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Abstract: Microgrids constitute an attractive solution for the electrification of areas where grid
extension is not technically feasible or prohibitively expensive. In recent years, national governments
have implemented various support policies to encourage the deployment of renewable energy
systems (RES) and microgrid hybrid-powered systems. A fundamental aspect during the design
and disposition of these types of units is the determination of the optimal configuration and sizing
of each power generation component. Furthermore, the optimal design of microgrids is strongly
dependent on technological parameters, local meteorological conditions, among other factors. In this
context, this paper investigates the effects of different policy measures on the optimal configuration
of microgrids functioning in islanded mode. A computable model is employed to carry out a set
of sensitivity analyses and assess the impact of capital and fuel subsidies on the levelized cost of
electricity of various systems. The model employed for this study minimizes the total life cycle costs
(TLCC) over the 20-year lifetime of the microgrid project. Besides, as meteorological conditions are
crucial parameters to consider while designing microgrids, a sensitivity analysis is conducted to
examine the effect of wind speed and solar irradiation on the capacities of each distributed generation
units. Our results indicate that capital subsidies, as well as fuel price variations, have a substantial
effect on the final design of microgrid systems for rural electrification.

Keywords: microgrids; subsidies; optimization; financial incentives; policy instruments

1. Introduction

In the next decade, it is expected that the developing economies mainly located in sub-Saharan
Africa, Central and Southern Asia, and South America will face significant challenges in achieving the
ambitious goals of providing access to clean energy to all people and delivering universal access to
electricity [1,2]. Despite the remarkable progress on the rural and urban electrification rates around the
world [3,4], and on the increasing number of innovative technologies suitable for off-grid applications,
there are various factors that have hampered the success of national and local electrification projects,
namely infrastructure, technical, economic, market, policy, and regulatory barriers [5–7].

In recent years, these issues have been at the forefront of the debate of clean energy, inequality,
poverty, and climate change and have attracted the attention of intergovernmental organizations,
policymakers, and other key stakeholders [8]. This has led to the adoption of various global action plans
and, in some cases, legally binding agreements that provide blueprints to address the future challenges
for sustainable development [9,10]. A clear example of these types of action plans and perhaps one of
the most important in the scope of this article is Goal #7 of the United Nations Sustainable Development
Goals (SDG7). SDG7 promotes investment in energy infrastructure and clean energy technologies as
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well as the expansion of infrastructure for supplying modern and sustainable energy services. In this
context, national and local governments have also taken action by launching numerous programs
aimed at increasing the electrification rates of small rural and isolated communities [11].

Over the past few years, the technological development of renewable energy sources (RES) and
declining costs of batteries have enhanced the popularity of stand-alone off-grid power systems,
in particular, distributed generation and microgrids. Microgrids combine multiple energy technologies
within the scope of one system (usually small- or medium-sized systems), including RESs, conventional
generators, and energy storage technologies. These types of systems have a strong potential for
electrification projects since they are cost-competitive (when compared to the option power grid
extension), they can reduce greenhouse gas emissions, and use locally available resources. Additionally,
the hybridization of renewable energy sources with small conventional units can provide high reliability
by enhancing the resilience of the system to severe weather conditions and the technical benefit of being
flexible to adapt to the requirements of the local communities [12]. Therefore, several studies have
focused on estimating the future economics of microgrids including their levelized cost of electricity
(LCOE). IRENA [13] projects that by the year 2035, the LCOE will drop to $0.2/kWh for projects with
approximately 90% of renewable fraction, as shown in Figure 1.
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Yet, despite the significant benefits that microgrids offer, their widespread deployment in rural
electrification applications has been relatively slow due to their complicated financial and technical
structure, including their high upfront costs, significant financial risks, and intricate business models [14].
Thus, in developing regions, it is common to find technical and financial support mechanisms offered
by national and local governments or public-private partnerships. The available mechanisms vary
significantly depending on the financial structure of the project, the region, and the technological
priorities of the microgrid system; however, it is clear that in the last couple of years, support
mechanisms such as these have had an important impact on the diffusion rates of microgrid systems
and in their social acceptance. In addition, national governments have also implemented numerous
policy interventions for their microgrid electrification projects, including subsidies, tax incentives,
financial support, and concessions [15]. A current example of the large-scale application of these
policy interventions and financial support mechanisms is the ‘Nigeria Electrification Project’ [16].
The aim of the project, which is funded by the World Bank, is to deploy hybrid mini- and microgrids to
approximately one million Nigerian households and micro, small, and medium enterprises (MSMEs).
To achieve this goal, the project consists of four components and the combination of two different
support mechanisms: subsidies and performance-based grants. One of the subcomponents is done
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through a tendering procedure of grant subsidies for microgrids in preselected locations. Moreover,
the subsidy is awarded based on several eligibility criteria and depending on the number of connections.
In the United Republic of Tanzania, the local Rural Electrification Agency provided financial support
to the use of microgrids by using matching grants, where the agency matched the community or
private financial contribution to the project at 1:1 match [17]. In addition to the governmental support,
performance grants and long-term loans were employed, where the former was based on the quality
of service, while the latter included low long-term interest rates. In 2016, the Ministry of New and
Renewable Energy (MNRE) of India launched the ‘Off-grid and Decentralized Solar Applications
Programme’ [18]. The objective was to provide financial assistance to remote solar installations. Capital
subsidies of up to 90% were offered depending on the intended use of the project, type of stakeholders
involved, and installed capacity. In the same year, the Government of Indonesia developed a set
of regulations with the ambitious target of electrifying the remaining isolated areas of the country
(nearly 15% of its population) with the use of off-grid solutions [19,20]. The “Indonesia Terang”
(Bright Indonesia) program, which was introduced with the adoption of a special ministerial decree,
was expected to enhance the electrification rate in rural areas through the investment and development
of microgrids. Unfortunately, the program has experienced several delays due to the lack of funds
and lack of local agreements. In Cambodia, the Rural Electrification Fund provided incentives for
investments in microgrids in the form of grants, tariff subsidies, and zero interest rate loans [21,22].
The level and type of support depended on various eligibility criteria, including the type of technology
used, location, and economic indicators.

The increasing interest in the use of microgrids as a source of clean and affordable energy has
also prompted researchers to develop novel techniques and decision support tools in the areas of
sizing and optimization. The process of finding the optimum capacity and generation schedule
of microgrids is a complex procedure that can involve a large number of technical and economic
variables. Furthermore, depending on the scale and primary goal of the microgrid project, different
aspects need to be considered during the development of the optimization framework, including
technical, economic, financial, political, geographical, environmental, and social aspects. Moreover,
the variability and unpredictability of weather resources like solar irradiation and wind speed introduce
a number of uncertainties that pose a series of challenges in the optimization process. To overcome the
abovementioned challenges, researchers have developed a number of solutions that can be employed
for the feasibility study of microgrids and hybrid-powered systems. Among the most common
approaches employed for the development of microgrid management solutions are genetic algorithms
and linear or mixed-integer linear programming models. For instance, in [23] the authors employed a
genetic algorithm to optimize the component size of a hybrid renewable energy system comprised of
photovoltaic panels, a backup generator, and a battery, while minimizing the cost of energy (COE).
The authors of [24] developed a linear programming (LP) model to minimize the production costs of
electricity in an autonomous renewable power system. In [25] a MILP approach was proposed to find
the optimal operating schedule of a microgrid while considering penalties for task interruptions. In [26]
the authors used an LP method to optimize a residential energy system with the goal of minimizing
CO2 emissions. The authors of [27] developed a model based on a genetic algorithm (GA) approach to
minimize the annualized costs of the system considering the loss of power supply probability. Reviews
of research works related to sizing and optimization of microgrids can be found in [28–30].

Although there is a wide range of methods, algorithms, and decision-support tools for sizing and
optimization of microgrids, an important gap in the literature exists with respect to the impacts of
capital and energy subsidies on the optimal design of microgrids. In this context, this study tries to
fill this gap by providing a quantitative analysis of the effects of these support instruments with the
application of an optimization-based decision support tool. Moreover, this study focuses on assessing
the effects of subsidies for green technologies on the LCOE. The model employed in this research
minimizes the total life cycle costs (TLCC) of a microgrid system over its expected lifetime. In addition,
this study presents the effects of meteorological conditions on the optimal architecture of microgrids.
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This paper is organized as follows. Section 2 provides a summary of the relevant literature
regarding the impacts of different policy measures on the design of microgrid systems. Section 3
contains the problem definition. In Section 4 the optimization framework employed in the study
is described. Section 5 presents the illustrative example and the sensitivity parameters. Section 6
examines the results of the sensitivity analyses. Section 7 discusses the policy implications and
concludes the paper.

2. Literature Review

Despite the increasing number of microgrid projects for off-grid electrification, there are a limited
number of studies that have assessed the effects of policy measures on the design of microgrid systems.
Most of the literature available has primarily focused on specific case studies that demonstrate the
technical feasibility of a project or on demonstrating the advantages of the proposed optimization
method. Often, because of numerous simplifications, microgrid studies have concentrated on finding
new solutions to technological and operational challenges and have ignored the impact of different
political and social barriers as well as their policy implications. A simplified diagram that depicts the
microgrid barriers to entry and their relationship is presented in Figure 2.
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A major barrier that has affected the adoption of microgrids for off-grid electrification in developing
countries has been the high upfront capital costs. Consequently, governments have often employed
incentives to promote the development of microgrids.

As it was mentioned earlier, only a small number of studies have examined the effects of policies
and financial mechanisms on the optimal design of microgrids, and just a fraction of them have
utilized computer-based mathematical models. [6] employed the distributed energy resources customer
adoption model (DER-CAM), a microgrid analysis tool for optimal sizing and dispatch management,
to study the business model of three types of microgrids. Based on the results of their simulations,
several policy recommendations for microgrid investments were presented. In [31] the authors used
a novel method based on an evolutionary game model integrated with real options to estimate the
energy storage subsidies for microgrids. The study suggested that energy storage subsidies combined
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with initial cost subsidies may play an important role in the diffusion of microgrid systems. The
authors of [14] studied the role that government subsidies play on the operational efficiency of the
microgrid industry chain. The authors developed a model based on game theory to investigate different
subsidy strategies and market participants (e.g., government, investor, equipment supplier, operator,
and user). Moreover, the study proposed different subsidy practices to promote investments in
microgrid projects. In [32] a multi-stage incentive model was used to investigate different cooperative
and incentive mechanisms for microgrid investments. The study assessed the crucial factors influencing
the investment and development of microgrid projects. In [33] the authors developed a novel microgrid
design tool, called microgrid decision support tool (MDSTool) to find the optimal size and operation of
a microgrid system planned for a university campus. The study considered several incentive policies.
Their findings showed that renewable energy incentives, tax reductions, and grid services have a
significant impact on the financial feasibility of such systems and on the main economic and technical
indicators of the microgrid. In a later study, the authors of [34] used the MDSTool to evaluate the effects
of different policy measures on the optimal deployment of a microgrid in California. The objective
function of the model maximized the profit of the project over the 25-year expected lifetime of the
system. The issue of policy uncertainty was considered in their study with an extensive sensitivity
analysis. The results from the simulation showed that incentives and tax credits have a substantial
effect not only on the system profitability but also on the final microgrid configuration.

Among all the incentives available to promote the development of microgrids, the effects of
feed-in-tariffs (FiT) have been the mostly discussed in the literature. In [35] the DER-CAM model
was employed to determine the optimal operation of battery storage in new and existing residential
PV systems benefitting from FiT incentives. Several FiT schemes and battery storage capacities were
considered in the sensitivity analysis. Their investigation demonstrated the substantial value that
energy storage units with PV arrays have on the revenue streams of systems under FiT incentives.
The authors of [36] also looked at the effects of FiT as well as capital grants incentives on the
cost-effectiveness and financial viability of microgrid projects. The analysis was conducted from the
perspective of different individual stakeholders, precisely governments, energy consumers, and energy
hub operators. Their findings showed that from a government perspective, it is more cost-efficient
to incentivize a combination of capital grants and FiT than only FiT programs. In [37] the authors
demonstrated the application of a harmony search algorithm for the optimal operation of a 17-bus low
voltage grid-tied microgrid, comprised of two distributed energy resources with a PV array, a wind
turbine, a fuel cell, and hydrogen storage. In their study, one of the research scenarios examined the
introduction of a subsidy tariff policy. This type of subsidy proved to be essential to make the system
financially effective and the considered technologies viable. In [38] a leader-follower Stackelberg game
approach was used to investigate the effects FiT and emission trading policies on the investment
decision of a solar photovoltaic-powered community microgrid (SPCM). The case study focused on
China and demonstrated that in some specific cases governmental policies such as FiT and certified
emission reductions may induce the development of SPMC.

Finally, several studies have provided comprehensive reviews of various policy mechanisms related
to the development of microgrid investment projects. In [39] the authors presented a systematic review
of the current advantages, barriers, and subsidy support schemes of microgrid systems. The mechanisms
reviewed comprised capital subsidies, tax reductions, climate, carbon taxes, and financing services.
In [40] the most important aspects of microgrid development in the United States was reviewed.
It summarized the various financial incentives and subsidy policies available for microgrid systems at
the local and federal level. The authors of [41] gathered and evaluated numerous policies related to
microgrid project implementations around the world. Moreover, different examples of policies and
regulations were discussed in detail. In [42] the authors reviewed the impact of governmental policy
frameworks on the optimal design of microgrids with hybrid energy systems. The main focus of the
study was to review the most recent methods available in the literature for the evaluation of several
governmental policies. In addition, the authors discussed different policy interventions (e.g., financial
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incentives, carbon tax, minimum renewables) that have been considered in microgrid feasibility
studies. In [5] the authors reported the recent perspectives, barriers, and policies for distributed energy
sources in the European Union, United States, and China. Additionally, a comprehensive review of
the governmental regulations affecting the deployment of microgrids in abovementioned countries
was presented.

3. Problem Definition

To evaluate the impact of various subsidy policies on the optimal architecture of microgrids, we
consider the case where a government or a non-governmental organization is interested in laying
out a program to expand the electrification rates in a specific region within a country. From a series
of consultations with key stakeholders, policymakers, and planners, two important barriers were
identified that may impact the success of the program: high upfront costs and the technical complexity
in sizing the different distributed generation units. Additionally, before any specific compromise is
made on the type of subsidy or financial incentive that may be offered to participants in the program,
policymakers decide to carry out an assessment on the potential consequences of different subsidies
schemes on the LCOE, TLCC, CO2 emissions, and optimal configuration of the microgrid systems.
From the assessment, decision-makers will be able to better understand the capacities, locations,
and configurations of the systems with a clear perspective on the economic and technical feasibility of
the projects.

4. Method

In this study, we employed a computable model to evaluate the potential effects of policy
interventions, namely capital subsidies and fossil fuel subsidies on the optimal configuration of
microgrids with hybrid power sources. Furthermore, to show the role that subsidies play on the
economic viability, design, and disposition of these types of systems, an illustrative example is provided.
The hybrid-microgrid example, which is based on several simplifying assumptions and values obtained
from the literature, is intended to represent a generic case study from which policymakers and other
stakeholders can widen their understanding of microgrid design. In our analysis, for simplicity,
we excluded the representation of demand-side management (DSM) strategies and technologies (e.g.,
community involvement, limiting business hours, efficient appliances and lights, load limiters, smart
controllers, prepaid meters, among others) since these practices frequently require detailed information
on the local cultural context of the unelectrified community (including, household income, customer
expectation, an microgrid business model). Moreover, the example demonstrates the impact that
subsidy mechanisms—mainly designed to promote renewable energy technologies—have on the LCOE
of these systems. The microgrid combines solar and wind generating units, a battery storage system,
and a backup diesel generator. The schematic layout of the islanded system is shown in Figure 3.Energies 2020, 13, x FOR PEER REVIEW 7 of 23 
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The decision support tool employed in this study is an improved and extended version of an
optimization model developed at the Mineral and Energy Economy Research Institute of the Polish
Academy of Sciences (MEERI PAS). The model was originally developed for the feasibility study of a
microgrid system for rural electrification in a developing country and is mathematically formulated as
a linear program. Furthermore, the linear programming approach used for the development of the
decision support tool is a well-established method for pre-feasibility analyses since it is characterized
by its simplicity, flexibility, and practical computational times [43]. Analogous to other microgrid
decision support tools (e.g., HOMER and DER-CAM) the optimization model used in this study
considers key technical, meteorological, and economic factors that have a major influence on the
design and performance of microgrid projects for rural electrification. Additionally, the model is a
generic tool that can be used to evaluate a variety of cases involving different power sources and
meteorological conditions.

The objective function of the model minimizes the TLCC of the microgrid over its lifetime.
Generally, the configuration with the lowest TLCC also leads to the minimization of the levelized cost
of electricity, which is defined as the ratio of the TLCC to the total sum of the generated electricity
during the operation of the system. The overall life cycle costs of the microgrid is calculated as the sum
of the TLCCs of every component, including technology-specific capital costs, O&M costs, fuel costs,
and replacement costs.

The optimization of the TLCC is subject to economic and technical constraints of the distributed
generation units. The considered constraints are related to:

• The sum of the individual loads within the microgrid must be always met by the sum of the
energy produced by each technology and the energy discharged from the battery.

• The diesel generator output must be lower than its nameplate capacity (considering its efficiency).
• The relationship between intermittent renewables (meteorological conditions) and their capacities

are represented in the model by capacity factors.
• The operation of the battery storage is limited by its charge/discharge rates and the depth

of discharge.

The model estimates the required capacity of each component in the microgrid as well as their
operating schedule at each hour of the time horizon. In the case of the battery storage, the model
includes in the objective function a one-time replacement option which can occur within the project
lifetime. The replacement cost of the subsystem is equivalent to the capital costs converted into a
stream of equal annual payments with the use of the capital recovery factor. The optimization tool
was implemented in GAMS (General Algebraic Modelling System) on an Intel i7-8650U (1.9 GHz
personal computer with 8.0 GB of RAM, running a 64-bits Windows 10) and solved using CPLEX 12.9.
The optimization framework described in this section was then applied to analyze the assumptions
and data of the illustrative example. After running a series of sensitivity cases with different capital
costs, fuel prices, interest rates, and meteorological parameters, the results were exported to Excel and
then post-processed with MATLAB 2019b. The flowchart of the optimization framework is presented
in Figure 4.
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5. Case Study and Sensitivity Parameters

5.1. Case Study

Currently, the majority of the 840 million people who lack access to electricity are concentrated in
rural areas of developing economies [44]. Sub-Saharan Africa, India, the Middle East, Asia, and other
small regions located in tropical climate zones constitute over 90% of the areas without electricity
access [4]. During the first part of the 21st century, significant progress was made in improving the
access to reliable and affordable electricity in developing countries, mainly achieved by power line
extensions or with the deployment of distributed fossil fuel generators. However, by 2030, it is expected
that off-grid renewable solutions will play a critical role in accelerating the progress towards universal
electricity access. Off-grid energy will comprise nearly 60% of the new electrification investments,
with almost half of these investments in mini- and microgrids [45]. In this context, to examine the
impact of different subsidy programs on the optimal architecture of microgrids, we consider the case
of an unelectrified rural community located in a tropical climate zone. It should be stressed that
certain areas located in tropical climates are characterized by a medium-high to high potential of solar,
wind, and hydropower sources, which makes them attractive for the deployment of renewable-based
microgrid systems [46]. However, some countries located in these areas continue to subsidize fossil
fuels which often makes diesel-fired generators economically competitive, hindering the deployment
of renewable technologies [47].

The technical and economic details of the illustrative example can be summarized into three main
points:

• Meteorological site data: The site-specific meteorological hourly data (e.g., global horizontal
irradiation (GHI) and wind speed) were obtained from the National Solar Radiation Data
Base (NSRDB) [48], which is an open-access database created by National Renewable Energy
Laboratory (NREL). The selected site was characterized by an average daily solar irradiation of
5.75 kWh/m2/day and an average wind speed of 4.19 m/s.



Energies 2020, 13, 955 9 of 23

• Load profile: The load profile of a low-income rural village was generated with LoadProGen,
a MATLAB tool capable of estimating the energy consumption of a household or the aggregation
of households through a bottom-up approach [49]. The software tool has been specially designed
to support off-grid systems. Moreover, LoadProGen takes into account various parameters related
to the number of households, types and number of electrical appliances, appliance nominal output,
functioning windows, functioning times. Furthermore, to generate a realistic load profile, different
uncertainty parameters were also considered in the illustrative case (e.g., random variation
of functioning time and windows). The load profile was devised for a village composed of
90 households (approximate load of 38,743 kWh/year) and based on the electrical appliance usage
habits of rural communities reported in [50,51].

• Techno-economic data: The assumptions and techno-economic data employed in the model are
summarized in Table 1. Each technology considered in the microgrid system has its specific capital
cost expressed in $/kW, average yearly O&M costs expressed as a percentage of capital costs,
and expected lifetime. The data was gathered from various scientific publications and reports
on feasibility studies of microgrid systems for rural electrification: in [52,53] for the PV array,
in [54,55] for the wind turbine, in [52,56] for the diesel generator, and in [57,58] for the electrical
energy storage. The interest rate of 6% was selected after a careful investigation of lending rates
in 107 developing economies, classified according to the economic groups of the United Nations
Conference on Trade and Development (code 2160). In the fourth quarter of 2018, the median
interest rate was 5% [59].

Table 1. Main technical and economic data of the considered system components.

Technology
Capital Costs

($⁄kW) ($/kWh in
the Case of EES)

O&M Costs (% of
Capital Costs) Lifetime (Years) Interest Rate (%)

PV array 1200 1.5 20 6
Wind turbine 2100 1.5 20 6

Diesel generator 500 6 20 6
EES 300 2 10 6

5.2. Sensitivity Analysis

As it has been previously stated, there are a number of policy measures and subsidy schemes
frequently employed by governments and other institutions to promote rural electrification with the
use of microgrids. In this study, five different governmental interventions were considered: capital
subsidies across all distributed generation technologies, capital subsidies for renewable technologies,
capital subsidies for PV technologies, capital subsidies for wind technologies, and diesel price subsidies.
These financial schemes are reflected in the simulations as a set of sensitivity analyses. In each
case, the subsidies are represented as a percentage-wise reduction from a ‘default capital cost’ or
‘default fuel price’. This is accomplished in the model by progressively reducing the values of the
input parameters related to investment costs and diesel price by a percentage within the range
of 5% to 95%, at a 5% increase. Consequently, capital subsidies are represented in this study as
a gradual reduction in the overall cost of installing a particular technology. A similar approach
is adopted for the subsidization of fossil fuels. Additionally, to assess the impact of interest rate
changes, a sensitivity analysis was conducted by varying the rate of interest from 1% to 18%, at a 1%
increase (without any policy instrument implemented). For the cases involving capital costs, fuel price
subsidies, and interest rates, only one parameter was varied at the time, while the others were kept
at default values. However, for the case where meteorological inputs were selected as sensitivity
parameters, two parameters were varied simultaneously, resulting in multiple examples of different
weather conditions. To generate the necessary data for the sensitivity analysis of different weather
conditions, the baseline meteorological values (original one-year time series, hourly wind speed,
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and solar irradiance) were scaled by multiplying each hourly value by a constant factor. The factors
were determined as the ratio of the desired annual average to the original average value. This is similar
to the approach taken in [60] and in various feasibility studies [61,62]. The sensitivity parameters and
their discrete values are presented in Table 2.

Table 2. Parameter variation for sensitivity analyses.

Policy Instrument. Sensitivity Parameter Unit Values

Subsidies across all
DG technologies Capital costs of all technologies % 0–95

Subsidies for renewable
energy technologies

Capital costs of
renewable technologies % 0–95

Subsidies for PV technologies Capital costs of PV technologies % 0–95

Subsidies for wind technologies Capital costs of
wind technologies % 0–95

Fossil fuel subsidies Diesel price % 0–95

50% subsidy for PV and energy
storage technologies

Annual average wind speed m/s 3–7
Annual average solar irradiation Wh/m2/day 2000–6000

None Interest rate % 1–18

6. Computational Results

This section presents a summary of the findings obtained from the sensitivity analyses. The main
objective is to provide a quantitative understanding of how policy interventions like capital and fossil
fuel subsidies affect the LCOE, total CO2 emissions, total subsidy cost, and optimal configuration of
microgrids for rural electrification.

6.1. Subsidies across All Distributed Generation Technologies

A common approach to financially support microgrids is the use of capital subsidies—although
it has been widely discussed that they are not the most efficient way of incentivizing electrification
projects (from a fiscal and financial standpoint) [15,63]. The level of this financial support varies
depending on the location of the project, the type of technologies selected, among other crucial factors.
Figures 5 and 6 show the optimal configuration of a microgrid with its corresponding TLCC and
LCOE depending on the extent of subsidization. Figure 7 illustrates the total subsidy cost and total
estimated CO2 emissions within the project lifetime. The reduction of the capital costs is applied to
all the technological components of the system, which is shown in the figures by the gradual change
in subsidy levels. In general, this financial support positively affects the deployment of solar and
electrical energy storage technologies. The capacities of both technologies increase at a comparable
rate. Furthermore, as the share of PV modules and battery storage increase (to meet the demand at
all times), the role of the backup diesel generator decreases, which is represented by the downward
trend in the diesel generator capacity and total CO2 emissions. The LCOE and TLCC decrease linearly
with the progressive reduction in capital costs. When the microgrid project benefits from a 30% capital
subsidy, the LCOE is approximately $0.20/MWh. This value subsequently decreases by $0.01/kWh
with each additional 5% reduction in capital costs.
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6.2. Subsidies for Renewable Energy Technologies

In recent years, a sharp downward trend in the costs of renewable energy technologies has been
observed. This has facilitated the uptake of renewables in microgrid energy systems. PV investment
costs have fallen over 74% since 2009, while onshore wind turbines costs have dropped by 22% in
the same period [64]. This downward trend and the adoption of appropriate policy measures for
off-grid energy systems may have a significant impact on the future profitability of microgrids as well
as on their level of diffusion. Figures 8–10 illustrate the effects of capital subsidies offered only to
PV and wind energy technologies on the optimal architecture of microgrids and other key variables.
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The capacity of wind technologies increases substantially in the absence of capital subsidies for EES.
The need for storage decreases since wind energy tends to be distributed over the day, reflected
Figure 8 by the reduction in battery capacity. It is worth noting that up to a 45% subsidy support,
the capacity of the backup generator remains relatively unchanged while the capacities of the PV
and wind energy technologies slightly increase. As the wind turbine production volume increases,
to address the intermittent nature of wind power, the capacity of the diesel-powered backup generator
increases, resulting in higher levels of CO2 emissions. The LCOE of a microgrid benefitting from capital
subsidies for renewable energy technologies ranges from $0.21/kWh (at a 50% subsidy) to $0.13/kWh
(at a 95% subsidy).
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6.3. Subsidies for PV Technologies

The dramatic drop in PV module prices has led to the growing popularity of mini- and microgrid
systems. Unfortunately, in several developing economies the high upfront costs and long payback
periods of distributed PV pose a major barrier to their widespread deployment. Therefore, a common
strategy employed by governments to reduce the capital costs of such technologies has been to provide
financial incentives and subsidy schemes [65]. The results of the sensitivity analysis of capital subsidies
for PV technologies are shown in Figures 11–13. The progressive increase in capital subsidies for
PV technologies causes the model to displace wind and diesel subsystems, leading to a decrease
in CO2 emission levels. At a 60% reduction in capital costs, the installed capacity of PV, and wind
subsystems account for approximately 90.1% and 4.1%, correspondingly. The LCOE is approximately
$0.21/kWh and the TLCC of the system is $93,805. The system configuration comprises a 2.17 kW
diesel generator, a 33.5 kW photovoltaic subsystem, a 1.51 kW wind turbine, and a 114 kWh battery.
Above the subsidy level of 70%, the microgrid is solely powered by PV in conjunction with batteries
and a diesel backup generator.
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6.4. Subsidies for Wind Technologies

Similar to the current trend of solar PV module prices, a downward trend in wind turbine
investment costs has been observed over recent years. Nonetheless, there is still the need for significant
policy steps to promote the use of small wind turbines in microgrids [66]. Figures 14–16 present the
results of the sensitivity analysis of the progressive reduction in capital costs of wind technologies.
Subsidies for wind power show the highest levels of subsidy costs of all reported cases, mainly due to
the high upfront capital costs of wind power. With a capital subsidy of 60%, the capacity of the wind
subsystem in the microgrid increases by over 400% (from 4.49 to 19.84 kW). Furthermore, it accounts
for nearly 53% of the total annual electricity generated and leads to an LCOE of $0.23/kWh. As in other
cases in which the capacity of wind power increases, subsidies for wind technologies lead to a rise in
diesel capacity, resulting in a dramatic growth of CO2 emissions.
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6.5. Diesel Fuel Subsidies

The unprecedented uncertainty on the global gas and oil markets as well as the volatility of
fuel prices have a significant effect on the economics of microgrid systems. Moreover, fossil fuel
subsidies provided by numerous governments have kept renewables at an economic disadvantage.
According to the International Monetary Fund (IMF), emerging economies in Asia, Middle East, Latin
America, and Sub-Sahara Africa continue to subsidize fossil fuels and account for almost 56% of the
global energy subsidies [67]. These types of subsidies have intensified the barriers to the deployment
of RES. Consequently, it is imperative to assess the impact of such subsidies on the final microgrid
configuration, TLCC, LCOE, and CO2 emissions. The results obtained from the sensitivity analysis
of diesel fuel subsidies are depicted in Figures 17–19. From the figures, it can be found that as the
diesel price gradually decreases, the installed capacity of PV, wind, and battery technologies also
decrease. With a higher subsidy level, RES become economically unviable and the entire system is
mainly powered by a 16.5 kW diesel generator. Low diesel prices reduce the importance of renewable
technologies and promote the utilization of diesel fuel for electricity generation. Further, out of all the
subsidies analyzed in this study, fuel subsidies lead to the highest levels of carbon dioxide emissions
and the lowest values of subsidy costs. Subsidies higher than 70% result in a sharp increase in the
capacity of the diesel generator and in the second-lowest LCOE ($0.07/kWh) observed among all
analyzed cases. This also demonstrates that low capital costs of internal combustion engines combined
with diesel fuel subsidies have a negative impact on the deployment of sustainable energy systems
and on the reduction of greenhouse emissions.
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Figure 20 summarizes the simulation results of the five support interventions. It shows the change
of the LCOE in microgrid systems as a function of the level of subsidy received. For the case where
a capital subsidy is provided across all DG technologies and payable to reduce the upfront costs of
the entire system, the change in the LCOE is linear (downward sloping since the capital cost of each
component decreases at a similar rate). This type of subsidy results in the lowest and most predictable
value of LCOE. For the cases where capital subsidies are available only to renewable technologies
(PV and wind power), the drop in the LCOE is much more gradual. At a 50% capital subsidy on
renewable investments, the LCOE drops by approximately 20%. As it can be observed from the figure,
in our illustrative example PV technologies obtain a higher benefit from capital subsidies than wind
technologies. Even though the same level of subsidy is available for both subsystems, due to limited
wind potential at the selected site, a reduction in capital costs of wind technologies has a smaller impact
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on the LCOE. Only when capital subsidies are above 70% there is an observable difference between the
LCOE of the two subsidy schemes. Similarly, for the case where diesel prices are subsidized, there is a
steep drop in LCOE when the level of capital subsidies reaches 70%. At this level of subsidization,
the capacity of the diesel generator increases dramatically and displaces all other technologies in
the system.
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6.6. Interest Rate Sensitivity Analysis

Figures 21–23 illustrate the effects of various interest rates on the optimal configuration of
microgrids as well as their impact on the TLCC, LCOE, and total CO2 emissions. The range of
the parameter associated with the interest rate was selected based on the analysis of lending rates
in 107 developing economies. On the one hand, it can be observed that low interest rates favor
capital-intensive technologies that have small O&M costs (mainly PV and battery subsystems). On the
other hand, high interest rates yield adverse environmental effects, increasing the total carbon dioxide
emissions of the system. With higher interest rates, there is an increase on the utilization of diesel fuel
and wind power for electricity generation, and a continuous drop in PV and battery capacities. As the
objective function of the optimization model is defined in terms of TLCC and not LCOE, increasing
interest rates lead to greater fuel consumption and higher LCOE values, exceeding $0.45/kWh with an
18% interest rate.
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6.7. Subsidies for PV and Electrical Energy Storage Technologies with Variation in Meteorological Parameters

Solar and wind power generation are highly dependent on the local meteorological conditions.
As a result, the sizing of these two components in a microgrid system is strongly related to the
observed values of wind speed and solar irradiation. Currently, only a limited number of countries
have proposed the use of financial incentives for batteries in small residential applications; therefore,
it is of interest to understand the effects a hypothetical financial scheme for off-grid systems. Table 3
presents the results from the sensitivity analysis carried out to assess the impact of solar irradiation
and wind speed on the LCOE of a system benefitting from a 50% capital subsidy scheme (targeted
towards PV and EES technologies). The sensitivity analysis showed that the system configuration
with the lowest TLCC ($58,978) occurs at a wind speed of 7 m/s and solar irradiation of 6 kWh/m2/day.
The majority of the electricity load is served by the PV (20.52 kW) and energy storage subsystems
(107.42 kWh) and backed up by a diesel generator (2.51 kW). At a wind speed of 3–4 m/s, the wind
subsystem is fully excluded from the optimal configuration. Additionally, the analysis demonstrated
that poor weather conditions (3 m/s and 2 kWh/m2/day) have a significant impact on the TLCC and
consequently lead to a higher LCOE ($0.51/kWh). This is due to the large EES (140.68 kWh) and PV
capacities (73.91 kW). Figure 24 shows the impact of the variation of meteorological parameters on the
levelized cost of electricity.
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Table 3. Sensitivity analysis results for a PV and EES subsidy scheme with different
meteorological conditions.

Case Technology Capacity
TLCC ($)Wind Speed

(m/s)
Irradiation

(kWh/m2/day) Diesel (kW) PV (kW) Wind (kW) Battery (kWh)

3 2 1.45 73.91 0.00 140.68 100,807
3 3 1.32 51.39 0.00 142.39 83,128
3 4 1.30 41.02 0.00 139.08 73,841
3 5 1.23 34.19 0.00 138.77 67,928
3 6 1.15 29.50 0.00 139.76 63,879

4 2 1.29 65.24 3.09 130.82 99,630
4 3 1.32 51.39 0.00 142.39 83,128
4 4 1.30 41.02 0.00 139.08 73,841
4 5 1.23 34.19 0.00 138.77 67,928
4 6 1.15 29.50 0.00 139.76 63,879

5 2 2.21 50.08 5.38 113.74 93,000
5 3 1.51 41.54 3.25 124.29 79,998
5 4 1.17 34.42 2.62 129.42 72,333
5 5 0.97 30.39 1.78 132.29 67,299
5 6 1.11 26.58 1.71 129.71 63,655

6 2 4.68 30.32 8.70 76.40 84,692
6 3 2.83 32.84 5.44 103.76 75,231
6 4 2.24 29.14 4.24 112.41 68,958
6 5 1.87 24.99 3.48 118.26 64,683
6 6 1.80 22.61 3.05 119.14 61,599

7 2 5.85 14.53 10.14 57.70 75,678
7 3 4.34 23.47 6.91 80.22 70,114
7 4 3.18 23.69 4.87 97.68 65,282
7 5 2.70 22.09 4.07 104.75 61,619
7 6 2.51 20.52 3.62 107.42 58,978
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7. Conclusions

Microgrids with renewable energy sources and energy storage systems constitute one of the most
promising solutions to meet the electrification targets of the United Nations Sustainable Development
Goals. These types of power systems face significant barriers including high upfront costs and low
technological readiness, which have prevented their dissemination in developing countries. Thus,
there is a need for appropriate government support mechanisms that will help reduce investment risk
and boost their deployment.

This paper evaluates the effects of financial incentives and subsidy policies on the optimal design
and operation of a microgrid for rural electrification (systems disconnected to the main grid). A decision
support tool based on a linear programming approach is employed to simulate the effect of various
support mechanisms (e.g., capital and energy subsidies) and estimate their impact on the LCOE and
optimal capacity of the microgrid systems. This study considers the illustrative example of a village of
90 households located in a subtropical region. The selected site was characterized by an average daily
solar irradiation of 5.75 kWh/m2/day and an average wind speed of 4.19 m/s.

Five different governmental interventions were evaluated: capital subsidies across all DG
technologies, capital subsidies for renewable technologies, capital subsidies for PV technologies, capital
subsidies for wind technologies, and diesel fuel subsidies. The simulation results show that capital
subsidies across all DG technologies above 30% can lead to LCOEs below $0.2/kWh, making microgrids
more likely to be deployed. Financial incentives for renewable energy technologies result in a decrease
in TLCC and LCOE; however, subsidies targeted to PV systems have a much greater impact on the
microgrid architecture than subsidies for wind turbines. Moreover, the results from the optimization
procedure demonstrate that there is a strong relationship between photovoltaic and battery storage
capacities. Wind turbine capacities are strongly linked to the capacity of the backup diesel generator.
This close interaction is also shown in the rise of emissions levels with the progressive increase in
subsidies for wind technologies. Diesel subsidies have a negative impact on the deployment of
renewable energy technologies, although this subsidy scheme results in the lowest levels of subsidy
costs. The low upfront costs of internal combustion engines combined with fossil fuel subsidies hamper
the expansion of renewables into microgrid systems.

The most apparent limitations of our study are as follows. First, distribution network losses as
well as their cost implications are regarded as negligible. Additionally, the meteorological, economic,
and technical parameters employed in the analysis are treated as statistic or fixed values during the
lifetime of the project. Similarly, efficiencies and degradation rates are assumed to be constant, mainly
due to the modeling approach employed for this study. Hence, to overcome these limitations and
investigate their effects on the optimal configuration of microgrids, one important goal for future
research is the introduction of these elements in the decision-support tool. Furthermore, another
promising area in the investigation of microgrids and mini-grids is the evaluation of demand site
management measures on projects with subsidy schemes frequently employed by governments and
other institutions to promote rural electrification.

Finally, this study demonstrates the importance of tailoring financial support mechanisms for
off-grid electrification to the local requirements, either at the regional or the national level. Several
countries have developed a number of dedicated policies to stimulate investment and innovation
in microgrids; however, in underdeveloped markets, the microgrid financial mechanisms remain
undefined or uncertain, which has limited the number of worldwide installations.
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