DT), ‘randomForest’ (RF), and ‘MultivariateRandomForest’ (MRF) packages [49,56,57].

As we collected the electric energy consumption data from a total of 15 buildings, we used 15-fold
cross-validations to evaluate the prediction performance. In the collected data, the periods of the
training and test sets are from 1 January 2015 to 31 July 2017 and from 1 August 2017 to 31 July,
2018, respectively.

We reported training and testing times of the MRF models for each building in Table 7. The
training time represents the time to train the MRF model in each building, and the testing time indicates
the time for performing all predictions from the three transfer learning-based forecasting models (i.e.,
M04, M05, and M06).

Table 7. Running times of the multivariate random forest (MRF) model in each building (Unit: second).

Buildings # Training Time (s) Testing Time (s)

1 143.38 71.75
2 144.17 72.32
3 135.72 72.49
4 140.71 71.87
5 139.45 72.53
6 153.75 72.49
7 146.83 70.14
8 139.32 69.16
9 145.62 69.09
10 138.02 68.02
11 136.02 67.79
12 137.08 68.54
13 139.33 67.77
14 136.70 67.57
15 142.65 68.94

Because MAPE is a widely used error measurement metric in the electric load-forecasting literature,
we presented all the results of multistep-ahead hourly electric load forecasting accuracy using the
MAPE in Tables 8–23. We also exhibited the average forecasting accuracy of multistep electric loads
using RMSE and MAE results in Tables 24 and 25, respectively.

In Tables 8–25, a cooler color (blue) indicates lower MAPE, RMSE, and MAE values, while a
warmer color (red) indicates higher MAPE, RMSE, and MAE values. To confirm the overall prediction
performance of the forecasting models, we presented the average MAPE of different forecasting models
and indicated the best accuracy in bold. In addition, a box plot for each forecasting model is shown in
Figures 6–20 using MAPE values for each prediction point. This means that the box, which is located
below and exhibits the smaller range, is a more stable forecasting model.

As shown in Tables 8–25 and Figures 6–20, the RF demonstrated the best prediction performance in
the time factor-based forecasting models, and MRF_ED showed the best prediction performance in the
transfer learning-based forecasting models. The reason why ED demonstrated the best performance is
only because the distance of electric energy consumption between buildings was considered, unlike the
PCC or CS; thus, it can reflect a similar range of electric energy consumption adequately when training
the transfer learning-based forecasting model. Consequently, we can observe that M15 demonstrated
better prediction performances than other forecasting models in most experiments. M15 is appropriate
for solving the cold-start problem in STLF and used two tree-based methods; we called this model as
SPROUT (solving cold start problem in short-term load forecasting using tree-based methods).
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Table 8. Mean absolute percentage error (MAPE) comparison of forecasting models for Building 1 (a
cooler color indicates a lower MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 14.2 13.4 14.3 21.9 27.6 9.8 14.5 16.6 8.4 15.8 17.9 9.7 14.6 16.7 8.5
2 15.8 15.0 16.3 20.4 25.9 9.5 13.7 15.5 8.4 14.8 16.7 9.6 14.0 15.8 8.7
3 17.0 16.5 17.0 19.4 24.7 9.4 13.1 14.7 8.5 14.2 15.8 9.6 13.1 14.7 8.5
4 18.0 18.0 17.2 18.5 23.6 9.4 12.6 13.9 8.5 13.6 15.0 9.6 12.4 13.7 8.4
5 18.6 19.2 17.4 17.9 22.8 9.4 12.1 13.2 8.5 13.2 14.3 9.7 11.9 13.0 8.3
6 18.7 20.1 17.4 17.3 22.0 9.3 11.6 12.5 8.5 12.8 13.7 9.7 11.4 12.3 8.3
7 18.8 20.8 17.6 16.8 21.2 9.3 11.2 11.9 8.5 12.5 13.2 9.7 11.0 11.7 8.3
8 18.3 21.1 17.5 16.6 20.7 9.2 11.0 11.4 8.4 12.4 12.7 9.8 10.8 11.2 8.2
9 18.2 21.1 17.8 16.4 20.4 9.2 10.9 11.0 8.4 12.2 12.4 9.7 10.8 10.9 8.3

10 17.8 20.8 17.8 16.2 20.1 9.2 10.8 10.7 8.3 12.1 12.0 9.7 10.7 10.6 8.2
11 18.1 20.5 17.9 16.1 19.9 9.2 10.7 10.5 8.3 12.0 11.8 9.6 10.6 10.4 8.2
12 18.2 20.3 17.9 16.0 19.8 9.1 10.7 10.4 8.3 12.0 11.6 9.5 10.6 10.2 8.1
13 18.2 20.2 18.0 16.1 19.9 9.1 10.9 10.5 8.4 12.0 11.6 9.6 10.7 10.3 8.3
14 18.2 20.3 17.9 16.1 20.0 9.1 10.9 10.5 8.4 12.1 11.7 9.6 10.6 10.2 8.1
15 18.1 20.5 18.1 16.3 20.2 9.1 10.9 10.5 8.4 12.3 11.9 9.8 10.7 10.3 8.2
16 18.3 20.7 17.7 16.5 20.6 9.1 11.1 10.7 8.5 12.4 12.1 9.9 10.5 10.1 8.0
17 18.3 20.7 17.8 16.6 20.8 9.1 11.1 10.8 8.6 12.5 12.1 10.0 10.5 10.2 8.0
18 18.5 20.5 18.0 16.6 21.0 9.1 11.3 11.0 8.8 12.4 12.1 9.9 10.6 10.4 8.2
19 18.5 20.2 18.2 16.6 21.2 9.1 11.3 11.1 8.9 12.2 12.0 9.8 10.8 10.6 8.4
20 18.7 20.1 18.1 16.8 21.4 9.2 11.5 11.4 9.2 12.1 12.0 9.7 10.8 10.7 8.4
21 18.4 20.5 18.2 16.8 21.6 9.3 11.3 11.3 9.0 12.1 12.1 9.8 10.9 11.0 8.6
22 18.5 21.3 18.4 17.0 22.0 9.5 11.4 11.7 9.1 12.3 12.6 10.0 11.2 11.5 8.9
23 19.0 22.4 18.3 17.3 22.5 9.8 11.7 12.2 9.4 12.8 13.4 10.5 11.1 11.7 8.9
24 20.1 23.7 19.6 17.6 23.0 10.3 12.4 13.2 10.2 13.6 14.5 11.5 12.1 12.9 9.9

Avg. 18.1 19.9 17.7 17.2 21.8 9.3 11.6 12.0 8.7 12.8 13.1 9.8 11.4 11.7 8.4
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Table 9. MAPE comparison of forecasting models for Building 2 (a cooler color indicates a lower MAPE
value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 30.4 24.2 27.1 45.6 46.1 19.1 40.2 40.9 18.8 39.3 40.0 17.9 37.1 37.8 15.6
2 33.3 27.8 31.2 43.2 43.9 18.6 38.8 39.7 19.1 37.8 38.6 18.0 36.0 36.8 16.2
3 36.1 31.2 32.7 41.0 41.9 18.3 37.3 38.4 19.3 36.2 37.3 18.2 34.1 35.2 16.1
4 38.1 34.3 33.4 39.0 40.0 18.0 35.9 37.1 19.5 34.8 36.0 18.4 32.5 33.8 16.2
5 39.3 37.0 33.9 37.3 38.4 17.9 34.7 36.0 19.7 33.6 34.9 18.7 31.2 32.5 16.2
6 39.2 39.1 33.9 35.8 36.9 17.7 33.5 34.9 19.8 32.5 33.9 18.9 29.9 31.3 16.2
7 40.0 40.5 34.4 34.6 35.7 17.5 32.6 34.0 19.8 31.8 33.1 19.0 29.0 30.4 16.3
8 39.3 41.2 34.5 33.6 34.7 17.5 31.8 33.2 19.8 31.2 32.6 19.2 28.4 29.8 16.4
9 39.4 41.2 35.0 32.9 34.1 17.5 31.3 32.7 19.8 30.8 32.2 19.3 28.1 29.6 16.6

10 37.9 40.6 35.0 32.3 33.6 17.7 31.0 32.5 19.9 30.3 31.9 19.3 27.8 29.3 16.8
11 38.5 39.6 35.2 32.0 33.5 17.9 30.8 32.5 20.1 30.0 31.7 19.3 27.5 29.2 16.8
12 38.6 38.3 35.4 31.9 33.5 18.2 30.8 32.6 20.3 29.7 31.5 19.2 27.5 29.2 17.0
13 38.5 37.1 35.7 32.0 33.6 18.4 30.9 32.6 20.4 29.6 31.4 19.2 27.8 29.6 17.3
14 38.7 36.2 35.3 32.2 33.9 18.6 31.2 33.0 20.6 29.8 31.6 19.2 27.8 29.6 17.3
15 38.5 35.7 35.9 32.2 34.0 18.8 31.1 32.9 20.5 30.0 31.8 19.4 28.3 30.1 17.7
16 38.5 35.6 35.2 32.0 33.8 18.8 31.2 33.1 20.8 29.9 31.8 19.6 27.7 29.6 17.4
17 38.3 35.6 35.9 31.9 33.6 19.0 30.9 32.7 20.8 29.9 31.6 19.8 28.0 29.8 17.9
18 38.0 35.7 36.0 31.9 33.6 19.3 30.8 32.6 21.0 29.8 31.5 20.0 27.9 29.7 18.1
19 38.1 36.2 36.7 31.7 33.2 19.5 30.6 32.3 21.2 29.5 31.2 20.1 28.1 29.8 18.7
20 38.2 37.2 36.5 31.4 32.7 19.6 30.3 32.0 21.3 29.1 30.8 20.1 27.6 29.3 18.6
21 38.6 38.9 37.1 30.8 32.0 19.6 29.9 31.5 21.5 28.6 30.2 20.2 27.2 28.8 18.8
22 39.6 41.3 37.4 30.3 31.4 19.8 29.6 31.2 21.9 28.5 30.1 20.8 26.8 28.4 19.1
23 41.3 44.2 37.6 30.4 31.6 20.3 29.9 31.6 22.7 29.1 30.8 21.9 26.4 28.2 19.3
24 43.9 47.3 40.8 30.5 32.0 21.0 30.4 32.5 23.9 29.8 31.9 23.3 27.4 29.5 20.8

Avg. 38.3 37.3 35.1 34.0 35.3 18.7 32.3 33.8 20.5 31.3 32.8 19.5 29.2 30.7 17.4
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Table 10. MAPE comparison of forecasting models for Building 3 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 15.0 15.7 12.5 30.3 31.0 17.7 21.8 22.0 16.0 22.3 22.5 16.5 20.4 20.7 14.6
2 16.0 16.4 13.9 29.3 29.7 17.4 21.7 21.8 16.2 22.1 22.2 16.6 20.6 20.7 15.1
3 16.5 17.0 14.0 28.2 28.5 17.2 21.4 21.4 16.2 21.8 21.8 16.6 20.2 20.1 15.0
4 16.7 17.4 14.1 27.5 27.8 17.0 21.1 21.1 16.1 21.6 21.5 16.6 19.8 19.7 14.8
5 16.8 17.8 14.2 26.8 27.0 16.7 20.8 20.6 16.0 21.4 21.2 16.5 19.4 19.3 14.6
6 16.8 18.0 14.2 26.2 26.4 16.5 20.6 20.2 15.8 21.2 20.9 16.5 19.3 18.9 14.5
7 16.9 18.2 14.3 25.7 25.7 16.2 20.4 20.0 15.7 21.1 20.7 16.4 19.1 18.6 14.3
8 16.8 18.3 14.3 25.2 25.2 15.9 20.2 19.8 15.5 20.9 20.5 16.2 18.9 18.5 14.2
9 16.9 18.3 14.4 25.1 25.1 15.7 20.1 19.8 15.4 20.8 20.5 16.1 18.8 18.5 14.1

10 16.9 18.2 14.4 25.1 25.2 15.6 20.2 19.9 15.3 20.9 20.6 16.0 19.0 18.7 14.1
11 16.9 18.2 14.2 25.1 25.2 15.6 20.2 19.9 15.3 20.9 20.6 16.0 18.9 18.6 13.9
12 16.9 18.1 14.2 24.8 24.9 15.5 20.1 19.8 15.3 20.8 20.5 16.0 18.8 18.5 14.0
13 16.9 18.1 14.4 24.6 24.7 15.5 20.0 19.7 15.3 20.7 20.4 16.0 18.8 18.5 14.2
14 16.9 18.1 14.3 24.3 24.6 15.4 19.9 19.7 15.4 20.5 20.3 16.0 18.6 18.4 14.1
15 16.9 18.1 14.6 24.0 24.4 15.5 19.6 19.5 15.4 20.3 20.2 16.1 18.5 18.4 14.3
16 16.9 18.1 14.0 24.2 24.6 15.4 19.7 19.6 15.4 20.4 20.3 16.1 18.3 18.2 14.0
17 16.9 18.1 14.1 24.5 24.9 15.5 19.8 19.8 15.5 20.5 20.5 16.2 18.4 18.4 14.1
18 16.8 18.1 14.2 24.6 25.0 15.6 19.8 19.8 15.5 20.5 20.5 16.2 18.5 18.5 14.1
19 16.8 18.0 14.5 24.9 25.3 15.7 20.0 20.0 15.6 20.6 20.7 16.2 18.8 18.8 14.4
20 16.7 18.0 14.3 25.3 25.7 15.9 20.1 20.3 15.6 20.8 20.9 16.3 18.8 18.9 14.3
21 16.8 18.0 14.5 25.6 26.1 16.0 20.2 20.4 15.7 20.9 21.0 16.4 19.0 19.2 14.5
22 16.8 18.1 14.6 25.8 26.1 16.1 20.2 20.4 15.7 20.9 21.1 16.4 19.1 19.3 14.6
23 16.9 18.2 14.0 25.7 26.0 15.9 20.1 20.4 15.7 20.9 21.1 16.5 18.6 18.9 14.3
24 17.1 18.4 14.5 25.3 25.6 15.8 20.0 20.3 15.8 20.8 21.1 16.6 18.7 19.0 14.5

Avg. 16.7 17.9 14.2 25.8 26.0 16.1 20.3 20.3 15.6 21.0 20.9 16.3 19.1 19.0 14.4
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Table 11. MAPE comparison of forecasting models for Building 4 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 21.9 18.4 19.6 29.2 25.3 16.7 21.0 19.7 15.2 21.9 20.6 16.1 20.3 19.0 14.5
2 23.8 20.9 22.2 27.8 24.3 16.2 20.6 19.7 15.2 21.3 20.3 15.9 20.0 19.0 14.6
3 25.2 23.2 23.4 26.5 23.3 15.6 20.2 19.4 15.1 20.8 20.0 15.7 19.3 18.6 14.3
4 26.2 25.2 23.8 25.5 22.5 15.3 19.7 19.1 15.0 20.4 19.7 15.6 18.7 18.1 14.0
5 26.9 26.8 24.2 24.6 21.8 15.0 19.3 18.7 14.8 20.0 19.5 15.6 18.3 17.7 13.8
6 26.4 28.0 24.2 24.0 21.2 14.9 18.9 18.3 14.7 19.8 19.2 15.6 17.9 17.4 13.7
7 26.6 28.8 24.5 23.4 20.7 14.8 18.6 18.0 14.6 19.5 19.0 15.5 17.6 17.1 13.6
8 26.3 29.1 24.5 22.9 20.3 14.8 18.3 17.8 14.4 19.3 18.8 15.4 17.4 16.8 13.5
9 26.4 29.1 24.7 22.5 20.2 14.7 18.1 17.6 14.3 19.1 18.6 15.3 17.2 16.8 13.4

10 26.1 28.9 24.6 22.2 20.0 14.7 17.9 17.5 14.2 18.9 18.6 15.2 17.1 16.7 13.3
11 26.3 28.5 24.8 22.0 20.0 14.7 17.8 17.5 14.1 18.8 18.5 15.1 16.9 16.6 13.2
12 26.3 28.1 24.7 21.8 20.0 14.7 17.8 17.5 14.1 18.7 18.4 15.1 16.8 16.6 13.2
13 26.1 27.7 24.7 21.6 20.0 14.7 17.7 17.5 14.1 18.6 18.4 15.0 16.8 16.6 13.2
14 26.2 27.5 24.7 21.4 20.0 14.7 17.6 17.4 14.1 18.5 18.3 15.0 16.7 16.5 13.2
15 26.2 27.5 24.8 21.3 20.0 14.6 17.6 17.4 14.1 18.5 18.3 15.0 16.7 16.5 13.2
16 26.3 27.5 24.7 21.3 20.0 14.6 17.5 17.3 14.2 18.4 18.2 15.1 16.5 16.3 13.2
17 26.3 27.5 24.9 21.4 20.1 14.6 17.6 17.3 14.3 18.4 18.2 15.1 16.6 16.3 13.3
18 26.3 27.4 24.9 21.6 20.3 14.7 17.7 17.4 14.3 18.5 18.2 15.1 16.7 16.4 13.3
19 26.2 27.4 25.1 21.9 20.5 14.7 17.8 17.4 14.4 18.5 18.1 15.1 16.9 16.5 13.5
20 26.3 27.6 25.1 22.2 20.7 14.8 17.8 17.3 14.4 18.5 18.0 15.1 17.0 16.5 13.6
21 26.2 28.1 25.3 22.3 20.9 15.0 17.9 17.3 14.4 18.6 18.0 15.1 17.1 16.5 13.7
22 26.4 29.0 25.4 22.4 20.9 15.3 18.0 17.2 14.5 18.9 18.1 15.4 17.3 16.5 13.8
23 27.0 30.4 25.5 22.4 20.9 15.5 18.2 17.4 14.9 19.2 18.4 15.9 17.2 16.4 13.9
24 28.2 32.0 27.0 22.3 20.7 15.7 18.4 17.6 15.4 19.6 18.8 16.6 17.6 16.8 14.5

Avg. 26.1 27.3 24.5 23.1 21.0 15.0 18.4 17.9 14.5 19.3 18.8 15.4 17.5 17.0 13.6
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Table 12. MAPE comparison of forecasting models for Building 5 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 4.5 3.9 4.4 77.3 81.0 25.4 39.9 36.4 12.5 39.6 36.1 12.3 39.9 36.4 12.5
2 5.0 4.4 5.0 76.9 80.6 25.2 40.1 36.6 12.7 39.8 36.3 12.4 40.1 36.6 12.7
3 5.3 4.9 5.2 76.4 80.2 25.0 40.2 36.7 12.8 40.0 36.5 12.6 40.2 36.7 12.8
4 5.6 5.3 5.3 76.0 79.9 24.7 40.2 36.8 12.8 40.0 36.6 12.7 40.0 36.6 12.7
5 5.8 5.7 5.4 75.5 79.5 24.5 40.1 36.8 12.8 40.0 36.7 12.7 39.8 36.6 12.6
6 5.7 5.9 5.4 75.1 79.2 24.4 39.9 36.7 12.7 39.9 36.8 12.7 39.7 36.5 12.5
7 5.8 6.1 5.4 74.7 78.8 24.2 39.7 36.6 12.6 39.8 36.7 12.7 39.5 36.4 12.4
8 5.7 6.1 5.4 74.4 78.5 24.0 39.4 36.5 12.4 39.6 36.7 12.6 39.3 36.3 12.3
9 5.8 6.1 5.5 74.2 78.3 23.9 39.3 36.5 12.4 39.5 36.6 12.5 39.2 36.3 12.2

10 5.7 6.1 5.5 74.0 78.1 23.9 39.2 36.4 12.3 39.4 36.5 12.5 39.1 36.2 12.1
11 5.7 6.0 5.5 73.8 77.9 23.9 39.1 36.3 12.2 39.2 36.4 12.4 39.0 36.2 12.1
12 5.7 5.9 5.5 73.6 77.6 23.9 39.0 36.3 12.2 39.1 36.3 12.3 38.9 36.1 12.1
13 5.7 5.8 5.5 73.4 77.3 23.9 38.9 36.2 12.2 38.9 36.2 12.2 38.8 36.1 12.0
14 5.7 5.7 5.5 73.1 76.9 23.8 38.7 36.1 12.2 38.7 36.1 12.1 38.6 36.0 12.0
15 5.8 5.7 5.5 72.9 76.6 23.8 38.6 36.0 12.2 38.5 36.0 12.1 38.4 35.9 12.1
16 5.7 5.7 5.5 72.7 76.4 23.8 38.5 36.0 12.2 38.4 35.9 12.2 38.3 35.8 12.1
17 5.7 5.7 5.6 72.7 76.4 23.9 38.4 36.0 12.3 38.3 36.0 12.3 38.2 35.9 12.2
18 5.7 5.7 5.6 72.7 76.3 23.9 38.3 36.2 12.4 38.2 36.2 12.4 38.2 36.1 12.3
19 5.7 5.7 5.6 72.7 76.3 24.0 38.3 36.5 12.5 38.3 36.5 12.5 38.2 36.4 12.4
20 5.7 5.8 5.6 72.8 76.4 24.0 38.3 36.8 12.6 38.3 36.8 12.6 38.2 36.7 12.5
21 5.8 5.9 5.6 72.8 76.4 24.1 38.3 37.0 12.7 38.3 37.1 12.7 38.2 36.9 12.6
22 5.8 6.0 5.6 72.9 76.4 24.1 38.3 37.3 12.8 38.4 37.4 12.9 38.2 37.2 12.7
23 6.0 6.2 5.7 72.9 76.5 24.2 38.4 37.7 13.0 38.5 37.8 13.1 38.2 37.5 12.8
24 6.2 6.4 5.8 72.8 76.3 24.3 38.5 38.0 13.3 38.6 38.1 13.4 38.3 37.8 13.1

Avg. 5.7 5.7 5.5 74.0 77.8 24.2 39.1 36.6 12.5 39.1 36.6 12.5 38.9 36.5 12.4
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Table 13. MAPE comparison of forecasting models for Building 6 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 7.8 11.7 7.0 39.9 40.0 9.7 23.6 23.7 8.2 26.0 26.0 10.5 23.1 23.1 7.6
2 8.0 11.9 7.4 39.8 39.9 9.5 23.7 23.7 8.2 26.0 26.0 10.5 23.3 23.3 7.8
3 8.1 11.9 7.4 39.7 39.8 9.4 23.7 23.8 8.2 26.0 26.0 10.5 23.2 23.2 7.7
4 8.2 12.0 7.3 39.7 39.8 9.3 23.8 23.8 8.2 26.0 26.1 10.4 23.2 23.2 7.6
5 8.2 12.0 7.4 39.5 39.6 9.2 23.7 23.8 8.1 26.0 26.0 10.4 23.1 23.2 7.5
6 8.2 12.0 7.4 39.4 39.5 9.1 23.7 23.8 8.1 26.0 26.1 10.4 23.1 23.2 7.5
7 8.3 12.0 7.3 39.3 39.4 9.0 23.7 23.7 8.1 26.0 26.0 10.4 23.0 23.1 7.4
8 8.3 12.1 7.4 39.1 39.2 9.0 23.6 23.6 8.0 25.9 25.9 10.3 23.0 23.1 7.5
9 8.3 12.1 7.5 39.1 39.2 8.9 23.5 23.6 8.0 25.8 25.9 10.3 23.0 23.1 7.5

10 8.3 12.0 7.5 39.1 39.2 8.9 23.5 23.5 8.0 25.8 25.9 10.3 23.0 23.1 7.5
11 8.3 12.0 7.3 39.2 39.2 8.8 23.4 23.5 7.9 25.8 25.8 10.2 22.9 22.9 7.3
12 8.2 12.0 7.3 39.2 39.3 8.8 23.4 23.5 7.9 25.8 25.8 10.2 22.8 22.9 7.3
13 8.2 12.0 7.5 39.3 39.3 8.8 23.4 23.4 7.8 25.8 25.8 10.2 23.0 23.0 7.4
14 8.2 12.0 7.4 39.3 39.4 8.7 23.4 23.4 7.8 25.8 25.8 10.1 22.9 23.0 7.3
15 8.2 12.0 7.5 39.2 39.3 8.7 23.3 23.3 7.7 25.7 25.7 10.1 23.0 23.0 7.4
16 8.2 12.0 7.1 39.1 39.2 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.6 22.7 7.1
17 8.2 12.0 7.1 39.1 39.1 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.7 22.8 7.2
18 8.2 12.0 7.1 39.1 39.1 8.7 23.3 23.3 7.7 25.7 25.7 10.1 22.8 22.8 7.2
19 8.2 12.0 7.4 39.0 39.1 8.8 23.3 23.4 7.8 25.7 25.7 10.1 23.0 23.0 7.4
20 8.2 12.0 7.3 39.0 39.1 8.9 23.3 23.4 7.8 25.7 25.7 10.1 22.9 22.9 7.3
21 8.2 12.0 7.4 39.0 39.1 8.9 23.3 23.4 7.8 25.6 25.7 10.1 22.9 22.9 7.4
22 8.2 12.0 7.6 39.0 39.1 9.0 23.3 23.3 7.8 25.6 25.6 10.1 23.0 23.0 7.5
23 8.3 12.1 7.0 39.0 39.0 9.0 23.3 23.3 7.8 25.5 25.5 10.1 22.6 22.6 7.2
24 8.5 12.2 7.5 38.8 38.9 9.0 23.3 23.3 8.0 25.5 25.5 10.2 22.8 22.8 7.5

Avg. 8.2 12.0 7.3 39.3 39.3 9.0 23.5 23.5 7.9 25.8 25.8 10.2 22.9 23.0 7.4
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Table 14. MAPE comparison of forecasting models for Building 7 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 10.8 9.5 9.8 26.6 23.2 7.9 17.1 16.2 7.3 17.5 16.6 7.7 16.5 15.7 6.7
2 11.7 10.6 11.1 26.0 22.5 7.8 17.1 16.2 7.5 17.4 16.5 7.8 16.7 15.7 7.0
3 12.4 11.6 11.5 25.3 21.8 7.7 17.1 16.0 7.5 17.4 16.3 7.9 16.4 15.4 6.9
4 12.9 12.5 11.7 24.6 21.2 7.7 17.0 15.8 7.6 17.3 16.1 7.9 16.3 15.1 6.9
5 13.3 13.3 11.9 23.8 20.5 7.7 16.8 15.6 7.6 17.1 15.9 8.0 16.0 14.8 6.9
6 13.1 13.9 11.9 23.1 19.8 7.6 16.6 15.3 7.7 17.0 15.7 8.1 15.8 14.5 6.9
7 13.2 14.3 12.0 22.5 19.2 7.7 16.4 15.1 7.7 16.9 15.6 8.2 15.7 14.3 6.9
8 13.0 14.5 11.9 21.9 18.7 7.7 16.3 14.8 7.7 16.8 15.4 8.2 15.5 14.1 6.9
9 13.1 14.5 12.1 21.4 18.4 7.7 16.2 14.7 7.7 16.7 15.3 8.2 15.5 14.0 7.0

10 12.9 14.3 12.1 20.9 18.0 7.7 16.0 14.6 7.7 16.5 15.1 8.2 15.4 13.9 7.0
11 13.0 14.1 12.1 20.5 17.6 7.8 16.0 14.5 7.8 16.4 15.0 8.2 15.2 13.8 7.0
12 13.0 13.9 12.1 20.1 17.3 7.8 16.0 14.5 7.8 16.4 14.9 8.2 15.2 13.8 7.0
13 13.0 13.8 12.2 19.9 17.2 7.9 16.0 14.5 7.9 16.4 14.9 8.3 15.3 13.8 7.2
14 13.0 13.9 12.1 19.7 17.1 8.0 16.0 14.5 7.9 16.4 14.9 8.4 15.2 13.7 7.1
15 12.9 14.0 12.2 19.7 17.2 8.1 15.9 14.4 7.9 16.5 15.0 8.5 15.2 13.7 7.2
16 13.0 14.1 12.0 19.6 17.2 8.1 15.9 14.5 8.0 16.5 15.0 8.5 15.0 13.5 7.0
17 12.9 14.1 12.1 19.5 17.2 8.2 15.9 14.4 7.9 16.4 15.0 8.5 15.0 13.5 7.0
18 13.0 14.0 12.1 19.5 17.4 8.2 15.9 14.4 8.0 16.3 14.9 8.4 14.9 13.5 7.1
19 13.0 13.8 12.2 19.5 17.6 8.2 15.9 14.5 8.0 16.2 14.8 8.3 15.0 13.6 7.1
20 13.2 13.7 12.2 19.6 17.8 8.1 16.0 14.7 8.1 16.0 14.7 8.1 15.0 13.6 7.0
21 13.0 13.8 12.3 19.6 18.2 8.0 15.7 14.5 7.8 15.9 14.7 8.0 14.9 13.7 7.0
22 13.0 14.2 12.3 19.6 18.4 8.0 15.5 14.5 7.8 15.7 14.7 8.1 14.8 13.8 7.1
23 13.2 14.9 12.2 19.2 18.3 8.1 15.2 14.5 8.0 15.6 14.9 8.4 14.3 13.6 7.1
24 13.8 15.7 13.0 18.8 18.1 8.3 15.2 14.8 8.4 15.7 15.3 8.9 14.4 14.0 7.7

Avg. 12.9 13.6 12.0 21.3 18.7 7.9 16.1 14.9 7.8 16.6 15.3 8.2 15.4 14.1 7.0
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Table 15. MAPE comparison of forecasting models for Building 8 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 25.9 25.6 25.1 42.8 37.9 18.7 33.7 30.4 16.4 37.3 34.0 20.0 33.8 30.5 16.5
2 28.6 28.6 28.8 39.4 35.2 17.8 31.0 28.3 15.8 34.4 31.7 19.3 31.5 28.8 16.4
3 30.8 31.3 30.2 36.9 33.4 17.2 29.1 26.9 15.6 32.4 30.3 18.9 29.2 27.0 15.7
4 32.4 33.9 30.7 34.9 31.8 16.9 27.6 25.9 15.4 30.9 29.2 18.7 27.6 25.8 15.3
5 33.4 36.0 31.2 32.9 30.3 16.6 26.4 24.9 15.3 29.8 28.3 18.6 26.3 24.9 15.2
6 33.3 37.7 31.2 31.3 29.1 16.5 25.4 24.1 15.1 28.9 27.6 18.6 25.3 24.0 15.0
7 33.4 38.7 31.5 29.9 27.9 16.4 24.5 23.3 15.0 28.1 26.9 18.5 24.4 23.2 14.9
8 32.5 39.3 31.4 28.7 26.8 16.2 23.6 22.4 14.7 27.2 26.1 18.4 23.5 22.4 14.7
9 32.5 39.3 31.7 27.5 25.8 16.1 22.6 21.6 14.6 26.3 25.3 18.2 22.7 21.7 14.6

10 31.9 38.9 31.7 26.4 24.8 16.0 21.5 20.6 14.4 25.2 24.3 18.0 21.6 20.7 14.4
11 32.2 38.3 31.9 25.4 23.9 16.0 20.6 19.8 14.2 24.2 23.3 17.8 20.6 19.8 14.2
12 32.5 37.8 31.8 24.5 23.1 15.9 19.7 19.0 14.1 23.2 22.4 17.5 19.7 18.9 14.0
13 32.5 37.6 32.0 23.8 22.4 15.7 19.1 18.5 14.2 22.4 21.7 17.5 19.0 18.3 14.1
14 32.5 37.8 31.8 23.4 22.0 15.6 18.5 17.9 14.1 21.9 21.2 17.5 18.1 17.5 13.8
15 32.1 38.2 32.0 23.1 21.6 15.5 17.6 17.0 13.7 21.4 20.9 17.6 17.6 17.1 13.8
16 32.5 38.5 31.6 22.9 21.3 15.3 17.4 16.8 13.9 21.0 20.5 17.6 16.7 16.2 13.3
17 32.4 38.5 31.8 22.8 21.1 15.1 17.0 16.5 13.9 20.6 20.2 17.5 16.3 15.8 13.2
18 32.7 38.2 31.9 23.1 21.2 15.0 17.0 16.6 14.1 20.3 19.9 17.4 16.3 15.9 13.4
19 32.7 37.7 32.3 23.6 21.5 15.0 17.1 16.7 14.2 20.1 19.6 17.2 16.6 16.2 13.7
20 33.4 37.4 32.2 24.4 22.1 15.1 17.8 17.3 14.7 20.0 19.6 16.9 16.8 16.3 13.7
21 32.7 37.9 32.4 25.2 22.7 15.2 17.5 17.1 14.2 20.1 19.7 16.8 17.2 16.7 13.8
22 32.9 39.3 32.6 25.9 23.3 15.3 17.9 17.4 14.2 20.5 20.1 16.8 17.8 17.3 14.0
23 33.6 41.3 32.3 26.9 24.3 15.7 18.7 18.2 14.5 21.7 21.2 17.4 18.1 17.6 13.8
24 35.5 43.8 34.6 27.8 25.3 16.5 20.3 19.8 15.7 23.4 22.9 18.8 20.0 19.4 15.4

Avg. 32.3 37.1 31.4 28.1 25.8 16.1 21.7 20.7 14.7 25.1 24.0 18.0 21.5 20.5 14.5
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Table 16. MAPE comparison of forecasting models for Building 9 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 8.3 13.0 8.1 12.2 12.2 10.8 10.0 10.0 8.7 13.1 13.1 11.8 9.9 9.9 8.6
2 8.5 13.2 8.7 11.9 11.9 10.7 9.8 9.9 8.8 12.9 12.9 11.8 10.0 10.0 8.9
3 8.7 13.3 8.6 11.7 11.8 10.7 9.7 9.8 8.8 12.8 12.8 11.9 9.7 9.8 8.8
4 8.7 13.3 8.5 11.6 11.6 10.7 9.6 9.7 8.9 12.7 12.7 12.0 9.6 9.6 8.9
5 8.9 13.3 8.5 11.5 11.6 10.7 9.6 9.6 9.0 12.6 12.7 12.0 9.5 9.6 8.9
6 8.9 13.3 8.5 11.5 11.6 10.6 9.5 9.6 9.0 12.6 12.6 12.0 9.5 9.5 8.9
7 9.0 13.3 8.5 11.5 11.5 10.6 9.5 9.5 9.0 12.5 12.6 12.0 9.4 9.4 8.9
8 9.0 13.3 8.6 11.5 11.5 10.6 9.4 9.4 9.0 12.5 12.5 12.0 9.4 9.4 8.9
9 9.0 13.3 8.7 11.4 11.4 10.5 9.3 9.3 8.9 12.4 12.4 12.0 9.4 9.4 9.0

10 9.0 13.3 8.7 11.4 11.4 10.4 9.2 9.3 8.8 12.4 12.4 11.9 9.4 9.4 8.9
11 9.0 13.3 8.4 11.3 11.3 10.3 9.2 9.2 8.7 12.3 12.3 11.8 9.2 9.2 8.7
12 9.0 13.3 8.4 11.3 11.3 10.2 9.2 9.2 8.7 12.3 12.3 11.8 9.2 9.2 8.7
13 9.0 13.3 8.7 11.2 11.2 10.2 9.2 9.2 8.7 12.3 12.3 11.7 9.3 9.4 8.8
14 9.0 13.3 8.5 11.2 11.2 10.1 9.2 9.2 8.6 12.2 12.2 11.7 9.2 9.2 8.7
15 9.0 13.3 8.7 11.1 11.1 10.1 9.2 9.2 8.6 12.2 12.2 11.6 9.4 9.4 8.8
16 9.0 13.3 8.2 11.1 11.1 10.1 9.1 9.2 8.6 12.2 12.2 11.6 9.0 9.0 8.4
17 9.0 13.3 8.2 11.0 11.1 10.1 9.1 9.2 8.6 12.2 12.2 11.6 9.1 9.1 8.5
18 9.0 13.3 8.3 11.0 11.0 10.1 9.2 9.2 8.6 12.2 12.2 11.6 9.1 9.1 8.6
19 9.0 13.3 8.6 10.9 10.9 10.0 9.2 9.2 8.6 12.1 12.1 11.6 9.3 9.3 8.8
20 9.0 13.3 8.5 10.9 10.9 10.0 9.1 9.2 8.7 12.1 12.1 11.6 9.2 9.2 8.7
21 9.0 13.3 8.6 10.9 10.9 10.1 9.1 9.1 8.7 12.1 12.1 11.6 9.2 9.2 8.8
22 9.0 13.3 8.8 10.8 10.9 10.1 9.1 9.2 8.7 12.1 12.1 11.6 9.3 9.4 8.9
23 9.0 13.4 8.2 10.8 10.8 10.2 9.2 9.2 8.7 12.1 12.1 11.6 8.9 8.9 8.5
24 9.2 13.5 8.7 10.7 10.7 10.2 9.3 9.3 8.9 12.2 12.2 11.8 9.3 9.4 8.9

Avg. 8.9 13.3 8.5 11.3 11.3 10.3 9.3 9.4 8.8 12.4 12.4 11.8 9.4 9.4 8.8
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Table 17. MAPE comparison of forecasting models for Building 10 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 12.0 11.1 10.0 37.7 33.4 15.0 21.7 20.9 13.9 21.6 20.7 13.7 20.7 19.9 12.8
2 13.2 11.9 11.4 35.7 31.9 14.4 21.0 20.4 13.8 20.7 20.1 13.5 20.1 19.4 12.8
3 13.9 12.7 11.8 34.1 30.5 14.0 20.2 19.7 13.6 19.9 19.5 13.3 19.1 18.6 12.5
4 14.3 13.5 11.9 32.5 29.2 13.6 19.3 19.0 13.3 19.1 18.8 13.2 18.1 17.8 12.2
5 14.6 14.1 12.0 31.0 27.9 13.4 18.4 18.2 13.1 18.3 18.1 13.1 17.2 17.0 11.9
6 14.6 14.5 12.0 29.6 26.8 13.3 17.5 17.4 13.0 17.5 17.5 13.0 16.3 16.2 11.8
7 14.6 14.8 12.1 28.5 26.0 13.2 16.8 16.8 13.0 16.9 16.9 13.1 15.7 15.6 11.8
8 14.5 15.0 12.1 27.8 25.4 13.4 16.4 16.4 13.0 16.6 16.6 13.2 15.3 15.3 11.9
9 14.5 15.0 12.2 27.4 25.1 13.7 16.2 16.3 13.2 16.4 16.4 13.4 15.2 15.2 12.2

10 14.4 14.9 12.3 27.2 25.1 14.0 16.2 16.3 13.5 16.3 16.5 13.6 15.2 15.3 12.4
11 14.4 14.7 12.2 27.5 25.2 14.2 16.4 16.5 13.6 16.5 16.7 13.8 15.3 15.4 12.6
12 14.4 14.5 12.3 28.0 25.4 14.4 16.7 16.7 13.7 16.8 16.9 13.9 15.7 15.7 12.7
13 14.3 14.4 12.4 28.3 25.5 14.5 16.8 16.8 13.7 17.0 17.0 13.9 15.9 15.9 12.8
14 14.3 14.4 12.3 28.4 25.5 14.5 16.9 17.0 13.7 17.1 17.1 13.9 15.9 16.0 12.7
15 14.3 14.3 12.5 28.6 25.5 14.5 17.0 17.1 13.6 17.2 17.3 13.8 16.2 16.2 12.7
16 14.4 14.3 12.1 28.8 25.7 14.4 17.2 17.2 13.5 17.4 17.4 13.7 16.1 16.1 12.5
17 14.4 14.3 12.2 28.9 25.7 14.4 17.4 17.3 13.5 17.5 17.5 13.7 16.3 16.3 12.4
18 14.3 14.3 12.2 29.2 25.9 14.5 17.7 17.5 13.5 17.8 17.6 13.7 16.6 16.4 12.5
19 14.2 14.3 12.4 29.6 26.2 14.6 18.0 17.7 13.6 18.1 17.8 13.7 17.0 16.8 12.6
20 14.3 14.4 12.4 30.2 26.7 14.8 18.3 18.0 13.6 18.5 18.1 13.7 17.4 17.0 12.6
21 14.3 14.5 12.5 30.7 27.2 14.9 18.8 18.4 13.7 19.0 18.6 13.9 17.9 17.5 12.7
22 14.4 14.8 12.6 31.0 27.6 15.2 19.3 18.8 13.9 19.5 19.0 14.1 18.3 17.8 12.9
23 14.7 15.1 12.4 30.9 27.8 15.4 19.6 19.2 14.2 19.8 19.4 14.4 18.3 17.8 12.8
24 15.1 15.6 12.8 30.7 27.7 15.5 19.9 19.4 14.4 20.1 19.6 14.6 18.5 18.1 13.0

Avg. 14.3 14.2 12.1 30.1 27.0 14.3 18.1 17.9 13.6 18.2 18.0 13.7 17.0 16.8 12.5
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Table 18. MAPE comparison of forecasting models for Building 11 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 9.4 7.6 8.5 18.5 21.4 8.4 13.6 14.3 8.2 12.8 13.5 7.4 12.8 13.6 7.5
2 10.3 8.5 9.6 18.2 21.1 8.4 13.7 14.4 8.4 12.8 13.5 7.6 13.0 13.8 7.8
3 10.9 9.3 10.0 17.9 20.7 8.3 13.6 14.3 8.6 12.8 13.5 7.7 12.9 13.6 7.8
4 11.4 10.0 10.1 17.5 20.3 8.2 13.5 14.2 8.6 12.7 13.4 7.8 12.7 13.4 7.8
5 11.7 10.5 10.2 17.2 19.9 8.2 13.4 14.0 8.6 12.7 13.3 7.9 12.5 13.1 7.8
6 11.9 10.9 10.2 16.9 19.5 8.1 13.2 13.8 8.7 12.6 13.1 8.0 12.4 12.9 7.8
7 12.0 11.2 10.3 16.6 19.1 8.1 13.1 13.7 8.7 12.4 13.0 8.0 12.1 12.7 7.8
8 11.9 11.3 10.3 16.3 18.8 8.1 12.9 13.5 8.7 12.3 12.9 8.1 12.0 12.6 7.8
9 11.9 11.3 10.4 16.1 18.5 8.1 12.7 13.3 8.7 12.1 12.7 8.1 11.9 12.5 7.8

10 11.6 11.2 10.4 15.8 18.3 8.1 12.6 13.2 8.7 12.0 12.6 8.1 11.7 12.3 7.8
11 11.7 11.1 10.3 15.6 18.0 8.2 12.4 13.1 8.7 11.8 12.4 8.0 11.5 12.2 7.8
12 11.7 11.0 10.4 15.3 17.8 8.2 12.3 13.0 8.7 11.6 12.3 8.0 11.4 12.1 7.8
13 11.7 10.9 10.5 15.2 17.6 8.2 12.2 12.9 8.7 11.5 12.2 8.0 11.4 12.1 7.9
14 11.8 11.0 10.3 15.0 17.4 8.2 12.2 12.8 8.7 11.5 12.1 8.0 11.3 11.9 7.8
15 11.6 11.0 10.4 14.9 17.3 8.3 12.1 12.7 8.6 11.4 12.1 8.0 11.3 12.0 7.9
16 11.7 11.0 10.2 14.8 17.2 8.3 12.1 12.8 8.7 11.4 12.1 8.0 11.1 11.8 7.7
17 11.7 11.0 10.3 14.7 17.1 8.3 11.9 12.7 8.7 11.3 12.1 8.0 11.0 11.8 7.8
18 11.6 11.0 10.2 14.6 17.1 8.3 11.8 12.7 8.7 11.2 12.1 8.0 11.0 11.8 7.8
19 11.6 10.9 10.4 14.5 17.0 8.3 11.7 12.6 8.6 11.1 12.0 8.0 11.0 11.9 7.9
20 11.5 10.7 10.3 14.5 16.9 8.4 11.7 12.6 8.6 11.1 12.0 8.1 11.0 11.9 7.9
21 11.5 10.7 10.3 14.4 16.8 8.5 11.7 12.6 8.7 11.1 12.0 8.1 11.0 11.9 8.0
22 11.7 10.6 10.4 14.4 16.7 8.6 11.8 12.7 8.8 11.2 12.1 8.2 11.1 12.0 8.1
23 11.7 10.7 10.2 14.4 16.6 8.7 12.0 12.9 9.0 11.4 12.3 8.5 11.0 11.9 8.0
24 11.9 10.8 10.4 14.4 16.6 8.8 12.2 13.1 9.3 11.6 12.6 8.8 11.3 12.3 8.5

Avg. 11.5 10.6 10.2 15.7 18.2 8.3 12.5 13.2 8.7 11.9 12.6 8.0 11.7 12.4 7.9
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Table 19. MAPE comparison of forecasting models for Building 12 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 8.7 7.1 7.4 23.7 35.6 28.9 17.4 21.3 15.7 16.8 20.7 15.2 16.3 20.2 14.6
2 9.3 7.8 8.3 23.2 34.9 28.5 17.4 21.1 15.8 16.8 20.4 15.1 16.4 20.0 14.7
3 9.8 8.5 8.6 22.7 34.2 28.3 17.2 20.7 15.8 16.6 20.1 15.1 16.1 19.6 14.7
4 10.2 9.1 8.7 22.2 33.6 28.1 17.0 20.4 15.7 16.5 19.8 15.2 15.9 19.3 14.6
5 10.4 9.5 8.8 22.0 33.3 28.0 16.9 20.1 15.7 16.4 19.6 15.2 15.8 19.0 14.6
6 10.4 9.9 8.8 21.9 32.9 27.9 16.7 19.9 15.7 16.3 19.4 15.3 15.6 18.8 14.6
7 10.5 10.2 8.9 21.9 32.7 27.9 16.6 19.7 15.7 16.2 19.3 15.3 15.5 18.6 14.6
8 10.4 10.3 8.9 21.8 32.5 27.8 16.5 19.6 15.7 16.2 19.3 15.4 15.4 18.6 14.7
9 10.4 10.3 9.0 21.8 32.3 27.8 16.4 19.5 15.8 16.0 19.2 15.5 15.3 18.5 14.7

10 10.2 10.2 9.0 21.7 32.2 27.8 16.3 19.6 15.9 16.0 19.2 15.6 15.3 18.6 14.9
11 10.3 10.1 9.0 21.7 32.1 27.9 16.2 19.5 16.0 15.9 19.2 15.6 15.1 18.5 14.9
12 10.4 10.0 9.0 21.7 32.1 28.0 16.2 19.6 16.1 15.8 19.2 15.7 15.1 18.5 15.0
13 10.4 9.9 9.1 21.7 32.1 28.0 16.2 19.6 16.1 15.7 19.2 15.7 15.1 18.5 15.0
14 10.3 9.8 9.0 21.6 32.0 28.0 16.0 19.5 16.0 15.7 19.1 15.7 15.0 18.4 15.0
15 10.3 9.8 9.1 21.6 32.0 28.0 16.0 19.4 16.0 15.6 19.1 15.7 15.0 18.5 15.0
16 10.3 9.8 8.9 21.4 31.9 28.0 15.8 19.4 16.0 15.5 19.1 15.7 14.7 18.3 14.9
17 10.2 9.8 9.0 21.3 31.9 28.0 15.7 19.4 16.0 15.3 19.1 15.7 14.6 18.3 15.0
18 10.2 9.8 9.1 21.1 31.8 27.9 15.5 19.4 16.0 15.2 19.0 15.7 14.5 18.3 15.0
19 10.3 9.8 9.2 21.1 31.8 27.9 15.5 19.4 16.0 15.1 19.0 15.6 14.5 18.4 15.0
20 10.4 9.9 9.1 21.1 31.7 27.8 15.4 19.3 16.0 15.0 18.9 15.6 14.4 18.3 15.0
21 10.3 10.1 9.3 21.2 31.6 27.7 15.4 19.2 16.0 15.0 18.9 15.6 14.5 18.3 15.1
22 10.4 10.3 9.3 21.5 31.6 27.6 15.5 19.2 16.1 15.2 18.9 15.7 14.6 18.3 15.1
23 10.6 10.7 9.2 21.7 31.4 27.5 15.7 19.2 16.2 15.4 18.9 15.9 14.6 18.1 15.0
24 11.1 11.2 9.7 21.7 31.2 27.3 16.0 19.3 16.3 15.7 19.0 16.0 14.9 18.2 15.2

Avg. 10.2 9.7 8.9 21.8 32.5 27.9 16.2 19.7 15.9 15.8 19.3 15.5 15.2 18.7 14.9
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Table 20. MAPE comparison of forecasting models for Building 13 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 19.5 14.4 19.4 18.5 20.8 16.3 17.0 17.1 16.5 14.2 14.3 13.7 16.3 16.4 15.7
2 20.9 16.0 21.7 18.0 19.9 16.0 16.9 17.0 16.4 14.2 14.2 13.6 16.6 16.7 16.1
3 22.1 17.6 22.0 17.5 19.1 15.6 16.9 16.9 16.3 14.1 14.1 13.5 16.2 16.2 15.7
4 23.1 19.1 22.2 17.1 18.4 15.2 16.8 16.8 16.2 14.1 14.0 13.5 15.9 15.9 15.4
5 23.7 20.5 22.4 16.6 17.8 14.9 16.6 16.6 16.0 14.1 14.1 13.5 15.7 15.7 15.1
6 24.1 21.6 22.5 16.2 17.1 14.6 16.5 16.5 15.9 14.1 14.1 13.5 15.6 15.6 15.0
7 24.1 22.3 22.5 15.9 16.6 14.4 16.3 16.3 15.8 14.1 14.1 13.6 15.3 15.2 14.7
8 23.8 22.7 22.5 15.7 16.0 14.4 16.3 16.1 15.9 14.2 14.0 13.8 15.3 15.1 14.9
9 23.7 22.7 22.8 15.5 15.5 14.6 16.3 16.0 16.0 14.2 13.9 13.9 15.3 15.1 15.1

10 23.3 22.4 23.0 15.5 15.1 14.8 16.3 16.0 16.2 14.1 13.7 14.0 15.4 15.1 15.3
11 23.5 21.9 22.9 15.5 14.9 15.0 16.4 15.9 16.4 14.0 13.5 14.0 15.3 14.8 15.3
12 23.5 21.5 22.9 15.6 14.9 15.2 16.4 15.9 16.4 14.0 13.4 14.0 15.3 14.7 15.2
13 23.6 21.3 23.4 15.7 15.1 15.3 16.4 15.9 16.4 14.0 13.5 14.0 15.6 15.1 15.6
14 23.4 21.4 23.0 15.9 15.4 15.4 16.5 16.0 16.4 14.1 13.6 14.1 15.4 14.9 15.4
15 23.3 21.6 23.3 16.0 15.6 15.5 16.3 15.8 16.2 14.3 13.8 14.2 15.6 15.2 15.6
16 23.3 21.8 22.3 16.1 15.9 15.6 16.3 16.0 16.4 14.4 14.0 14.4 14.8 14.4 14.8
17 23.1 21.8 22.5 16.2 16.1 15.7 16.2 15.8 16.3 14.3 14.0 14.4 14.8 14.5 14.9
18 22.8 21.6 22.7 16.4 16.3 15.9 16.1 15.7 16.2 14.3 13.9 14.4 15.0 14.6 15.2
19 22.9 21.3 23.2 16.7 16.5 16.2 16.1 15.7 16.3 14.1 13.7 14.3 15.3 14.9 15.6
20 23.0 21.1 23.1 16.9 16.7 16.4 16.2 15.7 16.5 14.0 13.5 14.3 15.2 14.8 15.6
21 23.2 21.2 23.4 17.2 17.0 16.6 16.4 15.8 16.7 14.0 13.4 14.4 15.6 15.0 16.0
22 23.5 21.6 23.7 17.4 17.3 16.8 16.7 16.0 17.1 14.3 13.6 14.7 16.0 15.3 16.4
23 24.1 22.4 22.8 17.7 17.4 17.0 17.1 16.3 17.6 14.9 14.1 15.4 15.5 14.7 16.0
24 25.1 23.4 24.3 17.8 17.4 17.2 17.8 16.8 18.3 15.7 14.7 16.3 16.5 15.6 17.1

Avg. 23.2 21.0 22.7 16.6 16.8 15.6 16.5 16.2 16.4 14.2 13.9 14.1 15.6 15.2 15.5
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Table 21. MAPE comparison of forecasting models for Building 14 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 12.6 9.5 11.1 12.6 19.2 9.4 10.8 12.8 9.3 9.3 11.3 7.8 9.3 11.4 7.8
2 13.6 10.6 12.5 12.3 18.4 9.2 10.8 12.7 9.4 9.3 11.2 7.9 9.5 11.4 8.0
3 14.4 11.8 13.0 11.8 17.5 8.9 10.8 12.7 9.4 9.3 11.1 7.9 9.3 11.1 7.9
4 15.1 12.8 13.1 11.4 16.7 8.7 10.8 12.5 9.4 9.3 11.1 8.0 9.2 10.9 7.8
5 15.5 13.6 13.3 11.0 16.0 8.4 10.6 12.3 9.3 9.3 11.0 8.0 9.1 10.7 7.7
6 15.5 14.3 13.4 10.7 15.3 8.1 10.6 12.2 9.3 9.3 10.9 8.0 9.0 10.6 7.7
7 15.8 14.8 13.4 10.4 14.7 8.0 10.5 12.1 9.3 9.3 10.9 8.1 8.9 10.4 7.6
8 15.6 15.0 13.5 10.2 14.2 7.9 10.5 12.0 9.3 9.3 10.8 8.1 8.9 10.4 7.7
9 15.6 15.0 13.6 10.1 13.8 7.9 10.5 11.9 9.3 9.3 10.7 8.1 8.9 10.3 7.7

10 15.4 14.8 13.6 10.0 13.5 7.9 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.7
11 15.4 14.6 13.6 10.0 13.2 7.9 10.5 11.7 9.3 9.2 10.5 8.0 8.8 10.1 7.6
12 15.3 14.3 13.6 9.9 13.0 7.9 10.4 11.7 9.3 9.1 10.3 8.0 8.8 10.0 7.7
13 15.4 14.2 13.9 10.0 13.0 8.0 10.5 11.6 9.3 9.1 10.3 8.0 9.0 10.2 7.9
14 15.4 14.1 13.7 10.1 13.0 8.1 10.5 11.6 9.4 9.1 10.2 8.0 8.9 10.1 7.8
15 15.3 14.2 13.9 10.3 13.1 8.2 10.3 11.5 9.2 9.1 10.3 8.0 9.0 10.2 7.9
16 15.4 14.2 13.5 10.5 13.2 8.4 10.5 11.6 9.4 9.1 10.3 8.1 8.7 9.8 7.6
17 15.1 14.2 13.7 10.7 13.3 8.6 10.2 11.4 9.2 9.1 10.3 8.1 8.7 9.9 7.7
18 15.1 14.2 13.7 10.9 13.5 8.8 10.1 11.3 9.1 9.1 10.3 8.1 8.7 9.9 7.7
19 15.0 14.1 14.0 11.0 13.6 8.9 10.0 11.2 9.1 9.0 10.2 8.0 8.8 10.0 7.9
20 15.4 14.2 13.9 11.2 13.8 9.1 10.0 11.2 9.1 8.9 10.1 8.0 8.8 10.0 7.8
21 15.3 14.5 14.1 11.4 13.9 9.3 10.0 11.2 9.1 9.0 10.1 8.1 8.9 10.1 8.0
22 15.5 15.0 14.2 11.5 14.0 9.4 10.1 11.3 9.3 9.2 10.3 8.3 9.0 10.1 8.1
23 16.0 15.7 14.0 11.5 14.0 9.4 10.4 11.5 9.6 9.5 10.6 8.6 8.7 9.9 7.9
24 16.7 16.5 14.9 11.4 13.9 9.4 10.7 11.9 9.9 9.8 11.0 9.0 9.2 10.3 8.4

Avg. 15.2 14.0 13.6 10.9 14.5 8.6 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.8
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Table 22. MAPE comparison of forecasting models for Building 15 (a cooler color indicates a lower
MAPE value, while a warmer color indicates a higher MAPE value).

Point
Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 18.1 16.3 17.5 55.9 58.0 12.5 40.1 40.3 13.8 39.8 40.0 13.4 39.1 39.3 12.7
2 19.6 17.8 19.7 53.1 55.3 12.2 37.8 38.0 13.8 37.4 37.6 13.4 37.2 37.4 13.1
3 20.7 19.3 20.0 50.3 52.5 12.0 35.4 35.6 13.8 35.0 35.3 13.4 34.4 34.6 12.8
4 21.5 20.6 20.2 47.5 49.8 11.9 32.9 33.2 13.8 32.6 32.9 13.5 31.8 32.2 12.8
5 22.0 21.8 20.4 44.5 46.9 11.8 30.2 30.7 13.8 30.0 30.5 13.6 29.1 29.5 12.6
6 22.5 22.8 20.5 41.7 44.0 11.8 27.8 28.4 13.9 27.6 28.2 13.7 26.6 27.2 12.7
7 22.5 23.5 20.6 39.5 41.8 11.8 25.7 26.4 13.9 25.6 26.3 13.8 24.5 25.1 12.7
8 21.9 23.9 20.6 38.0 40.2 11.8 24.1 24.8 13.9 24.2 24.9 13.9 22.9 23.6 12.6
9 22.0 23.9 20.9 36.8 38.8 12.0 23.0 23.7 14.0 23.0 23.7 14.0 21.9 22.6 12.9

10 21.7 23.6 21.1 36.4 38.2 12.1 22.4 23.0 14.1 22.3 22.9 14.0 21.3 21.9 13.0
11 22.0 23.2 21.0 36.7 38.5 12.2 22.3 22.9 14.1 22.2 22.7 14.0 21.1 21.7 12.9
12 22.0 22.8 21.0 36.9 38.6 12.3 22.5 23.0 14.2 22.2 22.7 13.9 21.2 21.8 13.0
13 21.9 22.5 21.4 37.3 39.1 12.3 22.6 23.2 14.2 22.3 22.8 13.9 21.7 22.2 13.3
14 22.0 22.5 21.0 37.7 39.6 12.3 22.7 23.3 14.3 22.4 23.0 14.0 21.5 22.1 13.1
15 21.6 22.7 21.4 38.4 40.3 12.3 22.7 23.3 14.0 22.8 23.4 14.1 21.9 22.5 13.2
16 21.8 22.8 20.5 38.9 40.9 12.4 23.1 23.8 14.2 23.2 23.9 14.3 21.5 22.2 12.7
17 21.6 22.9 20.9 39.3 41.5 12.5 23.0 23.8 14.0 23.4 24.2 14.3 21.8 22.6 12.8
18 21.7 22.7 21.0 39.4 41.7 12.7 23.3 24.2 14.1 23.6 24.4 14.3 22.2 23.0 12.9
19 21.6 22.5 21.6 39.9 42.2 12.9 23.8 24.6 14.1 23.9 24.7 14.2 23.0 23.8 13.3
20 21.8 22.5 21.3 39.8 42.2 13.1 24.0 24.9 14.3 23.8 24.7 14.1 22.9 23.9 13.2
21 22.2 22.7 21.6 39.4 41.7 13.3 24.0 24.9 14.6 23.5 24.4 14.1 22.9 23.8 13.5
22 22.5 23.3 21.8 39.0 41.3 13.4 24.2 25.1 14.9 23.6 24.5 14.2 23.2 24.2 13.9
23 22.7 24.1 21.0 39.0 41.3 13.5 24.3 25.3 15.1 23.9 24.9 14.7 22.6 23.6 13.4
24 23.4 25.1 22.4 38.5 40.8 13.7 24.5 25.6 15.5 24.2 25.3 15.3 23.2 24.3 14.2

Avg. 21.7 22.3 20.8 41.0 43.1 12.5 26.1 26.8 14.2 25.9 26.6 14.0 25.0 25.6 13.1
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Table 23. Average MAPE comparison of forecasting models (a cooler color indicates a lower MAPE
value, while a warmer color indicates a higher MAPE value).

Building # Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 18.1 19.9 17.7 17.2 21.8 9.3 11.6 12.0 8.7 12.8 13.1 9.8 11.4 11.7 8.4
2 38.3 37.3 35.1 34.0 35.3 18.7 32.3 33.8 20.5 31.3 32.8 19.5 29.2 30.7 17.4
3 16.7 17.9 14.2 25.8 26.0 16.1 20.3 20.3 15.6 21.0 20.9 16.3 19.1 19.0 14.4
4 26.1 27.3 24.5 23.1 21.0 15.0 18.4 17.9 14.5 19.3 18.8 15.4 17.5 17.0 13.6
5 5.7 5.7 5.5 74.0 77.8 24.2 39.1 36.6 12.5 39.1 36.6 12.5 38.9 36.5 12.4
6 8.2 12.0 7.3 39.3 39.3 9.0 23.5 23.5 7.9 25.8 25.8 10.2 22.9 23.0 7.4
7 12.9 13.6 12.0 21.3 18.7 7.9 16.1 14.9 7.8 16.6 15.3 8.2 15.4 14.1 7.0
8 32.3 37.1 31.4 28.1 25.8 16.1 21.7 20.7 14.7 25.1 24.0 18.0 21.5 20.5 14.5
9 8.9 13.3 8.5 11.3 11.3 10.3 9.3 9.4 8.8 12.4 12.4 11.8 9.4 9.4 8.8
10 14.3 14.2 12.1 30.1 27.0 14.3 18.1 17.9 13.6 18.2 18.0 13.7 17.0 16.8 12.5
11 11.5 10.6 10.2 15.7 18.2 8.3 12.5 13.2 8.7 11.9 12.6 8.0 11.7 12.4 7.9
12 10.2 9.7 8.9 21.8 32.5 27.9 16.2 19.7 15.9 15.8 19.3 15.5 15.2 18.7 14.9
13 23.2 21.0 22.7 16.6 16.8 15.6 16.5 16.2 16.4 14.2 13.9 14.1 15.6 15.2 15.5
14 15.2 14.0 13.6 10.9 14.5 8.6 10.4 11.8 9.3 9.2 10.6 8.1 8.9 10.3 7.8
15 21.7 22.3 20.8 41.0 43.1 12.5 26.1 26.8 14.2 25.9 26.6 14.0 25.0 25.6 13.1

Avg. 17.6 18.4 16.3 27.3 28.6 14.3 19.5 19.6 12.6 19.9 20.0 13.0 18.6 18.7 11.7

Table 24. Average root mean square error (RMSE) results of 15 forecasting models for each building (a
cooler color indicates a lower RMSE value, while a warmer color indicates a higher RMSE value).

Building # Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 103.9 105.2 100.3 91.3 114.2 47.0 57.1 60.6 45.1 55.6 59.2 43.2 51.9 55.7 38.3
2 185.5 192.2 179.8 127.7 130.7 91.4 114.2 117.9 90.0 121.4 124.9 99.0 106.4 110.3 79.8
3 60.7 59.1 48.7 67.1 67.6 49.8 64.2 63.9 55.2 63.6 63.3 54.5 59.0 58.6 49.0
4 187.5 185.9 177.0 147.6 137.9 92.1 121.4 118.8 97.1 115.5 112.6 89.5 110.5 107.5 83.0
5 19.4 19.3 18.6 177.5 182.8 69.7 124.4 119.9 45.1 124.4 119.9 45.1 124.3 119.8 44.9
6 36.9 28.3 24.4 111.6 111.8 33.8 82.8 82.9 34.4 80.7 80.9 29.1 79.9 80.1 26.8
7 151.7 154.7 144.2 194.9 165.5 93.4 144.7 136.5 84.1 145.1 136.9 84.8 138.4 129.8 72.7
8 93.2 93.5 88.8 67.1 60.9 44.2 52.5 50.9 44.5 49.3 47.6 40.7 45.6 43.7 36.0
9 78.5 58.5 53.6 99.6 99.8 76.4 90.1 90.3 77.6 79.1 79.3 64.4 77.9 78.1 62.9
10 148.2 169.5 130.6 287.6 247.7 148.2 209.6 195.3 144.6 216.6 202.9 154.6 204.5 189.9 137.2
11 42.7 46.8 42.1 49.5 54.3 30.1 41.5 43.0 29.2 43.7 45.2 32.2 41.0 42.6 28.5
12 183.1 191.6 174.4 321.2 484.3 421.6 260.7 327.2 265.6 264.9 330.6 269.7 257.1 324.4 262.1
13 854.8 935.6 849.9 668.6 784.1 491.5 516.5 553.3 406.3 608.5 640.0 518.1 515.3 552.2 404.7
14 580.3 632.7 569.6 484.1 611.7 358.9 368.8 426.8 306.6 423.5 474.8 370.6 357.2 416.8 292.6
15 79.2 84.3 76.9 131.6 137.7 40.3 81.2 83.4 40.8 84.5 86.6 47.0 79.7 81.9 37.7

To demonstrate the superiority of the SPROUT model, we performed several statistical tests,
such as Wilcoxon signed-rank and Friedman tests [58,59]. The Wilcoxon signed-rank test [58] is used
to confirm the null hypothesis to determine whether there is a significant difference between two
models. If the p-value is less than the significance level, the null hypothesis is rejected, and the two
models are judged to have significant differences. The Friedman test [59] is a multiple comparison
test that aims to identify significant differences between the results of two or more forecasting models.
To verify the results of the two tests, we used all the MAPE values (15 (number of the buildings) ×
24 (prediction time points)) for each forecasting model. The results of the Wilcoxon test with the
significance level set to 0.05 and the Friedman test are listed in Table 26. We can observe that the
proposed SPROUT model significantly outperforms the other models because the p-value in all cases
is below the significance level.



Energies 2020, 13, 886 32 of 37

Table 25. Average mean absolute error (MAE) results of 15 forecasting models for each building (a
cooler color indicates a lower MAE value, while a warmer color indicates a higher MAE value).

Building # Model #

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15

1 58.0 53.8 51.9 54.9 70.8 29.6 37.1 38.2 29.4 34.0 35.1 26.3 32.5 33.6 24.8
2 121.1 126.8 112.9 98.9 101.6 65.6 85.1 88.0 64.9 90.0 92.9 69.8 77.0 79.9 56.9
3 43.0 41.3 34.1 52.2 52.6 37.4 47.2 47.0 40.0 46.3 46.1 39.1 42.7 42.4 35.4
4 125.7 119.4 111.0 121.3 109.9 71.3 96.1 94.1 75.4 89.7 87.6 69.0 84.0 82.0 63.3
5 13.9 13.7 13.2 151.7 160.0 52.8 81.8 77.7 29.9 81.7 77.6 29.8 81.4 77.3 29.5
6 31.1 21.4 19.2 99.1 99.2 23.3 65.8 65.8 26.7 59.8 59.9 20.8 58.5 58.6 19.4
7 89.4 85.8 78.6 143.6 119.8 55.5 104.8 96.8 55.1 102.6 94.6 53.0 96.5 88.5 46.8
8 55.1 48.5 46.6 42.3 39.0 26.5 36.0 35.0 29.1 30.7 29.7 23.8 29.4 28.4 22.6
9 66.9 45.2 43.1 65.2 65.3 54.6 66.4 66.5 60.7 51.5 51.6 45.8 51.5 51.6 45.8
10 103.1 107.3 88.2 210.9 187.9 104.6 138.8 133.3 101.8 140.3 134.8 103.2 131.4 125.8 94.3
11 30.0 33.1 29.1 39.7 44.7 22.8 30.8 32.1 22.0 33.0 34.3 24.1 30.4 31.7 21.5
12 129.2 136.2 119.0 268.9 434.4 379.0 192.6 242.7 199.6 198.0 248.2 205.0 184.1 234.3 191.1
13 536.7 602.2 549.2 455.6 515.2 368.7 346.0 358.3 304.8 411.3 423.6 370.1 359.1 371.4 317.9
14 364.3 399.2 354.2 311.5 421.8 238.8 241.3 279.6 208.7 275.2 313.6 242.7 234.4 272.7 201.8
15 47.7 48.9 44.8 87.5 92.9 26.7 48.8 50.4 28.1 50.7 52.3 30.0 46.6 48.2 25.9

Table 26. Results of the Wilcoxon and Friedman tests with SPROUT (solving cold start problem in
short-term load forecasting using tree-based methods).

Compared Models Wilcoxon Test
(p-Value < 0.05) Friedman Test

M01 < 2.2× 10−16

Friedman chi-squared = 2547.7
p-value < 2.2× 10−16

M02 < 2.2× 10−16

M03 1.504× 10−8

M04 < 2.2× 10−16

M05 < 2.2× 10−16

M06 3.828× 10−12

M07 < 2.2× 10−16

M08 < 2.2× 10−16

M09 4.919× 10−6

M10 < 2.2× 10−16

M11 < 2.2× 10−16

M12 1.388× 10−7

M13 < 2.2× 10−16

M14 < 2.2× 10−16

5.3. Discussion

The SPROUT model demonstrated the best performance in the majority of experiments, excluding
certain buildings. Thus, we analyzed these cases in detail. In Figure 21, we can observe that Buildings
3, 5, 6, 9, and 10 illustrated no significant difference in weekday and weekend electric loads. As shown
in Table 2 and Figure 21f, Building 12 was unable to reflect similar electric load patterns owing to the
wide range of electric energy consumption data. Hence, the transfer learning-based forecasting models
demonstrated unsatisfactory prediction performance. Therefore, despite the differences in weekday
and weekend patterns, the time factor-based forecasting models showed better prediction performance.

Building 13 showed that M10 to M12 presented better prediction performance than other models
because MLR could predict the building electric energy consumptions better than DT and RF. In
addition, as listed in Table 20, Building 13 demonstrated a wide range of electric energy consumption
data and also showed the highest electric energy consumption. Therefore, even when the ED was close,
it was challenging to accurately derive the results of the transfer learning-based forecasting model.
The electric load patterns of Building 15 were considerably similar to those of Building 8, as shown in



Energies 2020, 13, 886 33 of 37

the F test in Table 27. Therefore, as M06 demonstrated accurate predictions on both weekdays and
weekends, it exhibited the lowest prediction error rate.

Table 27. F test between Building 8 and Building 15.

Statistical List Building 8 Building 15

Mean 185.03 204.63
Variance 12,292.48 14,017.42

F 0.88
P (F <= f) one-tail 0
F Critical one-tail 0.98
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6. Conclusions

When sufficient building electric energy consumption data are not available as in newly constructed
or renovated buildings, it is difficult to train and construct superior STLF models. Nevertheless,
electric load-forecasting models are required for efficient power management, even by considering
such limited data sets. In this paper, we proposed a novel STLF model, called SPROUT, to predict
electric energy consumption for buildings with limited data sets by combining time factor- and transfer
learning-based forecasting models. We used MRF to construct transfer learning-based STLF models
for each building by using sufficient building electric energy data and selected the model, which
exhibited the most similar time-series pattern to predict the electric load of the target building. We also
constructed STLF models based on RF by using the building electric energy consumption data of only
24 h and then used the two models depending on weekdays and holidays. To verify the validity and
applicability of our model, we used MLR and DT to construct time factor-based forecasting models
and compared their prediction performance. The experimental results showed that the RF-based
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STLF model presented a better prediction performance in the time factor-based forecasting model,
and the MRF-based STLF model, by applying ED, exhibited a better prediction performance in the
transfer learning-based forecasting model. By combining these models, our model (SPROUT) presented
excellent prediction performances in MAPE, RMSE, and MAE results. The SPROUT showed an average
MAPE value of 11.2 in the experiments and exhibited more accurate prediction performances of
5.9%p (MLR), 6.7%p (DT), and 4.6%p (RF) than time factor-based STLF models. It also showed more
accurate prediction performances of 15.6%p (MRF_PCC), 16.9%p (MRF_CS), and 2.6%p (MRF_ED)
than transfer learning-based STLF models. We demonstrated that the SPROUT can achieve better
prediction performance than other forecasting models.

However, when electric load exhibited no significant difference in weekday and weekend electric
loads in the building, the time factor-based STLF models outperformed our model. In addition, the
transfer learning-based STLF models presented unsatisfactory prediction performance in the building
with the highest electric energy consumption and hence our model cannot perform accurate electric
load forecasting. To address these issues, we plan to consider additional electric load data over a
period of time for performing weekly electric load pattern analysis and data normalization.
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