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Abstract: Electricity consumption patterns reveal energy demand behaviors and enable strategY
implementation to increase efficiency using monitoring systems. However, incorrect patterns can be
obtained when the time-series components of electricity demand are not considered. Hence, this research
proposes a new method for handling time-series components that significantly improves the ability to
obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the
proposed method and two widespread methods for handling the time-series components, in order to
compare the results. Through this study, the conditions that electricity demand data must meet for
making the time-series analysis useful are established. Finally, one year of real electricity consumption
is analyzed for two different cases to evaluate the effect of time-series treatment in the detection
of anomalies. The proposed method differentiates between periods of high or low energy demand,
identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved
in data analysis, and improve the reliability of monitoring systems, without adding complex procedures.

Keywords: electricity consumption profiles; electricity consumption patterns; building management
systems; outlier detection; time-series treatment

1. Introduction

Patterns of electricity consumption have been receiving great attention in the operation and planning
of power systems. Knowing precisely the consumption of electricity reveals energy demand behaviors
and enables strategy implementation for increased efficiency and energy intelligence [1]. These aspects
are economically, environmentally, and socially beneficial. Thus, the reduction in payment of electrical
bills by consumers, resource-saving by electric companies through delayed grid repowering, reduction
of generation costs by reducing the peak demand, implementation of smart microgrids, et cetera, are
evidence of economic benefits [2]. The reduction of electricity demand and/or its peak value leads to
decreased CO, emissions and those of other polluting gases and avoids the construction of new power
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plants. Moreover, energy efficiency programs benefit society by creating specialized jobs, favoring the
economy, the environment and sustainable development.

The energy demand comprises time-series data that are often seasonal and respond to a stochastic
process. These data can be classified into four well-known components: irregular, cyclic, seasonal and
the trend. The seasonal variations due to temperature, working patterns, and human behavior, cause
variations in the energy consumption patterns. These patterns could be used in monitoring systems to
detect abnormal consumption [3,4]. The detected anomalies can be reported to managers of facilities
to take the necessary corrections. However, incorrect patterns could be obtained when the seasonality
analysis of electricity demand is neglected [5].

In recent years, some researchers have studied the electricity patterns for different applications,
such as classification, outlier detection, forecasting, energy management, and electricity prices prediction.
As will be explained in Section 2.2, numerous tools and techniques have been used in each methodology.
However, the following weaknesses have been detected in our literature review: the seasonality of data
is not considered, a detailed information about the electrical consumption profile (ECP) are not taken
into account, the structure of time-series data is not analyzed, the selection of training data requires
considerable effort, and in other cases, a generalization problem is evidenced because only one case of
study was addressed.

In time-series data, there are three types of outliers: the point, collective, and contextual anomalies.
As it will be explained further below, few studies have addressed the contextual anomalies detection in
the electricity consumption. The contextual anomalies exist when relationships between the different data
observations are evidenced. Consequently, finding outliers among data point relationships is a challenge.

In a previous work [6], the authors presented a novel SAICC (statistical assessment for identifying
changes in consumption) methodology to assess the changes in the ECP of buildings. Nonetheless,
the effect of time-series treatment in the detection of anomalies was not analyzed. Several methods can be
applied for handling the time-series components, including the detrending method [7] and the seasonal
filter [8]. However, these methods have not produced expected results, which motivated the authors to
propose a novel Seasonality Analysis of Electricity Consumption (SAEC) method for times-series treatment.

The results of the above-mentioned time-series treatment methods are compared using the SAICC
methodology [6]. Patterns are obtained in two different scenarios: (i) without performing time-series
treatment; and (ii) using three different methods for handling the time-series components, where one
method (SAEC) is proposed by the authors in this work. Finally, the ECPs of a year’s real-data are analyzed
with each method and their differences in the detection of anomalies are discussed. This method obtains
less variable patterns, differentiates between periods of high or low energy demand, and identifies
contextual anomalies. Furthermore, it increases the precision and decreases the false positive rate
(FPR) and false negative rate (FNR) in the anomalies detection of electrical consumption profiles (ECPs).
Obtaining less variable patterns and successfull outlier detection could improve electricity management,
reduce the time and effort required for data analysis, and improve the performance of energy monitoring
systems. Additionally, the conditions that electricity demand data must meet are established, making the
times-series analysis useful.

Thus, the main contributions of this work are the following:

e  The conditions that electricity demand data must meet to make the time-series treatment useful are
established.

e  Detection of abnormal ECPs is improved with the SAEC method, increasing the precision and reducing
the FPR and FNR through less variable electrical consumption patterns.

e  Contextual anomalies in an ECP are identified through the proposed method.
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The remaining sections of the paper are organized as follows: Section 2 provides the background
information and related works. Section 3 describes the SAEC method. Section 4 details the results, while
Section 5 presents the discussion. Finally, Section 6 concludes the paper.

2. Background and Related Works

This section presents an overview of the electricity demand as a time-series data, anomaly
classification, and hypothesis test applied to outlier detection. Besides, works related to the electricity
consumption patterns and detection of anomalies are described.

2.1. Background

The electricity demand is a time-series data that responds to a stochastic process. A time-series
data consists of a group of statistical observations recorded over an established period, and it has four
well-known components: irregular, cyclic, seasonal and the trend [7]. It presents fluctuations influenced by
various variables, such as ambient temperature, changes in work patterns, and holiday periods. Despite
the randomness of these variables, repetitive behaviors (patterns) in the ECP can be identified.

An adequate treatment of time-series components provides useful results regarding pattern
recognition. The precision in the detection of anomalies in ECPs is improved, and the FPR and FNR are
reduced. Several methods can be applied for handling data series; among the most widespread, are the
detrending method and the seasonal filter.

2.1.1. Handling the Time Series Components

Detrending Method

This method subtracts trend line values of the time-series from the original data, thereby obtaining
a set of data with zero average. The trend line is obtained based on the least squares method [9], as follows:

p=b+mxt 1)

where f is the time index in the units defined, p is the projected value of the power demand p [kW] for
a value of ¢, and b is the intersection with the axis of the ordinates, that is, the value of p when t = 0. Finally,
m is the slope of the line or the average change of p for each increment of one unit in t. The least squares
method consists of four steps:

1.  Define the variable to analyze; in this case, it is the power demand p, which is variable in time .
2. Define a data size n for the analysis, taking into account the sampling frequency with which this data

was acquired f.
3. The sum of the n values of p is calculated.
4.  Calculate the slope m of the trend line, as well as the intersection with the axis of the variable p,

that is, b of Equation (1), by means of Equations (2) and (3).
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Seasonal Filter

The seasonal filter is a statistical method based on the observation of a data period, where the periodic
component of the data is eliminated, resulting in a deseasonalized time-series data. The process is iterative
and it can be executed with data from several periods. In this study, data of a full year are analyzed;
therefore, the number of periods is 1. The process is detailed below [8]:

1.  The average power of each week is obtained with the 15-min sampled power data.
The moving average is calculated with k + 1 terms (where k is the known periodicity of the
seasonality); to avoid the loss of information, the first and last value of the obtained moving average
is doubled.

3. Anindex (multiplicative decomposition) is obtained by dividing the average power of each week
obtained in point 1 by the moving average in point 2.

4. The original 15-min sampled power data is divided for the index obtained in point 3, thereby
obtaining deseasonalized time-series data.

2.1.2. Anomaly Classification

An anomaly is defined as a data point that is significantly different from the remaining data set [10].
Thereby, there are three types of anomalies: point, collective, and contextual. A point anomaly appears
when a sampled value shows an unexpected difference from the others. Instead, if data are anomalous in
some context but not in another, it is a contextual anomaly. Finally, a collective anomaly contains data
that are anomalous compared with the rest of the data instances. In this case, each datum of the group
of data could be typical by itself, but their collective occurrence represents an outlier [11]. In time-series
data, outlier detection becomes especially complex when a relationship exists between different data
observations (contextual anomaly). In this case, finding outliers among the data points relationships
represents a challenging issue [10].

2.1.3. Hypothesis Testing for Outlier Detection

Hypothesis testing is a procedure that establishes whether the hypothesis is a reasonable statement
based on the theory of probability and the statistical evidence of the sample [7]. The hypothesis is
a declaration about a population that must be accepted or rejected after the statistical analysis of the
sample. The hypothesis being tested is called the null hypothesis. In this work, the authors define the null
hypothesis as the electrical consumption profile (ECP) and is anomalous. Table 1 defines some terms used
later; for example, the false positives (FP) are the not anomalous ECP wrongly reported as anomalous.

Table 1. Hypothesis testing for outlier detection.

Test Reality
Anomalous ECP Not Anomalous ECP
Anomalous ECP (Reject the null hypothesis) True positive (TP) False positive (FP)

Not anomalous ECP (Accept the null hypothesis)  False negative (FN) True negative (TN)
Total truly positives  Total truly negatives

Evaluation criteria are used to perform comparisons in hypothesis testing, such as FPR, FNR,
precision, sensibility, and specificity. The FPR and FNR are defined as follows:

FP

FPR = ————
FP+TN

4)
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The precision is defined as the percentage of reported anomalous values that truly are anomalous.
On the other hand, the sensibility or recall represents the percentage of true anomalies reported as
anomalous. Finally, the specificity is the ratio between the number of PCE reported as not anomalous,
and the total truly negatives [10]. These criteria are defined as follows:

FNR

TP

Precision = TP L EP (6)
e TP

Sensibility = TP EN 7)
e TN

Specificity = TN+ ED 8

2.2. Related Works

In recent years, some researchers have studied the electricity consumption patterns, where five main
application areas can be identified: (i) forecasting; (ii) energy and load management; (iii) electricity prices
prediction; (iv) classification; and (v) outlier detection. The different proposed works are used for electricity
and economic sector planning, customer classification, tariff establishment, energy efficiency programs,
cost reduction, detection of fraud, anomalies, failures, et cetera. For this, numerous tools and techniques
have been used in each methodology; however, five types of weaknesses have been detected:

(@) The seasonality of data was not considered.

(b) A detailed information about the electrical consumption profile (ECP) was not taken into account.
(c) The structure of time-series data was not analyzed, therefore the methodology can be improved.
(d) The selection of training data requires considerable effort.

(e) Generalization problem is evidenced because only one case of study was addressed.

Over time, scholars have developed new proposals for forecasting electricity demand [12-15].
Actually, artificial intelligence (AI) techniques are preferred over others. However, some difficulties
are evidenced in these types of methods; in particular, the previously identified weaknesses type a, b, d,
and e. For instance, the effect of seasonality in the training phase of these methods is difficult to establish,
and generally, the selection of training data needs considerable effort, often requiring the prediction
of input variables, which induces high uncertainty. Moreover, the application of AI methods does not
guarantee it can be used for other cases, deriving in generalization issues like in [14]. The reviewed works
about the application area of energy and load management evidence weakness type a and b. In some
cases, like in [16,17], the seasonality is not addressed, and detailed information about the ECP is neglected,
reducing the capacity of the method to work in real-time. The electricity demand behavior also has been
used for price prediction by some authors like Cuaresma et al. [18] and Janczura et al., [19]. Although they
consider, to some degree, the effect of seasonality, an in-depth examination using an adequate approach
could yield better results. For example, detailed information about ECPs is ignored, and on the other hand,
the used models fit specific data cases; therefore, their application to other cases can be unreliable.

The most representative studies about the classification of ECP and outliers detection evidence
weakness type a, b, ¢ or d. This is because various clustering techniques ignore the time-series context
of data, and consequently the seasonality effect is missing as in [20-22]. Some authors like Seem [23,24]
and Li et al., [25] use only the mean daily-energy and the peak daily consumption in pattern recognition,
hence, it is diffiicult to perform a detailed analysis of the ECP. On the other hand, Capazzoli et al. [26]
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characterize the energy time series in time windows, which impede real-time (or near real-time) analysis.
Meanwhile, other studies apply machine learning to detect outliers in electricity consumption, for instance,
Jokar et al., [27] use support vector machines and unsupervised learning (k-means), while Fenza and
Gallo [28] apply LSTM neural networks and statistics. In both cases, the selection of training data requires
considerable effort, and the time-series analysis was not considered.

Recently, the identification of contextual anomalies has been discussed as a new challenge in electricity
monitoring. For this purpose, scarce studies have addressed the topic. In particular, Araya et al. [29]
propose an ensemble anomaly detection framework with several outlier detection classifiers using majority
voting. Similarly, Hayes and Capretz [30] propose a contextual anomaly detection framework also using
majority voting. These proposals do not analyze the structure of time-series data and require high
computational expense; thus, evidencing the identified weaknesses type ¢ and d. In addition, only values
less than zero were considered noisy in data pre-processing. Alternatively, Cui and Wang [31] propose
an anomaly detection system based on a polynomial regression model and Gaussian distribution. Although
this study obtained an FNR equal to zero in all analyzed cases, only an upper threshold is used to identify
contextual anomalies, hence outliers of low consumption cannot be reported.

Besides, Fan et al. [32] investigate different autoencoder architectures and training schemes in
detecting anomalies in building energy data. This study works in a high-dimensional and large-scale
data scenario since it states that statistical methods are not scalable and adequate. Nevertheless,
this methodology requires considerable high computational effort in each stage; for instance, to establish
the most influential variables in energy consumption (Month, Day Type, and Hour) and the most dominant
period (24 h), which usually is well-known. Additionally, various masking noise levels are used to produce
corrupted subsequences to enable autoencoders to learn better. This study contributes interestingly to the
field of knowledge. However, in the opinion of the authors, in most cases, it is unnecessary to address the
anomaly detection of electricity demand in the big data field. Table 2 summarizes the shortcomings found
in the application of electricity patterns. In this context, the authors have proposed a specific method to
obtain patterns and detect anomalies in the electricity demand.

Table 2. Literature review on electricity patterns.

Application Area Weakness Type  Used Tools/Techniques Reference
Statistics and hierarchical clustering [23]
b Data mining, PSO-kmeans and support vector [33]
machines -
lassificati Hierarchical clustering, k-means, fuzzy k-means,
Classification adaptive vector quantization method, follow the [22]
a leader algorithm, self-organizing map, probabilistic
neural networks (PNN)
K-means [34,35]
a,c Image processing technology [36]
Classification and outlier detection b,c Canonical variate analysis [25]
K-means and support vector machines [21]
b Statistics and hierarchical clustering [24]
Symbolic aggregate approximation process [26]
Outlier Detection ab C-means based on fuzzy clustering [20]
Support vector machines and k-means [27]

a,c

LSTM neural networks and statistics [28]
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Table 2. Cont.

Application Area Weakness Type Used Tools/Techniques Reference
ad Artificial neural networks [12,13]
ae Support vector regression [14]
d Simple linear regression, multiple linear regression, 37
Forecasting € and ARIMA (371
b Data mining, unsupervised data clustering and [15]
bayesian network prediction
ab Hierarchical clustering [16]
a Event-triggered-based distributed algorithm [38]
Formulation of a multiple knapsack problem and
ae . . . [39]
solve it through dynamic programming
Artificial neural networks, fuzzy logic, adaptive
Energy Management b neu.ra¥ fu.zzy inference system, and heuristic [17]
optimization
Artificial neural networks, fuzzy logic, adaptive
neural fuzzy inference system, and heuristic [40]
c optimization

Recursive filter on prices or price differences or a

. h . 19
recursive seasonal model estimation [19]

3. SAEC Methodology and Seasonality Analysis

Based on the limitations detected in Section 2.2, the authors propose a simple method to address the
weaknesses detected to improve patterns obtention and anomalies detection in electricity consumption.
The proposed SAEC method is able to: (i) address time-series structure appropriately through a robust
methodology; (ii) use a resolution of 15 min sample data to allow near real-time outlier detection; (iii) be
used for analyzing any type of electrical consumption; (iv) increase the precision and reduce the FPR and
FNR in the detection of anomalies; and (vi) identify contextual anomalies in electricity demand.

3.1. Confirmation of Seasonal Variation in the Electrical Consumption

The application of SAEC method guarantees better performance when series data shows seasonal
variation. The authors recommend handling the time-series components of electricity consumption when
the following conditions are met:

e  Fluctuations have a defined pattern

e  Fluctuations have defined periods

o  The values of the time series follow a linear trend

o  The amplitude values in each period are similar in each cycle.

To verify compliance with the above conditions, the electricity consumption data of two different
facilities are analyzed. The first installation is the 5E building of the Universitat Politécnica de Valencia (UPV)
in Spain, whose data was obtained through the Derd System [41]. The second installation corresponds to
the power supply connection of the Universidad Politécnica Salesiana (UPS) in Cuenca, Ecuador. The two
facilities are located in different countries, so the users’ energy consumption behaviors differ significantly.

Figures 1 and 2 show the quarterly average power consumption for each installation. The fluctuations
defined in periods of one year are clearly visible. Moreover, in the UPV case, the data follow a negative
linear trend, while in the UPS case, the linear trend is positive. The amplitude of the values in each period
of every cycle is similar: increasing and decreasing as per the linear trend. Thus, the four mentioned
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conditions are satisfactorily fulfilled, so handling time-series components can be carried out in both cases.
Observing the scale of the figures shows that the seasonal component of UPS electricity consumption is
weaker than UPV consumption.

80

70+

60

50 -

Power [kW]

40 -

20 | | | | 1 | | | 1
0 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2

2014 2015 2016
Time

Figure 1. Quarterly average power: Building 5E of Universitat Politécnica de Valéncia (P1: July-September,
P2: October—-December, P3: January-March, P4: April-June).
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Figure 2. Quarterly average power: Universidad Politécnica Salesiana (P1: February—April, P2: May-July,
P3: August-October, P4: November-January).

The authors propose a new SAEC method, specially designed for electricity demand data, which
eliminates the trend and seasonality of the time series data. This method has the advantage that it can be

applied when just one-year data is available. It is important because the electrical consumption patterns
change over time.
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3.2. Seasonality Analysis for Electricity Consumption Method (SAEC)

The proposed SAEC method provides better-defined patterns while maintaining the same level of
confidence. The first consideration is that seasonality has a marginal influence on the base load value of
consumption because, in “non-working hours,” there is no occupation for which the electricity demand
remains practically constant. The proposed method is thus detailed below:

1. A vector of the 15-min sampled power data only for the working days is obtained for the analyzed
period, and the amount of working days that make up each week is recorded.

2. Thebase load value is calculated, for which the first percentile of the vector of the 15-min sampled
power data in point 1 is computed. Analyzing the vector shows that the quantity of the anomalous
low value is less than 1% of the data. Therefore, measurements corresponding to events such as
power outages, disconnections, and measurement errors are ignored.

3.  Thebase load value is subtracted from the vector of the 15-min sampled power data in point 1. Hence,
the resulting vector has values close to zero during the non-working hours. This is useful for the
analysis because the seasonality of consumption has minimal influence during these hours.

4. The average power of each week is obtained by considering only the number of working days
recorded in point 1.

5. The moving average of the values obtained in the previous point is calculated; four values are used,
corresponding to four weeks.

6. The centered moving average is calculated by averaging the two consecutive values obtained in
point 5.

The average of all values obtained in point 6 is calculated.
The seasonality index for each week is obtained by dividing each value obtained in point 6 by the
value obtained in point 7. Thus, the average of the seasonality indexes is 1.

9.  The vector obtained in point 1 is detrended and deseasonalized at the same time, by dividing each of

its values by the corresponding seasonality index for each week (point 8).

10.  The base load value is added to each datum of the deseasonalized vector of the previous point.

11.  The data vector of electricity consumption is reconstructed by combining the correct sequence of the
deseasonalized working days and the non-working days data that were initially separated.

Once the SAEC method is applied, the results become apparent. Figure 3 shows the one-year electricity
consumption of the 5E building of UPV (average power of the highest 15-min sample data for each day).
Observe that the electricity consumption presents significant fluctuations in the different seasons, which is
typical for the Spain’s buildings, as in other countries with pronounced seasons. The obtained detrended
and deseasonalized data is depicted in Figure 4.

Similarly, Figure 5 shows the one-year power consumption of UPS (average power of the highest
15-min sample data for each day), and Figure 6 shows the deseasonalized electricity consumption.
The SAEC method transforms the initial data into a stationary time series. To avoid losing information
that is required later, the seasonal indexes of each week are stored. In this case, no electricity consumption
fluctuations are corresponding to seasons because seasonal temperature fluctuations are small in Ecuador.
The fluctuations correspond to power decreases in vacations, Christmas, and New Year holidays.

The performance of the SAEC method is compared with two existing methods for handling data
series, which are the detrending method and the application of a seasonal filter.



Energies 2020, 13, 1046

10 of 23
300
250 - FALL WINTER SPRING SUMMER FALL |
<—> < > < > < > < >

200 - | Vacation periodl" l i
—_ <>
2 i \
< 150 - |
]
2
o
a

100 |

50 [ W |
0 ! ! ! ! \ ! !
0 50 100 150 200 250 300 350

Days

Figure 3. Electricity consumption: 5E Building of Universitat Politecnica de Valéncia (29 November

2015-28 November 2016).
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Figure 4. Electricity consumption: Universidad Politécnica Salesiana (9 March 2017-8 March 2018).

3.3. Application of Deseasonalization Methods

The SAICC methodology was first developed by the authors in a previous study. It finds patterns and
statistically quantifies the changes in an ECP [6]. This methodology establishes conclusions that give clues
about the possible causes of changes in electricity consumption. It also presents an index of change that

quantifies and catalogs the anomalies in ECP.
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Figure 5. Electricity consumption: Universidad Politécnica Salesiana (9 March 2017-8 March 2018).
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Figure 6. Deseasonalized electricity consumption: Universidad Politécnica Salesiana (9 March 2017-8 March 2018).

The SAICC methodology consists of four stages: (1) acquisition and processing of historical data;
(2) obtention of consumption patterns; (3) statistical quantification; and (4) presentation of results [6].
Figure 7 shows a simplified block diagram of the SAICC methodology, where the transformation of
time-series data is carried out through three different methods: detrending method, seasonal filter,
and SAEC. The first two methods are the most commonly used in temporal series, while the third method
is proposed by the authors. This is done in order to compare results using these different techniques.
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Stage 1: Acquisition and processing of historical data

- Parameters definition and historical data gathering + Detrending method
- Seasonality analysis (transformation of data) | W seosonatiiter
- Obtaining features i SAEC

- Clustering and analysis of statistical data distribution
- Split outliers and typical data

\ 4
Stage 2: Obtaining consumption patterns

- Definition of pattern features of typical data
- Cluster similar patterns
- Obtaining final pattern features

v
Stage 3: Statistical quantification

-Compare consumption pattern with the analyzed day
-Quantify the fit to the consumption pattern

v
Stage 4: Results presentation with physical analysis

- Cataloging the changes in electrical consumption
- Calculate the index of change

Figure 7. SAICC methodology.
4. Results

The objective of this work is to evaluate the time-series treatment in obtaining patterns and detecting
anomalies in ECPs. This study compares the patterns and anomalies detected using different analysis
methods for handling time series components:

o  Without seasonality analysis (WSA)

e  Detrending method (DM)

e  Seasonal filter (SF)

e  Seasonality analysis for electricity or energy consumption (SAEC), proposed in this work.

As mentioned above the electricity consumption of two different facilities is analyzed in this work.
The first one is the 5E building of the UPV in Valencia, Spain, whose data were obtained through the
Derd system [41] from 28 November 2015 to 27 November 2016. The second facility is the UPS in Cuenca,
Ecuador, with data from 9 March 2017 to 8 March 2018. These two case studies are interesting because
they are in distant countries and their consumption patterns differ significantly.

4.1. Obtained Patterns

The authors now present the differences between the patterns obtained for each seasonality analysis
method, and interpretation thereof, according to the SAICC methodology. The case of a working Wednesday
in the 5E building of UPV is presented. Figure 8 shows the mean pattern obtained for each method used.
The mean pattern obtained with the WSA method is similar to that obtained by the seasonal filter and SAEC
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methods. In working hours, the pattern obtained by the SAEC method has values slightly higher compared
with others. On the other hand, an offset presents itself in the pattern obtained by the detrending method.

120 -

100 -

80

60

kKW

40 -

20 -

Hours

Figure 8. Mean of the consumption patterns.

Figure 9 depicts the standard deviation values. No significant variations are observed when applying
the WSA, detrending method, and seasonal filter. On the other hand, when the SAEC method is used,
the standard deviation decreases considerably in working hours. This is relevant because it indicates that
the pattern obtained with this method is less variable, and therefore more defined. This effect is a major
advantage because, when detecting abnormal ECPs, the precision increases, while the FPR and FNR

decrease evidently (see Section 4.2).

Hours

Figure 9. Standard deviation of the consumption patterns.

In Figures 10 and 11, the Z;,x and Z,,;, values obtained represent the upper and lower limits of each
confidence interval of the consumption pattern (a value is considered anomalous when it is outside this
interval). The results from the seasonal filter are very similar to those obtained using the WSA method.
The detrending method obtains smaller confidence intervals in the non-working hours because of its
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limited capacity for grouping days with similar consumption. The proposed SAEC method, in some cases,
obtains larger confidence intervals, but smaller ones in other cases. Therefore, the values of Z,,;, and Z;4x
alone do not indicate whether one method is better than the other. Hence, the FPR is a key indicator in
this analysis.
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Figure 10. Maximum Z score of the consumption pattern.
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Figure 11. Minimum Z score of the consumption pattern.

The patterns obtained with one-year data can be represented by box-plots (see Figure 12). Evidently,
the detrending method and seasonal filter do not produce a very different pattern from that produced
by the WSA method. The SAEC method obtains a less variable pattern while maintaining the same level
of confidence. That is, electricity consumption is better defined, and hence the detection of changes and
anomalies is more reliable. This pattern represents the typical electricity consumption on a specific day of
the week and can be assigned to any week of the analyzed period through the seasonal indexes explained
in Section 3.2. The success of the method lies in improving the FPR, even when the consumption pattern
has less variation.
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Figure 12. Electricity consumption pattern represented by box-plots for a working Wednesday; Building 5E
of Universitat Politecnica de Valencia.

The conditions to carry out the time-series treatment of electricity demand were established in
Section 3.1. The annual electricity consumption of UPS satisfies those conditions. However, the seasonal
component is small because of the nonexistence of the four climatic seasons in areas near the equator.
Applying the SAEC method shows that the pattern obtained is less variable than the patterns obtained
by the other methods (see Figure 13). This result indicates that, although the seasonal component is
small, an adequate time-series analysis obtains a less variable consumption pattern. This suggests that the
method can be used for any type of electrical consumer.
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Figure 13. Electricity consumption pattern represented by box-plots for a working Wednesday; Universidad

Politécnica Salesiana.

4.2. Anomaly Detection

Once the consumption patterns have been defined, the corresponding statistical analysis is carried
out to detect anomalies in each day of the week. Table 3 details the obtained patterns for different working
Wednesdays and Fridays in the 5E building of UPV. The details include: number of ECP reported as
typical, number of ECP reported as anomalous, number of truly anomalous ECP (identified by an expert
human), the anomalous ECP reported as anomalous (TP), the anomalous ECP reported as not anomalous
(FN), the FPR, the FNR, and the precision.
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Table 3. Details of the obtained patterns: 5E building Universitat Politecnica de Valencia.

Anomalous Anomalous

Day of ReP Colrated RePSfted Truly PCE PCE
Y P P Anomalous Reported Reported FPR  FNR  Precision
Method the as as o o o
. PCE as as not [%] [%] [%]
Week  Typical Anomalous
(IN+EN) (TP + FP) (TP + FN) Anomalous Anomalous

(TP) (FN)

Consumption pattern of the working Wednesdays
WSA Wed 28 14 9 8 1 18.2 11.1 57.1
DM Wed 29 13 9 7 2 18.2 22.2 53.8
SF Wed 28 14 9 8 1 18.2 11.1 57.1
SAEC Wed 33 9 9 7 2 6.1 222 77.8

Consumption pattern of the working Fridays

WSA Fri 28 13 17 9 8 16.7 47.1 69.2
DM Fri 28 13 17 9 8 16.7 471 69.2
SF Fri 28 13 17 9 8 16.7 47.1 69.2
SAEC Fri 20 21 17 15 2 25.0 11.8 714

A time-series treatment through the SAEC method can identify as typical (TN) to ECPs affected by
seasonality whose power consumption is distant from the mean in each 15-min interval, which would
have been labeled as anomalous (FP). This is because there are weeks with normally high electricity
consumption and weeks where consumption is normally low. The SAEC method allows such ECPs to be
labelled as non-anomalous, thus reducing the FPR. This can be seen in the case of Wednesday and Fridays
in Table 3.

In comparison with other methods, the SAEC method easily reports abnormal ECP when consumption
is high, but it is produced in weeks where consumption is usually low or vice versa (TP). Table 3
shows the pattern of a working Friday. Here, in the time-series treatment with the SAEC method,
fewer ECPs are considered typical, which helps obtain a pattern with smaller confidence intervals. Thus,
the number of anomalous ECPs detected by the SAEC method increases, which negatively affects the FPR.
However, the FNR decrease from 47.1% to 11.8% and the precision increases from 69.2% to 71.4%. Besides,
the application of the SAEC method allowed the expert human to catalogue as unusual the consumption
of four additional Fridays that he had not previously perceived.

Figures 14 and 15 show one of the four abnormal Fridays detected by the SAEC method and its
corresponding pattern with the SF and SAEC methods, respectively. In the first case, the human expert
indicated that electricity consumption on that day was not anomalous because the energy requirement
was low during that period of the year. However, when comparing the analyzed day with the pattern
obtained with the SAEC method, an anomalous consumption is perceived between 1:30 a.m. and 3:30 a.m.
and between 6:00 a.m. and 7:15 a.m., a critical issue not noticed before. The comparison was made only
between the SF and SAEC methods because the patterns obtained with the DM method and WSA are
similar to those obtained by the SF one.
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Figure 14. Analyzed Friday compared with the consumption pattern applying the seasonal filter
method (SF).
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Figure 15. Analyzed Friday compared with the consumption pattern applying the seasonality analysis of
electricity consumption method (SAEC).

Table 4 shows the details of the detected anomalies for different working Wednesdays and Fridays
in the power supply connection of UPS. The time-series treatment of electricity demand of UPS with the
SAEC method reduces the number of FN (Truly anomalous PCE reported as typical) for Wednesdays,
as shown in Table 4. In this context, the SAEC method can identify weeks of usually low consumption,
improving the precision of the anomalies detection. On the other hand, the FNR does not always improve,
as in the case of Fridays. However, in this same case, the FPR and the precision improve considerably.
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Table 4. Details of the obtained patterns: Universidad Politécnica Salesiana.

Anomalous Anomalous

Dayof R PCoEted R ngt d Truly PCE PCE
y epor eporte Anomalous Reported Reported FPR  FNR  Precision
Method the as as o o o
. PCE as as not [%] [%] [%]
Week  Typical Anomalous
(IN+EN) (TP + FP) (TP + FN) Anomalous Anomalous
(TP) (EN)
Consumption pattern of the working Wednesdays
WSA Wed 35 16 17 12 5 11.8 29.4 75.0
DM Wed 34 17 17 13 4 11.8 235 76.5
SF Wed 35 16 17 13 4 8.8 23.5 81.3
SAEC Wed 32 19 17 16 1 8.8 5.9 84.2
Consumption pattern of the working Fridays

WSA Fri 28 20 15 15 0 15.2 0 75.0
DM Fri 28 20 15 15 0 15.2 0 75.0
SF Fri 29 19 16 15 1 12.5 6.3 789
SAEC Fri 33 15 15 14 1 3.0 6.7 93.3

5. Discussion

The results obtained suggest that the use of the SAEC method improves the detection of abnormal PCE
by differentiating between periods of high or low energy demand, thus identifying contextual anomalies,
which are difficult to detect. The method guarantees a significant improvement in the precision of anomaly
detection when electricity demand meets the four conditions for carrying out the time-series treatment
(defined in Section 3.1).

A pattern with large confidence intervals does not easily detect abnormal ECPs, whereas a pattern with
small confidence intervals labels too many ECPs as anomalous, which is not convenient. The proposed
methodology significantly improves the identification of consumption patterns and the detection of
anomalous data.

Table 5 shows the adjustment of six ECPs through the four different methods referred above. In the
first four selected ECP, the SAEC method outperforms the others by avoiding the FP and FN in periods
where the energy demand is usually high or low. However, it obtains the same results as the other methods
when there are measurement errors or when the ECP has an unusual shape. Figures 16 and 17 show the
difference between the SF and SAEC methods for the detection of anomalies for five abnormal Wednesdays
(first five ECPs of Table 5). The consumption patterns, which are obtained by the DM method and WSA
are similar to those obtained with the SF. Thus, only the comparison between the SF and SAEC methods
is presented.
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Table 5. Detection of anomalies for different seasonality analysis methods.

Is Trul Is Is Is Is
Type of Daily ECP y Anomalous  Anomalous  Anomalous  Anomalous
Anomalous? . . . .
with WSA? with DM? with SF? with SAEC?
a—Anomalous low consumption (low
consumption in a period of high Yes No (FN) No (FN) No (FN) Yes (TP)
consumption)
b—Anomalous high consumption
(high consumption in a period of low Yes No (FN) No (FN) No (FN) Yes (TP)
consumption)
c—Typical high consumption (high
consumption in a period of high No Yes (FP) Yes (FP) Yes (FP) No (TN)
consumption)
d—Typical low consumption (low
consumption in a period of low No Yes (FP) Yes (FP) Yes (FP) No (TN)
consumption)
e—ECP with measurement error
(more than one hour with the same Yes Yes (TP) Yes (TP) Yes (TP) Yes (TP)
value)
The ECP has an anomalous shape * Yes Yes (TP) Yes (TP) Yes (TP) Yes (TP)
* This ECP was shown in Figures 14 and 15.
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Figure 16. Anomalous electrical consumption profiles according to the without seasonal analysis method.
Note: (a) day of anomalous low consumption; (b) day of anomalous high consumption; (c) day of typical
high consumption; (d) day of typical low consumption; and (e) day with measurement errors.

The errors reduction in the identification of changes and/or detection of anomalies in electricity
consumption allows efficient energy management, reduce costs and electricity consumption, detect
abnormal consumption and failures, and save time for technicians and managers in charge of a building’s
facilities. It also provides more reliability for surveillance operations in preventive and operational systems.
The proposed system is hence advantageous without high computational expense in comparison with
other methods.



Energies 2020, 13, 1046 20 of 23

Finally, we emphasize that the influence of the time-series treatment in obtaining patterns and
detecting outliers in electricity demand is significant, thus, it deserves special attention. The results suggest
that with the application of the SAEC method, contextual anomalies can be identified, additionally to
the point and collective anomalies. This is because the method recognizes periods of usually high or low
energy consumption. Besides, the precision in anomalies detection increases; in cases where the FPR
increases, it does it slightly, while the FNR decreases substantially. On the other hand, when the FNR
increases, it does it slightly while the FPR decreases substantially. The results also suggest that the method
can be used for diverse types of electrical consumers, in which the seasonal components of the time series
have a different structure.
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Figure 17. Electrical consumption profiles according to the seasonality analysis of electricity consumption
method. Note: (a) day of anomalous low consumption; (b) day of anomalous high consumption; (c) day of
typical high consumption; (d) day of typical low consumption; and (e) day with measurement errors.

6. Conclusions

In a previous work, the authors of this work presented a novel SAICC (statistical assessment
for identifying changes in consumption) methodology to assess the changes in the ECP of buildings.
Nonetheless, the effect of time-series treatment in the detection of anomalies was not analyzed.
Several methods can be applied for handling the time-series components, including the detrending method
and the seasonal filter. However, these methods have not produced expected results, which motivated
the authors to propose a novel Seasonality Analysis of Electricity Consumption (SAEC) method for
times-series treatment.

The novel SAEC method significantly improves the capability of obtaining electrical consumption
patterns without the use of additional methods that require more time and computational effort.
In comparison with the other time-series treatment methods, SAEC decreases the probability of errors
in the detection of anomalies and changes in ECPs. Two case studies involving university buildings
were analyzed, showing significant differences in their yearly electricity consumption. The influence
of time-series analysis in obtaining patterns and detection of anomalies in electricity consumption is
significant. It thus deserves attention, especially because an adequate time-series treatment could further
reduce the FPR and FNR. In the analyzed cases, an increase of the precision between 3.2% and 36%
was evidenced.
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As an important contribution, the authors established the conditions that electricity demand must
have, making the proposed seasonal analysis useful. The results suggest that the method can be used for
diverse types of electrical consumers, in which the time-series components have a different structure.

The SAEC method decreases the standard deviation of the consumption pattern in working hours.
This is relevant because the obtained pattern is less variable, and therefore better defined while maintaining
the same level of confidence. The success of the method lies in increasing the precision of identification of
changes and anomalies even when the consumption pattern is less variable. For instance, the proposed
method allows differentiating between periods of high or low energy demand and therefore identifying
contextual anomalies, which are difficult to detect. In consequence, it increases the precision and decreases
the FPR and FNR in the anomalies detection of ECPs, improving the supervision of electricity consumption.
However, this method behaves like other methods when measurement errors exist or when the ECP has
an abnormal shape. The tests carried out indicate the SAEC method works suitably even when the
seasonality component is low. That is, it still increases the precision in anomaly detection and obtains
a less variable consumption pattern. Moreover, the proposed method provides greater balance concerning
the size of confidence intervals of the consumption patterns, since a large confidence interval does not
easily detect abnormal ECPs, whereas a small confidence interval overly labels ECPs as anomalous.

The proposed method could significantly improve electricity management, reducing the time and
effort involved in data analysis, and increasing the reliability of the operation of surveillance in preventive
and operational systems.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial intelligence
DM Detrending method
ECP Electrical consumption profile

FPR False positive rate

FNR False negative rate

SAEC  Seasonality analysis of electricity consumption

SAICC  Statistical assessment for identifying changes in consumption methodology
WSA Without seasonal analysis
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