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Abstract: The focus of this article is to introduce a method for the optimization of daily activity
chains of travelers who use Electric Vehicles (EVs) in an urban environment. An approach has been
developed based on activity-based modeling and the Genetic Algorithm (GA) framework to calculate
a suitable schedule of activities, taking into account the locations of activities, modes of transport,
and the time of attendance to each activity. The priorities of the travelers concerning the spatial and
temporal flexibility were considered, as well as the constraints that are related to the limited range of
the EVs, the availability of Charging Stations (CS), and the elevation of the road network. In order
to model real travel behavior, two charging scenarios were realized. In the first case, the traveler
stays in the EV at the CS, and in the second case, the traveler leaves the EV to charge at the CS while
conducting another activity at a nearby location. Through a series of tests on synthetic activity chain
data, we proved the suitability of the method elaborated for addressing the needs of travelers and
being utilized as an optimization method for a modern Intelligent Transportation System (ITS).

Keywords: daily activity chains; electric vehicles; optimization; charging stations; intelligent
transportation systems; ITS

1. Introduction

In most urban environments, there is an ever-growing need for navigation through transportation
networks. Although more and more mobility services are offered to travelers, the complexity of their
use has risen alongisde the offer and demand for such services. Thus, the utilization of Intelligent
Transportation Systems (ITS) and the development of travel-related services have become an immense
need for the facilitation of the everyday life of citizens.

With the expected rise of the use of Electric Vehicles (EVs) all over the world [1] and the positive
impacts that they are expected to bring [2], advanced EV travel planning algorithms are now essential
more than ever [3]. Alongside the growth of EVs on global markets and the impact that they will have
on power grids, transportation networks, and the environment [4], the study for intelligent driver
assistance solutions for EV users is critical. Not only their development and availability are vital, but
also the user experience and the satisfaction of specific user preferences are two crucial points when
creating such services [5]. Nonetheless, those solutions can help to mitigate the risk of electrification of
transportation and deal with one of the enormous obstacles in EV adoption that is called range anxiety,
a term used to describe the psychological worry of EV drivers that the remaining electric energy in the
vehicle is not enough to attend their destination. While the battery capacity of the EVs is growing at a
satisfactory rate and is even expected to double until 2030 [6], it is proven that range anxiety is still
one of the most significant concerns of EV drivers and is one of the most critical obstacles towards
universal adoption and mainstream use [7]. While it has been shown that EV users that have a charger
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available at home mainly cover their needs at a satisfactory rate, for users that solely depend on public
charging infrastructure, charging can be a more challenging task [8].

Alongside the ability of those methods to address problems of EV drivers on an individual level,
they can improve the situation for the system-level [3], too. Mitigation strategies on electrification on a
regional level, as their importance as highlighted in recent articles [9], can benefit from driver assistance
ITS, since the underlying methods can be independent of the spatial-context and are reproducible over
several regions according to needs of travelers of those specific regions.

Apart from the work of Cuchý et al. [3], little research has been conducted to study the flexibility
or willingness to use travel planning services for EV drivers. However, the authors believe that based
on other previous research on other modes of transport, and mainly conventional automobiles [10],
a driver assistance system customized for EV users can be of crucial importance. This observation can
be further highlighted by other literature studies that have shown that travel patterns can vary further
when influenced by technologic systems [11]. While traveler groups’ flexibility can differ according to
age groups [12] and social characteristics [13], if the benefits acquired from the planning process are
perceived as worthy [14], benefits emerge for planning trips in pre-trip phase [15] or in real-time [16].

The goal of this research is to provide a realistic approach to the Daily Activity Chain Optimization
(DACO-EV) problem by exploiting activity-based modeling and the Genetic Algorithm (GA) framework.
While the incorporation of the EV range constraints is a significant part of our work, a particular focus
is also given to mechanisms that enable the implementation of such a system in a real-world ITS system
that will serve the travelers. Section 2 presents a literature review on related topics. Section 3 provides
a detailed description of the DACO-EV method, its parameters, and its attributes. Section 4 discusses
the implementation of the method and to provide realistic solutions to travelers. Section 5 presents the
results, including use cases. Section 6 serves as a conclusion to the article and its contribution.

2. Literature Review

To the best of our knowledge, an approach to the DACO-EV method, including enough parameters
to render its solution useful in realistic settings, does not exist in the scientific literature prior to the
publication of this article. However, insights and valuable research directions can be extracted from
articles regarding the incorporation of electromobility into transportation problems.

The activity-based analysis of transportation systems stems from the idea that the demand for
transportation between locations is interconnected with the demand for participation in some activity.
As indicated by a series of works in the literature [17–19], it has been extensively studied and used
for the analysis of travel behavior and the planning of transportation systems. Our work on the
optimization of daily activity chains falls under the umbrella of activity-based research in transportation.
Recent notable articles [20,21] show that activity-based modeling has been successfully applied to cases
where electromobility is incorporated into transportation systems. In the first paper by Dong et al. [20],
the impact of different types of deployment of charging infrastructure is analyzed in regard to the range
anxiety of EV users. An activity-based method is used to evaluate the deployments according to travel
patterns. In the work by Kontou et al. [21], activity-travel patterns from a National Household Travel
Survey data are used, in order to assess two schemes for centralized charging management of EVs, one
scheme that regards preferences of individuals and another that considers the government perspective.
The results indicate the differing nature of the interests of those two stakeholders, and confirm that the
availability of charging stations at the workplace can greatly affect the charging profiles of EV travelers.
The latter observation is one of great importance that can be found in other studies [8], too.

In regard to the problem of Daily Activity Chains Optimization (DACO), the basic instance
of DACO-EV, it has been previously addressed in the literature, and a GA approach has been
introduced [22,23]. Charypar et al. [24] have addressed a similar problem and introduced a similar
solution approach. The authors have considered several simplifications, such as the computation
of distances according to geometric distance and not based on the real transportation network.
Another similar work was conducted by Abbaspour et al. [25], where the authors tackled the
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same problem but had a specific focus on the touristic aspect of the optimization of activity chains.
Although the aforementioned papers regard heuristic optimization methods that have been developed
to solve the DACO problem, different modelings could also be considered. A modern approach was
presented by Liao et al. [26], who modeled the problem as a graph super-network. They included
space-time constraints to enable the valid selection of locations for activities in time, multi-modal
transport options and modeled the parking choice. While their activity-travel scheduling algorithm
computes the final solutions to the problem in minimal time, in the scheduling problem and the
modeling, the priorities and the flexibilities of the travelers are not included, like in the case of DACO.

There is a lack of exact optimization approaches for the DACO or DACO-EV in the literature.
Exact optimization methods, where the gap between the solution calculated and the globally optimal
solution of the problem is zero, are based on mathematical models of the transportation problem.
Although exact approaches tend to provide better solutions in terms of reduction of cost according
to criteria, they cannot yield solutions in the amount of time that heuristics can, and usually take
much more time to complete the calculations. Works can be found in the literature where routing in
multi-modal networks has been addressed with exact approaches [27,28].

One motivation for the extension of our method was to provide an efficient tool dealing with the
range anxiety of EV drivers in urban environments. Range anxiety is one of the main bottlenecks of EV
adoption and affects both inner-city and inter-city trips. Many studies [29] exist in the literature that
addressed this topic and provided useful insights regarding key factors that can evaluate its effect and
help deal with it. Although technology, and its advancement, is one of the main ways to deal with
range anxiety, other key factors are considered as important for the medium-term horizon, such as
battery costs, coverage of the charging stations network and CO2 vehicle standards [7]. Range anxiety
has also been studied in the context of daily schedules by Neubauer et al. [8]. Significant findings in
their studies showed that workplace charging could play an essential role in promoting the utility
of EVs for high mileage commuters. Additionally, the broadly available charging infrastructure has
been shown to be important to both high and low mileage commuters. Range anxiety importance has
also been shown in computational studies that discussed its relationship with the CS network. In the
work by Guo et al. [30], the battery charging station location problem was addressed where range
anxiety and distance convenience were taken into account. While the KSIGALNS algorithm that they
developed to solve their bi-level integer programming model was proven to be very effective compared
to standard and previous solutions approaches, the analysis of range anxiety as a parameter shows
that it is an essential factor to the location strategy of the CS network. Other interesting computational
studies exist in the context of range anxiety, such as the one by Esmaili et al. [31], where the authors
examine EVs as distributed energy storage units and their potential contribution to microgrids when
vehicle-to-grid service is considered. An interesting result that emerges from the solution of their
Mixed-Integer Linear Programming (MILP) model is that when range anxiety, as modelled in their
mathematical optimization program, is in higher levels, then the average State of Charge of the EV
drivers rises and, as a result, the total cost of the microgrid is higher, too.

Range anxiety, however, is a phenomenon that is being progressively dealt with on both a personal
and systemic level. It is more evident than ever that not all EVs are the same regarding experiencing
range anxiety [32]. There are observations that range anxiety is minimally experienced by users of
specific types of EVs in specific regions, such as in the study by Gorenflo et al. [33], in which, their
analysis of the e-bike usage and battery charging data supports that range anxiety does not exist among
the participants of the survey. Finally, in order to underline the importance of guidance systems, like
the one presented in this paper, we further present the study of Cuchý et al. [3]. In their work, they
were able to evaluate multi-destination transportation scenarios according to single-user perspective
and infrastructure perspective by using AgentPolis simulation framework. Except for the obvious
benefits for EV users, they showed that when users plan their mobility up-front, the total utilization of
infrastructure can increase by more than 100%.
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Particular focus was given to articles dealing with EV routing and the parameters that were
considered when it comes to the range that vehicles can cover. Extensive work on the subject has been
conducted by the team of Baum. Notably, in work conducted in 2013 [34], they extended their algorithm,
named Customizable Route Planning (CRP), to calculate fast queries on graphs that are suited to
Electric Vehicles (EV). Their goal was to calculate energy optimal routes, where several parameters can
be included, such as the recuperation of the electric vehicle, the battery capacity constraints, and the
dynamic behavior in energy consumption of the vehicle. In their next work conducted in 2016 [35], they
proposed a framework with a more holistic approach to the problem, where parameters are included,
such as the use and location of charging stations, turn costs, and the adjustment of speed in order
to save energy. In their work conducted in 2015 [36], they introduced an approach named CHArge,
which solves the EV routing problem in realistic settings. They discussed the properties of charging
functions, which are used to map an initial State of Charge (SoC) and the duration of charging sessions
with a resulting SoC. The works by Baum et al. [34–36], are very close to our approach in terms of
methods and calculation mechanisms that were used to deal with the incorporation of electromobility.
Additionally, useful information about the charging network, charging sessions, plugs, and strategies
were also extracted from the work of Moghaddass et al. [37].

There is a series of articles that are connected to our work since they address the optimization of
activity chains considering the use of EVs. The work of Liao et al. [38] is very close to our approach,
but they do not solve the same problem. The authors provide modeling and solution to the EV shortest
travel time path problem and the fixed tour EV touring problem. They consider a battery swap system
for the touring problem, where two cases are discussed: the on-site station model, where each city is
considered as a swapping station, and the off-site model, where the swapping station is further away
from the city. Although their approach addresses a similar problem to ours, the presented work is not
directly linked to a real-world application. In the works of Cuchý et al. [39,40], the authors tackled the
Whole Day Mobility Planning with Electric Vehicles (WDMEV) problem and modeled it according to
graph theory. The definition of the problem is similar to DACO-EV, but the authors included fewer
parameters than in our problem definition. They did not include the priorities of the travelers, and they
are neglecting the time windows of the desired attendance of the traveler. Furthermore, the authors
did not include in the models the consumption according to Worldwide Harmonized Light Vehicle Test
Procedure (WLTP), different EV models, and it is not clear if they consider the charging connector types.
In the modeling, the overall weight of the vehicle and the option to have a final desired amount of
energy in the battery when the tour ends were not included. Finally, the availability of the chargers was
not taken into account in the calculation of the routes, but they considered waiting time at Charging
Station (CS) according to randomly parameterized models. The aforementioned parameters may lead
to very different solutions spaces and computational results, so the two problems and methods cannot
be directly compared.

Overall, the main contribution of this article lies in the elaboration of a method that addresses
the DACO-EV problem, including all the necessary parameters that allow the solution of the problem
to be personalized to the specific needs of travelers, and enabling the use of the method in realistic
settings. The method includes:

• Consumption calculation mechanisms of the EV according to the features of the road network
and the EV market model (battery capacity, weight, charging rate, charging plug, WLTP ratings).

• The Starting State of Charge (SSoC) and the desired Final Stage of Charge (FSoC) of the EV used
by the traveler.

• A real charging stations network and the availability of those charging stations based on past
usage data.

• Two charging scenarios in order to further model realistic travel behavior.
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3. Method Description

3.1. Parameters of the DACO-EV

The DACO-EV method incorporates the use of an EV; therefore, it requires modeling of the
constraints regarding the energy equilibrium that takes place in the energy storage mechanism of
the car while visiting several locations. Because EVs are still in an early phase in their adoption by
the public, the available charging facilities are not always optimally distributed, and the minimum
distance between available charging points can reach up to several kilometers depending on the type
of road network [41]; this situation renders a demanding reality for EV drivers that need to utilize the
public charging network to cover their charging needs. The extra parameters that affect this energy
equilibrium can be grouped into three major categories, such as vehicle design, driver behavior, and the
environment [42]. In our attempt to provide a realistic and practical method for the elaboration of
meaningful solutions to the EV drivers, we have included several of those parameters, while we
ignored others of lesser importance.

The problem and the elaborated method are based on three sets of parameters. The first set
is defined by the traveler and refers to his or her schedule and overall preferences concerning the
activities. The second group of parameters is about the constraints related to electromobility when the
traveler utilizes an EV. The third set consists of the parameters that do not depend on the user and
refer to the existing network, the timeframe of operation of facilities and services. Table 1 refers to the
parameters that are set by the traveler.

Table 1. The first group of parameters.

Parameter Description

Starting time of the tour Earliest time in the day when the first trip to the first activity can begin.
Solutions that start earlier than this time are considered infeasible.

Ending time of the tour Latest time in the day when the traveler can arrive at the ending
(final) activity.

The starting position of the traveler The starting location of the tour. Commonly it is also the ending position of
the tour and is associated with the traveler’s home.

The ending position of the traveler The ending location of the tour.

Activities and their type
This parameter refers to the types of activities that need to be conducted.

The type can be chosen from a predefined list (e.g., bank, restaurant,
hairdresser, bakery).

Locations of the activities Defines which are the locations that the traveler would like to conduct
each activity.

Processing time at each activity This parameter is used to specify how much time is needed for the traveler
to conduct each activity.

Priorities of the activities
The traveler specifies the level of flexibility for each activity. It can be
spatially and temporally fixed, only spatially flexible, only temporally

flexible, or flexible.

Desired earliest start time for each activity The traveler must specify when the preferred time for each activity to
start is.

Desired latest end time for each activity The traveler must specify when the preferred time for each activity to end is.

Used EV model

By having specified the manufacturer and the model of EV that is used by
the traveler, we can utilize the information about several aspects of the
vehicle. The range and the possible charging locations of the EV are the
most important of those aspects (if the mode of transport used is EV).

Starting State of Charge (SSoC) The energy level of the battery at the start of the tour (if the mode of
transport used is EV).

Final State of Charge (FSoC) The desired energy level of the battery at the end of the tour (if the mode of
transport used is EV).
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Particular emphasis should be put on the second group of parameters about the EV and its use.
Since the traveler specifies the used EV model, the parameters of this second group can be considered
as sub-parameters of the first group (Table 2).

Table 2. The second group of parameters concerning the characteristics of the Electric Vehicle (EV).

Parameter Description

The capacity of the battery of the EV Also referred to as usable battery capacity, which is the
maximum amount of energy that can be stored in the vehicle.

Plug type of the EV The type of plug that the vehicle uses for charging.

The consumption rate of the EV
The consumption rate of energy is a function of the vehicle
speed and the use of auxiliaries. This rate can be extracted

from an EV database.

Charging rate of the EV The time needed to reach the desired energy levels while
charging. This rate can also be extracted from an EV database.

Energy recuperation The EV can recharge its battery while braking, especially when
the path to be followed is a downhill road.

Vehicle weight
The weight of the vehicle plays a vital role in how much energy
is consumed, especially in cases where the tour includes gains

or losses of elevation.

Finally, there is the third group of parameters that are needed for the problem to be fully described.
Those parameters are not defined for each passenger, but instead, they are specified for the network,
the modes of transport, and the types of activities available. They can also be described as the static
parameters of the DACO-EV problem (Table 3).

Table 3. The third group of parameters that are independent of the user’s input.

Parameter Description

Network topology
The transportation network that is connecting the available
locations for each type of activity. The elevation of the road

segments is considered part of this parameter.

Alternative locations and Time-windows
Locations of facilities of activities, time-windows of operation
of the facilities, and types of activities that can be conducted at

each location.

Charging stations network Locations of charging points and types of chargers available at
each point.

Availability of charging points Availability of charging stations as calculated by past
usage data.

3.2. Degrees of Freedom of the Problem and Decision Variables of the Solution

At this point, we should make a reference to the decision variables of the DACO-EV that fully
define a solution for the travelers. Those decision variables are essential for the modeling as they will
form the chromosomes of the solution encoding of the Genetic Algorithm. In Table 4, the decision
variables and their descriptions are provided.

All of the aforementioned variables (ones included in Table 4) are the independent variables of
the problem. By deciding on the order, the locations, the time windows of attendance, the modes of
transport, and the charging time, we decide on a specific way that the first tour changes and gets
optimized. Of course, that information is not enough in order to fully articulate a meaningful solution
for a traveler in a human-readable format. From the independent variables, we can extract a series of
information, such as exact paths to be followed in between activities, battery power after the visits at
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each of the locations, starting and ending time of the whole tour, travel time of the tour, starting and
final state of charge of the EV.

Table 4. Decision variables of DACO-EV.

Decision Variables Description

Order of the activities in the chain The order of the activities in the tour in relation to their
initial order.

Locations of activities
The traveler can conduct the same activity at multiple locations.

This variable refers to one of the available locations that have been
chosen for a specific solution.

Time windows of attendance to
each activity

This variable is used to specify the arrival and departure of the
traveler to the activity.

Charging time, charging station and
subtour information

This variable is a set of quantities that contains all the information
that regards the subtour for charging if one is included.

3.3. Charging Scenarios

To fully cover the description of the DACO-EV problem, we also need to deal with the possible
types of charging. As a first charging scenario, we consider the case where the EV users want to charge
their vehicle at a CS, and they want to conduct one of their activities at another location. This is called
the en passant charging scenario. Usually, it can occur when a charger and a location for an activity are
close to each other, and the user can just walk a few hundred meters to the facility and back to the
charging station after completing the activity. As a second charging scenario, the classic scenario of
charging is included, where the traveler again deviates from the first tour and embarks on a subtour to
a CS, but in this case, he or she just waits in the car until the charging is finished.

First, we provide a graphical example of the classic charging scenario of the DACO-EV (Figure 1).
Given a set of five initial activities, the activity chain is optimized. For simplicity reasons, we only
provide an optimized tour where nothing changes in the spatial context except for the inclusion of
a charging session. The charging station is indicated by the blue circle, which is a new activity in
the chain.
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Figure 1. The classic charging scenario of the DACO-EV problem.

In Figure 2, present the en passant charging scenario of the DACO-EV. The charging detour happens
between Activities 4 and 5, and the transfers from the CS to the location of Activity 5 are represented
by the dotted lines. In this case, the EV remains at the CS, while the user processes Activity 5 using
another mode of transportation (e.g., walking).
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3.4. Optimization Method

The method is based on a Genetic Algorithm (GA) that iteratively solves the Travelling Salesman
Problem with Time-Windows (TSP-TW) for different combinations of the characteristics of the possible
solutions and evaluates each of them according to several criteria. The efficiency of the proposed
method has been previously tested and proved for the primary instance of the problem in the articles
by Esztergár-Kiss et al. [22,23]. After running the algorithm for several iterations, a more optimal
solution for the initial schedule and the preferences of the traveler is derived. In the algorithm, we
make sure that after the traveler executes the tour suggested, and given the EV usage constraints,
the EV has the desired FSoC when it reaches home.

By defining the properties (i.e., decision variables) of an individual (i.e., candidate solution) of the
problem, we can form the populations of solutions in the solution space. Then the genetic operators of
selection, mutation, and crossover are utilized to search the available space of solutions and derive the
ones that are more suitable for each case of traveler. Except for the genetic operators that have been
used, and according to GA literature [43], the method is characterized by a set of parameters, such as:

• Population size—Number of solutions initially created at the solution space initialization phase
and kept by the selection operator at the end of each iteration of the algorithm. The population
size that was selected for the solution of the DACO-EV is 30 individuals.

• Base mutation probability—Defines how much we want to search for solutions with totally new
attributes compared to an initial population of solutions. The mutation probability that was
selected is 20%.

• Crossover probability—Defines how many new solutions (i.e., individuals) are produced at each
iteration of the algorithm based on previous populations. The crossover probability that was
selected for the efficient solution of the problem is 10%.

• Generations—Defines the iterations of the GA algorithm that run until we get a final solution.
No other termination criterion is used for the algorithm, which means the number of generations,
will define the final optimality gap of the solution calculated by the run of the algorithm.
The number of generations until a more optimal solution is calculated for the traveler is 30.
The number of generations for this algorithm can vary according to if pre-optimization techniques
are applied to the solution approach or not.

3.4.1. The Genetic Algorithm

Although the GA framework contains more or less standard data structures, functions,
and operations utilized for each application, it was considered appropriate that a more formal
specification of the algorithm is presented. This algorithm describes how temporal and spatial
flexibility were handled and includes several technical details in order to enable its reproduction.
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Algorithm 1 A genetic algorithm for addressing the DACO-EV problem

Input: Parameters for the execution of the GA, Parameters of the problem
Output: The solution of the problem: an optimal schedule for the traveler
Steps:

1: Read the data and the parameters, create appropriate data structures;
2: Initialize a population of feasible solutions (i.e., individuals) for the DACO-EV problem;
3: For generation i in the range [0, generations):

3.1: Apply the crossover operator between the individuals of generation i;
3.2: Apply the mutation operator to the individuals of generation i;

3.2.1: Stochastically swap the order of two activities in any individual;
3.2.2: If there is a spatially flexible activity, then stochastically change its location to a new suitable location;
3.2.3: If an EV is used and if the SoC at the final location is not at the desired level, or a negative number at

any point in the tour, add a detour at a random CS. If the detour exists, stochastically change the
location of the CS in the tour;

3.3: Calculate the distances matrix (and the kilometric distances, elevation gained, and elevation lost
matrices if needed) for the locations involved in the individuals of generation i; Normalize the
attributes (calculate time-windows, battery power at each activity/location) of the individuals
according to the order of the activities and the detour;

3.4: Evaluate all individuals according to the fitness function;
3.4.1: Label as infeasible all individuals who do not satisfy the temporal constraints;
3.4.2: Label as infeasible all individuals who do not satisfy the priorities’ constraints;
3.4.3: Label as infeasible all individuals who do not satisfy the energy equilibrium. Apply Scaled Ranking of

infeasible solutions;
3.4.4: If an EV is used, label infeasible all individuals who include CS which are unlikely to be available

(As described in Section 4.3. Availability of Charging Stations) ;
3.5: Select the individuals with the best fitness to form a population and reproduce in the next generation;

4: Select the individual with the best fitness from the population of the final generation;
5: End of the algorithm.

3.4.2. Fitness Function and Optimization Criteria

For the efficient solution of the DACO-EV, several criteria have been considered. While most
of them regard travel time, whose reduction has been our primary aim, a few more criteria were
considered as important to include. The method is capable of handling five criteria. They were
weighted by the corresponding parameters a, b, c, d, e to create an efficient multi-criteria fitness function
for the problem.

U(X) = (a ∗ TT) + (b ∗ TTST) + (c ∗AT) + (d ∗WT) + (e ∗CT) (1)

Fitness function U has been applied to every candidate solution X that has been calculated by
the genetic algorithm. This evaluation, as indicated in the algorithm at Step 3.4, was applied to each
potential solution, when not infeasible, and has been utilized to label and prioritize according to
the potential needs of travelers. For the first criterion, TT, its actual value is given in regard to the
time that the user has spent traveling within his or her tour. The second criterion, the Travel Time
in the Subtour (TTST), regards travel time only in the charging subtour. This specific type of travel
time has been calculated as an extra variable, in order to be able to be separately included in cases,
where the effect of the subtour needs to be minimized in the overall solutions. Arrival Time (AT) at
the final destination is also another criterion considered that can be essential for some users, as well
as, the Walking Time(WT), when it occurs in the sub-tour for charging, and the en-passant scenario.
Finally, Charging Time (CT) has been additionally considered as an extra criterion, and has been added
to the function as a possibility for optimization. The reason for including all five criteria was to provide
a robust optimization approach that is applicable to a wide set of real-world applications. While usage
of the method is independent of spatial context, the potential needs of travelers vary across different
cities, countries, and the available charging stations network.
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For the values of the parameters a, b, c, d, e, different solutions are derived. The proper choice of
the values is of great importance to the type of solutions that will be calculated. A sensitivity analysis
of the effect of the parameters on the solutions produced is one of the future steps to take in order to
assure suitable performance for each real-world case (i.e., region of application) and understand the
effect of each criterion on the activity chain.

4. Implementation of the Method

For the efficient functioning of a modern application that will support the travelers in their
daily commutes, the implementation of the method has been realized. Because of the complexity of
the problem addressed and the vast amount of calculations needed, a series of heuristic rules were
applied to the method in order to direct the search of the solution space and yield meaningful results
within realistic computation times. This addition to the method is called the pre-optimization phase,
which creates a smaller solution space for the algorithm to search. However, in this paper, we focus on
the charging related functions of the method.

For the implementation of the method, Python programming language was utilized. Data from
OpenStreetMap and Geofabrik [44] was used for establishing the road network, OpenTripPlanner (OTP)
engine [45], was the primary tool for the calculation of road distances and routes, and calculations
for the availability of CS were conducted based on data from e-MOBI [46] about the charger network.
The chargers based on which the availability was calculated were 89. Elevation data are taken from
NASA’s Shuttle Radar Topography Mission (SRTM). Regarding the EV model used, the traveler is
allowed to enter the vehicle that he or she is going to use, and we were able to extract the properties
(battery capacity, available plug types, consumption according to WLTP, vehicle weight) of each
vehicle from an electric vehicle database [47]. A simplification was made regarding the charging rate,
which was considered according to the available plug types at both the charging station and the EV.
A matchmaking mechanism was developed to match EVs with fast charging plugs if they are likely to
be available, or with standard charging plugs, otherwise. Regarding the priorities of the travelers, we
included them in four levels which are described in Table 5:

Table 5. Priorities of the travelers considered.

Priority Label Priority Label Description Spatial Flexibility Temporal Flexibility

1 Totally fixed × ×

2 Spatially flexible
√

×

3 Temporally flexible ×
√

4 Totally flexible
√ √

When an activity is assigned with Priority Label 1, it means that the traveler considers this activity
as both spatially and temporally fixed. Priority Label 2 is assigned by the travelers to activities that are
spatially flexible, which means they can be conducted at several locations, but temporally not, meaning
that the algorithm is bound to calculate the visit within the desired time windows. With Priority
Label 3, the traveler indicates that the activity must be conducted at the provided location, but it can
happen in any time-window within the day. Oppositely to Priority Label 1, Priority Label 4, is the
case where the traveler indicates that the activity is totally flexible, which means that it can be both
conducted in another location (providing the same type of service) and at any time (within the overall
timeframe of the user and the operating hours of venues and shops).

Before actually providing information about the implementation of the GA and its mechanisms
that allow the effective solution of the DACO-EV, an overview of the work is presented in Figure 3
that depicts the method, its parameters, external tools, and data used. On the one hand, the traveler
provides an initial activity chain and information about his or her preferences by setting the first,
and thus the second, group of parameters. On the other hand, the third group of parameters provide
external information, such as the network topology (road network and elevation), the electric vehicle
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database for consumption calculations, and the alternative activities’ location database for calculating
the optimized activity chain by examining the full spectrum of the spatial possibilities for the activity
chain. Finally, based on the charging station usage data and other related information to the CS (i.e.,
charging stations database), the availability of charging stations was calculated using data mining
techniques. Before using the heuristic optimization model, a pre-optimization is performed, and the
routing engine is used to calculate optimal routes between activity locations. As a result, the genetic
algorithm calculates optimized activity chains for users.
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4.1. Explanation of the Pre-Optimization Phase

The pre-optimization of each solution is a useful tool that can help make the GA approach more
efficient. In the context of this work, several techniques were implemented in order to make the GA
compute better results faster. The pre-optimization phase aims at reducing the initial solution space of
the algorithm, which is created every time that an instance of the problem is created according to the
static and dynamic parameters of the problem, from a generalized vast solution space to, what one can
call, a personalized solution space.

The personalized network is achieved by deciding on some aspects of the solution before triggering
the actual search for the optimal solution, thus creating a smaller solution space. It considers the
activities with spatially fixed priorities to serve as gravity points for the optimization procedure.
More specifically, after the traveler provides the input of the preferences, we have an initial set of
choices that the traveler initially intends to follow. This cutting of the solution space happens around
the locations of activities that the travelers consider as totally or spatially fixed. This creates a subset of
alternative locations of activities and charging stations. Then this subset of the initial space is searched
with the GA in the main optimization phase.

For example, if an activity is fixed (Priority Label 1) in the search for an optimal solution, all other
temporal and spatial choices concerning this activity can be ignored. In the same way, if the activity is
temporally fixed, we include all alternative facilities (locations), but we do not permit the algorithm to
search outside the time windows specified by the traveler. If the activity is spatially fixed, then we
cut out the parts of the solution space that has to do with other location of facilities for the activity,
and we only allow the algorithm to search for different time windows. If we have the fourth case of
total flexibility, then we have to search both for alternative facilities and time windows of attendance,
and we cannot pre-optimize.
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4.2. Calculation of the Charging Time and Deciding the Charging Scenario

Charging time is a deterministic variable and a function of the rest of the attributes. The amount
of time spent at the CS is calculated with a forward lookup of the energy requirements of the EV
to cover the full tour. This calculation occurs by comparing the SSoC, the FSoC, and the remaining
energy in the battery of the vehicle at every location. The candidate solutions (i.e., individuals) to the
problem fully describe the locations to visit and the order of attendance to the activities. From those
two attributes, we can extract the exact routes between locations of activities, as well as the kilometric
distance, elevation gained and lost, and charging time at the CS.

Several aspects of the detour are modeled as independent variables and can stochastically change.
Thus, we included a heuristic rule in the solution process that further directs our search. This rule
defines that if the CS is within a direct distance K from the location of the activity after the trip to
the CS, then the charging scenario is set to en passant charging scenario. When the CS is at a direct
distance greater than K, then the charging scenario is set to a classic charging scenario. By setting K to
the appropriate value, the algorithm can lead to better solutions by avoiding assigning the en passant
scenario to cases where the location of the CS is too far away from the next location of the activity.
The values of K can vary according to what modes are included and are available in the detour when
the EV is left for charging. In our implementation, we only added walking mode for the en passant
scenario, and we have noticed that the implementation yields satisfying results for the values of 800 to
1000 m for urban environments.

In the cases where the solution gets mutated to include the detour right at the end of the tour
before the traveler goes to the desired final destination, the charging scenario is always set to the classic
charging scenario. In Figure 4, a combination is given, where the heuristic rule is applied, and charging
station A is utilized with the en passant scenario, while charging station B is utilized with the classic
charging scenario. For the optimization of this initial activity chain (i.e., green markers), charging
stations that fall within a distance K from the location of Activity 5, can be utilized under the en passant
scenario (dotted lines) since the walking distance is considered walkable. Otherwise, the algorithm
sets the charging method to the classic charging scenario.
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4.3. Availability of Charging Stations

Regarding the availability of charging stations, a method has been elaborated in order to incorporate
this parameter of the problem. We used the data provided by e-Mobi [46], which is the organization
responsible for e-mobility investments (especially for deploying charging stations) in Hungary, to
derive a suitable metrics that could be included in the optimization of the DACO-EV problem for
travelers in Budapest. The dataset provided information about the names, locations, and plug types of
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chargers in Budapest. Furthermore, we had a list of charging sessions for those chargers that happened
between the 23rd of February 2018 and the 12th of February 2019. For this period, we applied data
mining techniques to derive average statistical properties that lead to a percentage of the occupation,
in similar terms, probability for the charger to be occupied for each hour of a day. If the charger was
occupied for 20 min on average in a specific hour in the examined period, then it was assumed that
this charger was occupied for 33.33% on average.

These statistics were included in the method for the optimization of the DACO-EV. The main
component of the method that was utilized for including the availability of CS was the evaluation
operator of the GA. Every time we needed to evaluate a solution that emerged from the mutation
and crossover operators of the GA, we applied the evaluation operator and checked whether the CS
included in the solution is likely to be occupied. We aimed to prioritize solutions in the population
that include chargers that are less likely to be occupied. The prioritization occurs only by labeling the
solutions, and the corresponding charger as feasible or infeasible. Other than that, the percentage to be
occupied did not have any impact on the fitness function and did not change its value. In order to
avoid empirical bias in how the solutions get labeled, we implemented a labeling mechanism based
on stochasticity. The method produced a random percentage in the positive continuous set of [0,100],
and if that random percentage was lower than the calculated percentage of the occupation, then the
solution was marked infeasible. In that regard, CS, whose rate of occupation was high were more
likely to be labeled as infeasible and were not included in the population of solutions.

In Figure 5, we provide example graphs for the availability of Charging Stations (CS) as calculated
by the method. The percentage of occupation for four random CS in Budapest can be seen for 24 h.
The percentage of hourly occupation can significantly vary between the chargers. In the case of CS 1
and CS 3, nearly 0% occupancy rate can be derived, while in the case of CS 2 and CS 4, the occupancy
rate reaches almost 50% in the morning hours.
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As a future step of the data mining method for the calculation of the availability of charging
stations, we would include a calculation of the rate of occupation also according to the day of the week.
A more enormous dataset than the one available would be more suitable for this kind of extension.
For example, this extension would help the method performing better on special days like weekends,
where the availability may be different from weekdays.
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4.4. Energy Consumption Model and the Incorporation of Elevation

The incorporation of elevation of the road segments was a significant part of our work, and it was
based on several articles [48–51], with the work of Fišer [52] being a vital starting point to our work.
In his thesis, he proposed an Approximated Consumption Function:

g(e, m) =

{
κ·δ(e) + λ·∆eleve, i f ∆eleve ≥ 0
κ·δ(e) + a·∆eleve, otherwise

(2)

where g is the consumption function, δ is a function that assigns a distance to an edge, e and m are the
edge traversed and the EV model correspondingly, ∆eleve is the difference in elevation from the start
of the edge u to end of it, v. Furthermore, κ, λ, and a are tuning constraints through which we can
control the values of function g in order to yield realistic results. However, to cover the needs of our
more practical approach, we moved on to introduce the Practical Consumption Function, which can be
described by the following equation:

g(e, m) =

{
ConsWLTPe,m + coe f fuphill ∗ (m ∗ g ∗∆eleve), i f ∆eleve ≥ 0
ConsWLTPe,m − coe f fdownhill ∗ (m ∗ g ∗∆eleve), otherwise

(3)

where ConsWLTP is the consumption according to EV model and the WLTP standard, and the Electric
Vehicle database [47]. The reason for using coeffuphill and coeffdownhill is to emulate the performance of
the motor of the vehicle when going uphill and the performance of the recuperation system going
downwards. The energy recuperated while braking on a flat road is ignored. In comparison to
other approximation functions used for considering the consumption for EV routing, our Practical
Consumption Function avoids using further tuning parameters and includes the actual interchange
between the potential and kinetic energy of the vehicle. Nonetheless, the results derived from our
Practical Consumption Function are realistic and very close to findings reported in the literature of EV
routing. The incorporation of more advanced formulas like ones presented in [53,54] our method can
be considered as the next step in our research.

In order to provide the necessary background for the use of the Practical Consumption Function,
the data for the distance and elevation are derived from the OpenTripPlanner API, which bases
its calculations on OpenStreetMap data for the road network and SRTM data for the elevation.
The aim of this model is not to introduce an EV consumption calculation model as compared to
recent approaches [53,54], but to provide a mechanism for our method calculating meaningful
results considering limited computation times. The model itself is based on WLTP standard for
the consumption of EV models that already includes several parameters and laboratory tests and is
only extended to include the effect of elevation, for the road segments traversed in the tour of the
traveler. The consideration of more complex approaches are not necessary and not within the scope of
this research.

5. Results

5.1. Use Cases

The experiments were run on ten instances of problems, where the solution space can significantly
differ according to different preferences of the user. While one traveler may need to attend a set of fixed
activities, another may be flexible concerning the locations of the activities or the temporal schedule
of the activities. This means that the first traveler’s initial schedule and preferences would not allow
the method to search for alternatives since there is no flexibility concerning the schedule, while the
second traveler’s preferences would enable the method to search through a vast solution space for
other options.

For all of the cases used for our tests, the activity chains contained at minimum one out-of-the-house
activity and at maximum four out-of-the-house activities. For the first six instances of problems, cases 1
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to 6, we considered synthetic cases of the problem, where the locations, types of activities, and flexibility
were based on real activity chains of travelers, but also randomized in some of their attributes to a
certain degree. For the rest of the examined cases, cases 7 to 10, we kept the set of locations and types
of activities the same as in case 6, and then we included potential combinations of flexibility flags.
We consider cases 1 to 6 the balanced cases, which could be input from real-world travelers, and cases 7
to 10, the extreme cases where the computational limits of the algorithm are tested.

In our use cases for the DACO-EV, the same vehicle was considered, and the SSoC was set to a
medium-range percentage while the FSoC was required to be at a higher percentage than the SSoC,
which means that a detour for charging is needed in all cases of problems displayed. For the results
presented, and regarding case-specific characteristics, and the results presented below, for the provided
instance of tests, for cases 1, 2, and 5 to 10 we have four out-of-the-house activities, whereas for cases 3
and 4, three out-of-the-house activities were conducted. Finally, let us state that the results provided
here are calculated based on one of the criteria that are available in the method described and in
Section 3.4.2, that of travel time. Thus, the parameters in the fitness function are all set to 0 except for
parameter a that is set equal to 1.

5.2. DACO-EV Results

The results for the evaluation of the performance of the method in addressing the DACO-EV
problems are presented. The performance of the algorithm is compared in regard to the travel
time in the initial activity chain of the travelers and the resulting activity chain in both cases when
precomputation is applied and when not, are given. The columns of the tables are the following:

• Initial time: Average travel time of the initial tour of the traveler (min)
• Opt. time (no pre): Average travel time for an optimized tour (without precomputation applied to

the solution process) (min)
• Subtour (no pre): Average travel time in the subtour for a DACO-EV tour (without precomputation

applied to the solution process) (min)
• Comp. time (no pre): Average computation time for the optimization of a tour (without

precomputation applied to the solution process) (s)
• Opt. time (pre): Average travel time for an optimized tour (with precomputation applied to the

solution process) (min)
• Subtour (pre): Average travel time in the subtour for a DACO-EV tour (with precomputation

applied to the solution process) (min)
• Comp. time (pre): Average computation time for the optimization of a tour (with precomputation

applied to the solution process) (min)

In Table 6, the results addressing the several cases of experiments are presented.

Table 6. Comparisons for the runs addressing the DACO-EV—effect of precomputation on solutions
and computation time.

Initial
Time
(Min)

Opt. Time
(No Pre)

(Min)

Subtour
(No Pre)

(Min)

Comp.
Time

(No Pre) (s)

Opt. Time
(Pre)

(Min)

Subtour
(Pre)

(Min)

Comp.
Time (Pre)

(s)

Case 1 32.61 57.79 30.19 59.25 38.11 23.57 14.28
Case 2 79.60 85.62 33.5 72.56 75.79 21.37 24.41
Case 3 70.75 66.73 27.23 85.53 55.37 13.83 17.59
Case 4 67.28 65.73 28.81 25.49 59.27 22.94 13.94
Case 5 81.28 85.33 39.82 110.43 75.64 33.95 19.89
Case 6 79.98 74.82 28.71 105.05 62.35 10.36 26.95
Case 7 79.98 81.15 26.38 35.48 80.72 24.34 20.50
Case 8 79.98 87.32 35.04 67.42 31.57 15.6 41.85
Case 9 79.98 81.67 30.86 37.65 76.03 25.19 18.81

Case 10 79.98 77.77 31.52 303.78 28.43 9.74 51.68
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It can be stated that the developed approach provides appropriate results that can serve EV
drivers in their daily commutes. On the one hand, the overall travel time gets optimized(travel time for
attending activities plus travel time in the introduced subtour), while the computation times remain at
acceptable levels for a driver assistance system, that can be run by the driver for a few seconds in his or
her pre-trip planning phase.

The optimized overall travel time is not reduced in all cases. This is because for the tests that we
have run, in which charging is required because of the SSoC and FSoC levels, an extra charging activity
or charging session was added. Although activity chains are optimized to reduce travel time, in some
cases (e.g., cases 1 and 2), the travel time is raised. When precomputation is applied, the algorithm
still finds only a solution with more travel time than the initial one (e.g., case 1), but it can calculate
solutions that have less travel time than the initial one (e.g., case 2). It can be noticed that the travel
time for the subtour, which, in most cases, is a big part of the overall travel time. A positive observation
is that the computation time in balanced cases was 19.51 seconds(s) on average, which is a reasonable
solution time if the method can be possibly reproduced to serve real travelers in their daily lives.

In Figures 6 and 7, and Tables 7 and 8, we present an instance of case 3 in more detail to show
how an activity chain of the traveler is initially set and how it can change after applying our algorithm.
In Figure 6, we can see the initial activity chain, and in Figure 7, we can see how the algorithm produces
an optimal activity chain. The travel time of the tour depicted in Figure 6 is 70.75 minutes (min), while
the tour depicted in Figure 7 takes 55.37 min. The figures present the spatial aspects of the initial and
optimized activity chain, and the tables present the temporal attributes of the two activity chains.
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Table 7. Part of the input of the traveler regarding the spatial and temporal aspect of activities.

Activity Order Type of
Activity

Processing
Time Priority Label Demand Time

Start
Demand Time

Close

Start Home 0 1 480 480
1 University 480 1 540 1020
2 Burger Place 30 4 1060 1090
3 Coffee Shop 20 2 1170 1190

End Home 0 3 1440 1440

Table 8. Attributes of the solution regarding the visits to the activities.

Activity Order Type of Activity Processing
Time

Priority
Label

Time of
Attendance Start

Time of
Attendance Close

Start Home 0 1 480 480
1 University 480 1 540 1020
2 Burger Place 30 4 1024.37 1054.37

CS Charging Station 97.2 − 1064.57 1161.77
3 Coffee Shop 20 2 1170 1190

End Home 0 1 1201.3 1201.3

Regarding the initial activity chain of the traveler, it can be noticed that it includes three
out-of-the-house activities, each with different levels of flexibility. Except for the first visit, that is
conducted at the university, the other two activities are spatially flexible. This fact, in combination
with the significant difference between the SSoC and the FSoC that forces the algorithm to add a visit
to a CS, changes the spatial attributes of the initial activity chain to a great extent. In other words,
the method proposes different locations to be visited by the traveler. In this specific example, the order
of the visits to the activities does not change, but a charging session is added between the visits to the
locations for the second and the third activities. Finally, we can notice that while the optimized activity
chain includes an extra activity that corresponds to the detour for charging, the selection of alternative
locations and suitable CS enables the reduction of the overall travel time.

5.3. Research Implications for EV Usage and Energy Systems

Apart from the obvious benefits that the method presents on an individual level for travelers,
such as decreasing the travel time in their daily activity chains and dealing with range anxiety, there
are two main takeaways regarding the use of EVs. Firstly, on an individual level, the method can
be an effective supporting tool that helps minimize consumption, distributing drivers to the suitable
CS according to availability and allowing them to find possible charging opportunities according to
two realistic charging scenarios. The travelers that do not own chargers at their homes can greatly
benefit from this method since it allows the calculation of tours and routes, that guarantee a FSoC for
the drivers when reaching their home. On a system-level, the use of such a method, although it is
aimed for personal usage, can provide benefits for cities. The better distribution of drivers to charging
stations is a major possible benefit, as well as, the more efficient tours that are to be followed will
minimize the consumed energy and the load on the charging stations network as a whole. As shown
in work by Cuchý et al. [3], and their simulation efforts based on multi-destination planning tools like
the one provided in this article, those methods can allow the better alignment of supply and demand
and can help to make the overall transition to electromobility smoother.

6. Conclusions

A method has been elaborated for the solution DACO-EV problem, which many EV drivers face
in their daily lives. Given the initial schedule of activities of the traveler, their locations, and priorities
concerning each activity, our method calculates an optimal tour that guides the travelers in a better way.
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At the same time, travelers do not need to face range anxiety since the solution guarantees that the EV
battery level remains above the desired energy level. In the modeling, two charging scenarios were
included, where the traveler can charge the EV either while staying in the EV at the CS or leaving it for
charging at a CS while conducting another activity. This article describes the following contributions
of the method:

• Consumption calculation mechanisms based on previous literature and real-world EV
usage attributes.

• Calculation of an optimal tour based on the Starting State of Charge (SSoC) and the desired Final
Stage of Charge (FSoC) of the EV used.

• A real charging stations network for Budapest, Hungary, and the availability of those charging
stations based on past usage data.

• Two real-world charging scenarios for the detour of travelers, when they need to charge
their vehicles.

Our research efforts aimed to develop an optimization model that is capable of modeling the
real-world problem of optimization of daily activity chains for EV users and can serve as a driver
assistance solution that reduces the range anxiety of EV users. The model itself can be used for
studying the utilization of CS networks in urban environments and the study of the expected behavior
of EV drivers. As discussed earlier in this article, although those methods address the problem on an
individual level, they can be beneficial for the system-level, the CS network infrastructure, and the
road network.

As a few next steps in this research, we propose further investigation of the incorporation of the
availability of charging stations. It should be studied how solution times and the quality of solutions
delivered by the algorithm change when the availability is considered according to different data
mining methods. A worth mentioning research direction is the inclusion of the effect of traffic on the
tours that happen on rush-hours and may get delayed travel times in regard to traffic. The utilization
of this algorithm as part of a simulation framework based on activity-based modeling is a long-term
research goal.
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