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Abstract: The usage of machine learning techniques is widely spread and has also been implemented
in the wind industry in the last years. Many of these techniques have shown great success but
need to constantly prove the expectation of functionality. This paper describes a new method to
monitor the health of a wind turbine using an undercomplete autoencoder. To evaluate the health
monitoring quality of the autoencoder, the number of anomalies before an event has happened are
to be considered. The results show that around 35% of all historical events that have resulted into a
failure show many anomalies. Furthermore, the wind turbine subsystems which are subject to good
detectability are the rotor system and the control system. If only one third of the service duties can be
planned in advance, and thereby the scheduling time can be reduced, huge cost saving potentials can
be seen.

Keywords: wind turbine; maintenance; autoencoder; machine learning; reliability; data driven model;
service; performance

1. Introduction

One of the major economic impacts on the Levelized Cost of Energy (LCOE) of offshore Wind
Turbines (WTs) is due to the Operation and Maintenance (O&M), which is considered to have a share
between 25% and 30% according to Lei et al. [1]. Therefore, different strategies exist to reduce the
LCOE by reducing the percentage of O&M-cost. An overview of those strategies is given in Wang [2].
In contradiction to that, this paper focuses on implementing and evaluating a tool for a possible
predictive maintenance strategy. By detecting failures in advance, the WT downtimes can be reduced.
This will have a direct impact on the LCOE. Different approaches for those tools exist. One can
implement a Data Driven Model (DDM), to be precise a Normal Behaviour Model (NBM). Other
approaches consider transition probabilities, while others focus on statistics to calculate values for the
Mean Time to Repair (MTTR) and to calculate the failure rate. This paper focuses on a tool to model
the normal behavior for each WT.

State-of-the-art WT systems monitor the condition and the performance by using Supervisory
Control and Data Acquisition (SCADA)-systems, which generally record and store the data
continuously. This SCADA-data forms the basis to develop the NBM.

Energies 2020, 13, 1063; doi:10.3390/en13051063 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/https://orcid.org/0000-0003-1962-0333
https://orcid.org/https://orcid.org/0000-0002-9975-9708
https://orcid.org/0000-0003-3185-7659
http://dx.doi.org/10.3390/en13051063
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/13/5/1063?type=check_update&version=3

Energies 2020, 13, 1063 2 0of 18

With the model developed, a deviation from normal behavior can be considered as an anomaly.
This paper aims to evaluate the anomalies generated by a NBM before a failure has occurred at the
WT. These failures are documented in the form of service reports.

A literature review is given in Section 2. Hereafter, the NBM is described and trained in Section 3.
In Section 3.1, the basic functionality of an Autoencoder (AE) is briefly explained. Data is needed to
train the model. This data is described in Section 3.2. Adjustments to the data, filtering and fine-tuning
of the parameters of the AE are to be explained in Section 3.3. Thereafter the output of the model as
well its usage is presented in Section 3.4.

In Section 4, the steps in order to derive a clean failure dataset are shown. Information about
downtime events are extracted out of maintenance documents and the measures undertaken at the
WT and its components translated into standards (Sections 4.1 and 4.2). To ensure the correctness of
the downtime events, we explain how they will be validated in Section 4.4.

With the usage of both, the historical failures of the WT (Section 4) and the trained model
(Section 3), the time window before the occurrence of a failure can be investigated. This is conducted
in Section 5. Subsequently, the detectability of WT failures can be evaluated (Section 5.2). The potential
scheduling time and the subsystems with failures are considered to be potentially good detectable
in advance. To have a holistic approach, also anomalies during expected normal behavior, are to be
investigated. The results are discussed in Section 6 and concluded with Section 7.

2. Literature Review

Health monitoring of WTs is the continuous monitoring of data streams from the WT intending
to generate information about its state and condition. Health monitoring of a WT comprises
approaches of Condition Monitoring System (CMS) and Structural Health Monitoring System (SHM).
Both approaches use a dedicated set of sensors to monitor physically relevant loads, frequencies or
accelerations of a given system to predict failures and identify root causes at an early stage and increase
the revenue from wind farms [3].

CMS and SHM-systems are often based on physical models. With the rise of big data analysis
techniques and machine learning algorithms, DDMs based on SCADA data have been increasingly
proposed and developed. The spread of DDMs has lead to early failure detection [4]. Different reviews
of DDMs are conducted and focus condition monitoring [5,6], on fault prognostics [7] with the help of
deep learning methods [8].

In this field, Helbing and Ritter [8] present a review of different supervised and unsupervised
methods and their potential usage. Thirteen unsupervised approaches, e.g., AEs and six supervised
approaches, e.g., convolutional neural networks, are listed.

Bangalore and Tjernberg [4] have implemented a non-linear autoregressive neural network to
model the normal temperature of five different gearbox bearings. Zaher et al. [9] have developed
a DDM using the bearing and cooling oil temperature to predict the failures within the gearbox
system. Schlechtingen and Ferreira Santos [10] compare three different DDMs, the first of which is
a regression model the others are Artificial Neural Network (ANN). It has been concluded that the
ANN outperforms the regression model [10].

Approaches with an application of an AE on SCADA data is presented by Zhao et al. [11],
Vogt et al. [12] and Deeskow and Steinmetz [13] among others. Deeskow and Steinmetz [13] have
applied ensembles of Autoencoders to detect anomalies in sensor data of various types of power
generating systems. They discuss these methods in comparison with supervised learning approaches.
Supervised learning [3] requires a certain amount of engineering knowledge to be considered, while the
unsupervised methods make anomaly detection possible with a minimum of domain knowledge.

To capture the nonlinear correlations between around ten different sensors, Jiang et al. [14] used
an unsupervised learning approach to develop a Denoising Autoencoder (DAE). This concept is
further developed to a multi-level DAE and presented in Wu et al. [15].
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Evaluation of Application

Helbing and Ritter [8] point out that a comparison of different approaches is difficult as evaluation
is often being presented as case studies with historical production data. If approaches are to be
quantitatively compared, labeled data for normal production and abnormal behavior are required.
This is not yet readily available. Thus, it has to be deduced from different sources that reduce the
comparability of results.

Similar approaches to the AE, as described in this paper, are seen in Zhao et al. [11]. Here, findings
based on three case studies are explained. Two of which deal with gearbox failures and the third of
which presents a converter failure. Jiang et al. [14] evaluates the failure detectability of DAE based
on SCADA data. The case studies show the detection of a generator speed anomaly and a gearbox
filter blocking. In addition to that, this approach is implemented on eight of ten simulated failure
scenarios put forward by Odgaard and Johnson [16]. However, there is little information available on
the evaluation of health monitoring approaches with AE on a large set of failure events. This paper
aims at overcoming this issue.

3. Overview and Model Implementation

In this section, the type of method for early failure detection of WT is explained as well as the
implementation of the model with the data given.

3.1. Basic Functionality of Autoencoders

The AE tries to represent the input data by first encoding it, compressing it to the relevant
information and decoding it again.

Within the training of the AE, the weights of the neurons are adjusted so that the loss function will
yield a minimum. By doing so, the output will represent the input in the best feasible way. In Figure 1
a general set up of the architecture of the AE can be seen.

Input Hidden Output

Encode Decode

Figure 1. Autoencoder architecture.

Decoder:

r=g(h) )
Encoder:

h = f(x) 2)
Minimizing the loss function:

L(x,8(f(x))) = L(x,7) ®)
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As mentioned in Vogt et al. [12], different configurations of AE are possible: An Under Complete
Autoencoder (UCA), an DAE or a Contractive Autoencoder (CAE). The implementation that is used
within this paper is an UCA that is partly modified. This is more elaborately described in Section 3.3

3.2. Specifications of the Data Set

The dataset used consists of various offshore WTs located in the same Wind Farm (WF) in the
German North Sea. All of them are of the same turbine type with a rated power 5MW or above.
The turbine type is especially designed for offshore usage. The dataset can be subdivided into two
different parts: The operational data and the event data. At first, the operational data shall be discussed.

3.2.1. Operational Data

A number of around 300 sensors continuously monitor the performance of each WT. These sensors
measure power, wind speed, pressure, temperature, voluminal flow and other values. The WTs are not
equipped with sensors that measure the wave height or the salinity of the air. Furthermore, some of
the sensors represent counters, e.g., the number of cable windings. Different sampling rates of the
sensors are available. Nevertheless, all of the values are grouped into ten-minute-average values by
the SCADA-system. For one timestamp with an averaging period of ten minutes, around 300 average
values can be seen. A time series consisting of the timestamps is available for every WT. The data
available ranges from February 2016 up to December 2019. Next to the average sensor data, an
Operational Mode (OM) of each WT is given. The OM is the event triggered and described in the
next section.

3.2.2. Event Data: Operational Mode

The OM indicates the state of the WT. This state could be defined as one of the following: Failure,
manual stop, service, production, ready. All of the OMs are listed in Table 1. Only one OM can be
valid at a time for one WT. If a new OM is given by the SCADA-systems, the old one will be discarded.
Depending on the environmental conditions and the state of the WT, an OM could be present for
seconds or several days. To have a complete time series, the discrete events with the information of the
WT-state as given by the OM are to be linked to the equidistant operational data. This is described in
the next section.

3.2.3. Preparation of the Input Data

Several OMs can appear during an averaging period; e.g., the OM of the WT can be ready,
followed by production and end within the same ten minutes in a failure. Nevertheless, only one OM
is linked with the equally spaced operational data time series. Therefore, if several OMs are present in
one averaging period, only one is chosen depending on an hierarchical order. This order is presented
in descending prioritization with the most important OM at the top in Table 1.

As a result of the concatenation of the operational data and the OMs, an equidistant time series is
created where both the information of the sensor values and the information about the WT state is
present. This time series is the input for the AE.

Nevertheless, further steps are necessary to have the data ready in that way that it can be used for
training. Those steps consist of the following: Dropping of sensors, data imputation and data scaling,
filtering for operational modes. These steps are explained subsequently.

Dropping of Sensors

It is to be expected that the time series is complete. Nevertheless, data gaps can be seen. To ensure
data quality, filtering for data gaps is conducted. Only if at least 80% of all the values within the
training for one sensor are integer or float numbers, this sensor is used further. If it is not the case,
the sensor is dropped.
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A sensor is also dropped if the value which it represents is a counter and therefore, the values are
monotonous rising. Examples are the cable winding, the energy counter or the number of strokes for
a specific component. Out of the around 300 sensors, roughly 25 represent counters. Those sensors
are dropped.

Table 1. Hierarchy of operational modes in descending order.

Hierarchical Order Operational Mode

1 Failure

2 Manual stop

3 Service

4 Production

5 Ready

6 Setup

7 Initialize

8 Run up

9 System test

10 Ice accumulation

11 Grid outage

12 High wind shutdown

13 Emergency supply WT

14 Emergency supply converter station
15 Shadow impact shutdown

Data Imputation and Data Scaling

A mean imputation method is chosen for this set up. If the sensor is not dropped but one or more
data gaps are still present, the data gaps are substituted with the mean value of all other values of
that sensor from this WT. If data gaps occur, they usually can be seen over a period of several days.
Linear interpolation between the values before and after the data gap might only partly reflect the
sensor behavior. E.g., the fluctuation of the wind within a day. It can be observed that the mean of
data gaps regresses to the mean of the sensor with longer data gaps. Therefore with longer data gaps,
an imputation with the mean is more appropriated. For data gaps of one hour or less it is expected
that a linear interpolation is more appropriate. However this is not yet implemented and therefore
part of future work.

Furthermore a standard scaling is implemented to prepare the data to be ready as an usable input
for the AE. To standard scale the sensor values its mean value is subtracted and the result is divided
by the sensors variance.

Filtering for Operational Modes

One of the reasons for the selection of an AE is that there is less amount of failure data but a
high number of normal samples. In this study failure data is present in the form of service reports
(see Section 4.2.1). An average number of 18 reports is issued per WT per operational year. The amount
of normal samples per operational year is around 51,000, within one year. This result can be calculated
as follows: Every ten minutes within a year one sample (52,560 samples) multiplied with the technical
availability given in the literature to be around 96.6% (see Lutz et al. [17]). An additional reason for a
high amount of normal samples can be seen due to the fact that the WT is performing according to its
design specifications most of the time. This is also indicated by the time-based availability which is
stated to be around 96.6% [17].

In this study, normal samples are considered to be all the timestamps of the concatenated time
series where the operational mode is one of the following: Production, run-up, high-wind shutdown
and ready. Furthermore if in the following a normal operational mode is mentioned, it refers to the
four mentioned beforehand. Only these operational modes are used for training because they are
assumed to represent normal behavior. All other are excluded from training. Purpose of the trained
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AE is its ability to represent normal behavior of the WT. Any deviation from a normal state for a
timestamp given in prediction period is considered to be an anomaly. The training is explained in the
next section. The output of the AE in the section afterwards.

3.3. Training the Autoencoder

To train the AE, it is necessary to develop a model architecture. The initial architecture of the AE is
as follows: Three hidden layers are used. The first and third of which initially consist of 1350 neurons,
the second layer comprises 50 neurons. The input and output dimensions are the same. If in the
following the model or an AE is mentioned it refers to the UCA. The input dimensions can vary from
one implementation for one WT to another, since some sensors might be dropped. Input dimensions
ranging from 243 to 263 dimensions are observed in this set up. The Keras implementation of the adam
optimizer, as described in Kingma and Ba [18] is used. Its learning rate and its decay rate are the same
with a value of 0.001. The number of epochs is set to 10. Furthermore, the mini-batch size during the
gradient descent executed by the adam optimizer is set to 209 samples. A sample is to be understood
as all sensor values for a timestamp after dropping irrelevant sensors. If the input dimension is 263,
a sample comprises 263 values, one for each sensor. The selected parameters are visible in Table 2.

Table 2. Parameters of the model.

Type Parameter
Hidden layer 1 1350
Hidden layer 2 50
Hidden layer 3 1350

Learning rate 0.001
Decay rate 0.001
Batch size 209

Epochs 10

For the activation function, a parametric rectified linear unit is chosen. Its value is set during
optimization. With these specifications, the model of the AE is defined, which allows the training
process to start.

First, the prepared input data is split into a training set and a validation set. This is done by
iterating over the entire dataset and adding 5040 samples (35 days) to the training set and the following
1680 samples (around 12 days) to the validation set. This is repeated subsequently until all available
input data out of one year is assigned. It is assumed that a training period of one year is suitable
even though shorter or longer periods are possible. Additional research needs to be undertaken in
the selection of the most appropriate time window for the training period. However this is part
of future work. One year is assumed to be suitable because it contains seasonal dependencies that
should be learned as normal behavior by the AE. As stated before four years of operational data are
available. Depending on the period in which a prediction is carried out (to be explained in Section 3.4),
different sizes of training periods are available. E.g., in February 2017 one year is available, in February
2018 two years. In order to enable comparable results a training period of one year is selected to train
the AE.

Second, the AE is trained on the training set. The training data is mapped to the computed
reconstruction and the reconstruction error is optimized. The reconstruction error is to be understood
as the difference between the input data and the reconstruction. Additionally, the AE will also map
the validation data, which is not part of the training data to its reconstructions, followed by another
reconstruction error computation. The mean reconstruction error over the validation data then is
yielded as a value, which later can be used to rate the performance.

Once the AE is trained, it is able to reconstruct the sensor values for a given input. To express
if the input is abnormal or normal, we first compute the reconstruction error again. Modeling the



Energies 2020, 13, 1063 7 of 18

reconstruction error as a vector of random variables leads to different methods to measure the abnormal
behavior of the input based on the reconstruction error. This is described in the next paragraph.

Measure the Reconstruction Error

Using the RMSE to measure the reconstruction error, implicitly assumes that the sensor values
are independently distributed. Under the assumption that some sensors are not independent of each
other, the Mahalanobis distance (see Equation (4)) is used.

This measure uses the covariance matrix of the random variables to take possible dependencies
into account. Furthermore, it provides a more realistic measure for this case. Since the covariance
matrix of the random variables is unknown, it will be estimated from the given dataset. Using a
standard covariance estimator may lead to a wrong result caused by outliers in the dataset. Therefore
an outlier robust covariance estimation is used as described in Butler et al. [19]. It approximates the
covariance matrix of the random variables iteratively. After estimating the covariance, it is now possible
to compute the Mahalanobis distance of every input sample and use it as a score, which determines
how abnormal the reconstruction error of a given sample is.

Mahalanobis distance:

Sx=1/(rs = 0)TE ~1(ry — ) )
where:
x  the input sample
z the covariance matrix

ry  the reconstruction of input sample x
Sy Score of input sample x

By using this measure for each input sample x, a value for the score can be calculated. If this value
is higher than a chosen threshold (thres) the input sample is considered to be an abnormal one. This is
seen in Equation (5) and also mentioned in Vogt et al. [12].

true, if Sy > thres

Anomaly, = 5
o {false, else ©

To calibrate the value for the threshold, one has to consider the predictions ground truth. Four
different possibilities can be concluded if the predictions for an anomaly are compared to the actual
OM. This is seen in Table 3.

Table 3. Potential ground truth of prediction.

Type Description Active OM

True negative  Score below threshold, no anomaly is detected =~ Normal OM
False negative  Score below threshold, no anomaly is detected =~ OM is not normal e.g., failure
True positive ~ Score above threshold, an anomaly is detected =~ OM is not normal e.g., failure
False positive  Score above threshold, an anomaly is detected =~ Normal OM

With these four possible outcomes, the false discovery rate (see Equation (6)) can be defined.

This value expresses how many of the sample scores above the threshold are normal according to
the OM

False discovery rate:
_ _fr
fdr = Fr+ip (6)

where:
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tp number of true positives
fp number of false positives
fdr  false discovery rate

This allows calibration of the threshold. At first, all scores of the training and validation dataset
are calculated and sorted in ascending order. By iterating over all possible thresholds from 0 to the
maximum of all calculated scores, the threshold can be calibrated. For each possible threshold the
fdr (see Equation (6)) is calculated. The first threshold is chosen, where the false discovery rate is
lower than the selected value. With the value for the fdr selected, it can be guaranteed that the selected
percent of all detected samples are normal according to the OM. In this case, the fdr is selected to be
0.8. Thereby a higher sensitivity is given and timestamps are more easily considered to be abnormal.
This is a desired behaviour since the impact of subsequent abnormal timestamps form the basis for
another measure. This measure is described in Equation (7).

3.4. Using the Trained Model

The input data for the training of the AE consists out of operational data for a consecutive
time of one year. Once the AE is trained and the threshold calibrated, a prediction can be made for
new timestamps. It is referred to as prediction period in the following. Since the operational data
(see Section 3.2.1) is available starting from February 2016, the earliest prediction can be made by
February 2017. The time window for the prediction period is set to a window of seven days.

A time window of seven days is chosen out of the following reasons:

First, after performing maintenance actions at the WT it is regularly seen that some parameters
of the WT differ. E.g., Oil has been refilled or some control parameters are adjusted. This leads to
a changed behaviour of the WT. Yet this behaviour is within design specifications, the AE has not
learned it while training and therefore it is more likely to observe an extended amount of anomalies
after a maintenance action.

Second, a focus of this tool is to give decision support in a scenario where in a daily routine
at several WTs preventive measures are necessary to perform. If one of the WT is more likely to
fail, preventive measures need to be carried out first. With limited resources the question arises
which WT should be prioritized. This tool helps in making this decision easier by identifying the WT
which is more likely to fail. A prediction period of more than seven days might also be appropriate.
Nevertheless the authors did not investigate this matter. It is part of future work.

For each timestamp in the prediction period, the score can be calculated (see Equation (4)). If the
value for the score is above the calibrated threshold, an anomaly is detected. This boolean result is
available for any timestamp in the prediction (see Equation (5)). To assess the impact of subsequently
arising anomalies, a further measure is defined: The criticality. It is a counter that rises by one if an
anomaly is detected and a normal operational mode is present for that timestamp. The criticality
decreases by one if no anomaly is detected. It stays constant if the operational mode for that timestamp
is a service and an anomaly is detected. Its lower limit is zero and its upper level is equal to the number
of timestamps in the prediction time window, which is 1008 instances. This implies an anomaly for
every timestamp within seven days.

The value of the criticality within the time window of the prediction period is selected as a criteria
to evaluate the failure detectability of the AE. It is described in Equation (7).

Crityy =0
Crity,, if Sy,,, > thres and OM Service
Crity,,, = { Crity, +1, if Sy, | > thres and OM normal  , fori=0,1,...,1008

max (0, Crity, — 1), else

@)
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With x1, xp, . .., x1008 being the timestamps for the prediction period. The results by applying this
equation are outlined in Section 5. Before doing so, a set of standardized failures has to be prepared.
This is explained in the section that follows.

4. Preparation of a Clean Failure Data Set

Maintenance information about the WT is available in the form of service reports.
Different maintenance engineers have described their activities at the WT-site. For each action, a text
description is given, which also indicates the start and the end of the WT unavailability. Since different
engineers use varying semantics for the same WT-subsystems the maintenance information needs to be
standardized (see Sections 4.2.1 and 4.2.2). Before that, downtime events are explained. They serve as a
tool to validate the unavailability documented in the reports. This is described in the following section.

4.1. Generation of Downtime Events

With the ten-minute average values of the sensors wind speed and power calculations and
assumptions can be made. Since this calculation is rather an input to validate events it will be referred
to as event data. Given the wind speed and the power for each timestamp, a decision can be made for
the overall state of the WT. Wind speed and power are to be understood, as explained in the standard
IEC 61400-25 [20]. The scada-events are outlined in Table 4.

Table 4. Description of scada-events for a timestamp with power and wind speed values.

Scada-Event Power Wind Speed
High Wind <0 >cut out wind speed
Low Wind <0 <cut in wind speed
Production >0 >cut in & <cut out wind speed
Unspecified Downtime <0 >cut in & <cut out wind speed

With the values for wind speed and power given for each timestamp, a scada-event can be
deduced. If the scada-event is the same for several sequential timestamps they will be joined together
to one event. The beginning of the first timestamp indicates the start. The end of the last timestamp
indicates the end of the event. This is what is to be understood if in the following a scada-event is
mentioned. Within an averaging period the turbine could be both: Producing energy and consuming
energy e.g., due to a cable unwinding. Hence if the values for power are averaged, this information
can hardly be accessed. Nevertheless, the boundaries for wind speed and power for the different
scada-events are choosen according to Table 4.

4.2. Description and Standardization of Failures

4.2.1. Event Data: Service-Reports

The scada-events provide the information if the WT is in downtime. But it does not resolve the
question of why a downtime has happened. Several causes for downtime of a WT exist. It can be
due to a regulation action: e.g., load curtailment, noise reduction shutdown or bird conservation
actions. Furthermore, a downtime can occur if preventive or corrective measures are being performed
at the WT. If so a service report will be issued by the service provider to the operator. Within this
report, a detailed description of the work performed by the service team is written down. This text
will describe the type of maintenance measure and which component has been the subject of the
work. The service reports with a text description of the work performed are available for evaluation.
A service report is available if during a maintenance activity the onboard crane system of the WT can
be used for the carriage of materials for exchange, repair or enhancement of WT components or if only
persons are performing measures at the WT. If the material is too heavy to be lifted with the onboard
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crane, no service report is available for the evaluation, as described in this paper. Different enterprises
are involved and another form of documentation is used, which is not obtainable to the authors.

Since the text descriptions contained in the service report is hard to use for analysis described in
Section 5 they need to be standardized. This is going to be outlined in Section 4.2.2. Next to the text
description other information is also provided in the service-report. This information implies the start
and end of the measure at the WT, the start and end of the unavailability, the material consumption,
the technicians, the tools used, an identifier for the WT next to other details.

4.2.2. Standards

Two structures shall be introduced in the following: Reference Designation System for Power
Plants® (RDS-PP®) and Zustand-Ereignis-Ursachen-Schliissel (Engl: State Event Cause Code) (ZEUS).
These structures will be used to classify the text description into standards.

RDS-PP®

The standard RDS-PP® aims at having a unique structure of WT systems and subsystems and a
hierarchically dependency of those systems amongst each other. An example: On RDS-PP® level 1 all
of the components related to the WT and its subsystems will be referred to as wind turbine systems.
Beneath the wind turbine system on level 2, the yaw system, the drive train system and the rotor system
are structured next to others. Two advantages of the standard shall be mentioned: First, the standard
can be used to compare different WTs of different Original Equipment Manufacturers (OEMs) and
second the components can be grouped into subsystems and systems. The first one does not apply in
this paper since one WF with WTs of the same turbine type is the subject of consideration. Nevertheless,
the second benefit applies and is being used and described in Section 5.

ZEUS

ZEUS is introduced by the Fordergesellschaft Windenergie und andere Dezentrale Energien (FGW)
within the technical guideline TR7 [21]. ZEUS introduces several blocks that describe the state of
the turbine and the state of a component. With the combination of all blocks nearly every state of
the WT is defined. Each block raises a question that is answered by a certain code in the sub-block.
An example: In ZEUS Block 02-08 the question is raised “Which type of maintenance is active or will be
necessary to eliminate a deviation from the target state?”. This answer can be given by the ZEUS-code
02-08-01, which is corrective maintenance or by the ZEUS-code 02-08-02, which indicates preventive
maintenance. For a better understanding about the terminology of preventive and corrective see the
British Standards Institution: Maintenance-Maintenance terminology [22].

4.3. Selection of Failures

In order to investigate only the corrective maintenance events, filtering is done according to ZEUS.
Only those events are selected where a failure has happened or the measure to restore the WT to a
functional state is a corrective one. Those events are further used in Section 5. The detected anomalies
before such events will be evaluated. Therefore only the events with the ZEUS block shown in Table 5
are chosen.
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Table 5. Selection of events by ZEUS blocks.

Zeus Block Sub-Block  Sub-Block Description

Which t f maint is acti ill b . .
1ClL type Of MAIienance 1s active or Wit be hecessary 02-08-01 Corrective maintenance

to eliminate a deviation from the target state?
State after failure with

How is the functional state of the element to be evaluated? 02-01-03
need for measures

How is the functional state of the element to be evaluated?  02-01-95 Uninvestigated fault
How is the functional state of the element to be evaluated? 02-01-96 Unresolvable fault
How is the functional state of the element to be evaluated? 02-01-97 Undefined fault
How is the functional state of the element to be evaluated? 02-01-98 Other fault

If an event fulfills one of the criteria shown in Table 5, it is selected. Thereafter it has to be
validated with the downtime events. This is described in the next chapter.

4.4. Validation of Failures with Downtime Events

Having created scada-events and a set of standardized failures (see Sections 4.1 and 4.2), it is
necessary to validate whether a failure resulted in a downtime of the corresponding WT. Therefore, the
start and the end of the unavailability as indicated in the service-reports are compared with the
beginning and the end of the scada-events. It is to be expected that the downtimes of the service
reports could be related to the scada events. Nevertheless, three different cases could be observed:
A partial linkage, a full linkage and no linkage at all. These three different cases can be seen in Figure 2.

Partially linked Fully linked No linkage
Scada-event Scada-event Scada-event
—
1 Service report Service report Service report
—. A ———— —— ey
| Service report
: O O : Scada-event
2 Scada-event ' —
: Scada Scada : 2
A ; Service report
Service report | event 1 event 2 e
— 1

Figure 2. Validation of failures.

If the downtimes do not match, but overlap, the start and the end of the scada event, as indicated
by the blue circles, are used within the clean failure dataset (e.g., partially linked Figure 2). If a service
report does not overlap with the scada event, the single events are excluded from the clean failure set
(e.g., no linkage in Figure 2).

As a summary, it can be stated that 35% of the events showed a full linkage, 41% showed
partially linkage and 24% could not be linked and, therefore, have been removed from further analysis.
No linkage is done if the WT is operating during the service. Furthermore, different entries for dates
are available: The date the service report is issued and the date the service duty has happened. If the
entry for the date of the service duty is not available the date of the issuing is used. This may lead to
no linkage of the scada-event with the report.

Some 1495 reports have been standardized. After filtering by ZEUS, 799 of those reports remain,
which are considered to indicate corrective maintenance.
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5. Evaluating the Failure Detectability of the Autoencoder

In this section, the trained AE is executed on a time window of seven days: The prediction period.
The maximum of the criticality, as described in Equation (7) is chosen to compare and to group the
different prediction periods. Two different scenarios are considered. At first the period of expected
normal operation (ENO) is discussed (see Section 5.1). At second, a period before the day of a known
historical failure (see Section 5.2). The result and the comparison of the two are shown in Section 5.3.

5.1. Anomalies during Expected Normal Operation

An assumption is to be made of what is considered to be ENO. A time of three weeks in which
the WT is in a normal OM the majority of the time. Therefore each day, the number of timestamps with
a normal OM is counted. If the number of normal OMs is greater or equal to 138 for every single day
within three weeks, a period of ENO is identified. Within those three weeks, operational modes that
indicate service or error could be present, e.g., a reset of the WT but not longer than for one hour a day.
Of those three weeks of ENO, the second week is selected as the period of prediction. For each WT
two of those periods are identified to have the same amount of events as described in the next section.

5.2. Anomalies before Known Failures

109 reports remain after filtering for the beginning of data acquisition of one year and seven days
before the failure has occurred. The evaluation is done for all of those remaining failures. The failures
are described briefly: The majority was detected in the rotor system, followed by the control system and
the converter system. These three systems are often ranked the highest in terms of failure occurrence.
This can also be seen in Pfaffel et al. [23]. The average downtime of the failures considered is close to
2.5 days. The shortest downtime has a value of around 30 min, the most extended downtime a value
of approximately 22 days. The anomalies before the 109 known failure are to be observed and the
criticality calculated. The last day of the prediction period contains the downtime of the failure.

5.3. Potential Detectability of Wind Turbine Failures

Before the detectability of the failures is discussed, the criticality is to be grouped into different
ranges. This is described in the next section.

5.3.1. Potential Scheduling Time

The ranges reflect the possible scope of action of the operators and are based on the authors’
interpretations. The interpretations are seen in Table 6. If the value for the criticality is 0, the failure
detectability is interpreted as no detection. If the criticality is greater than 432 in the prediction period
of seven days, the detectability can be construed as a reliable detection. The different ranges of the
criticality shown in Table 6 are further used to group the maximum of the criticality of the prediction
periods of the two different scenarios (see Sections 5.1 and 5.2). The results can be seen in Figure 3.

Table 6. Potential scheduling time.

Criticality Share of Interpretation Interpretation in Time of
Standardized Failures Constant Anomalies [Hours]
0 0 No detection 0
1-6 8.4 Spontaneous detection 0-1
7-72 55.8 Possible short term detection 1-6
73-144 179 Likely mid term detection 6-24
145-432 12.6 Expected long term detection 24-72

>432 5.2 Reliable detection >72
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Figure 3. Comparison of prediction periods.

Figure 3 shows the maximum of the criticality in the different prediction periods. The black bars
represent the prediction periods in which, on the last day, a failure has happened. The grey bars
represent the prediction periods in which the WT is in ENO. The maximum of the criticality in the
prediction period is grouped into different ranges (see Table 6) and divided by the total number of
prediction periods in the scenario (Failure or ENO). By doing so, the share of the prediction periods
can be displayed on the y-axis. In Figure 3 one can see that the black bars are more dominant at values
for a higher criticality. Grey bars are more present at values for a low criticality. This underlines the
capability that more anomalies are raised in periods where failure is about to happen. Furthermore,
if one only considers the grouped bars for the criticality of 72 or higher it can be concluded that the
black bars are almost double in their percentage value compared to the grey bars. It can be interpreted
as the probability of a failure to happen is two times higher than a period of ENO to appear. Almost
one-third of the prediction periods with a known failure are in this range with a criticality of 72
or higher.

It can be stated that more anomalies can be seen in periods where a failure has happened.
Nevertheless, some periods of ENO show a high criticality. Several reasons could explain such a
behavior: Within a reset of the WT some control parameters are changed or before the period of ENO
a longer service was conducted. This leads to a new WT behavior, which has not been seen in the
training, and therefore anomalies are detected.

In the next section the subsystems that are subject to expected long term detection and reliable
detection (ELT&RD) (see ranges in Table 6) are to be discussed. Furthermore, some of those prediction
periods are further investigated.

5.3.2. Potential Detectability of Wind Turbine Component Failures

Anomalies can be seen before failures have happened in different WT-systems. Figure 4 shows
the ratio of systems share. The proportion of failures in RDS-PP® systems that are related to ELT&RD
is calculated. Similar, the proportion was calculated for all RDS-PP® systems that are available for
evaluation after filtering (see Section 5.2). These two proportions are divided. The result will yield a
ratio for each RDS-PP® system. It is displayed in Figure 4 on the y-axis and its calculation is given in
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Equation (8). The ratio indicates if the detectability of failures (ELT&RD) has increased or decreased if
compared to the share of all possible detectable failures.

SYSELT&RD
. Y0y SYSELT&RD i
Ratio = ===5 75 ®)
iz1 SYsm
where:

Sysgrrerp  Number of failures in specific RDS-PP® system subject to ELT&RD
Sys Number of failures in specific RDS-PP® system. All failures available for evaluation considerd.
Ratio Ratio of systems share
n Number of unique RDS-PP® systems subject to ELT&RD
m Number of unique RDS-PP® systems available for evaluation

On the x-axis, the systems on RDS-PP® level 2 are visible: The central lubrication system (=MDV),
the generator transformer system (=MST), the rotor system (=MDA), the fire alarm system (=CKA),
the control system (=MDY), the converter system (=MSE), the environmental measurement system
(=CK]J) and the yaw system (=MDL).

It can be deduced that failures in the central lubrication system, the generator transformer system
and the rotor system are possible better to detect. Those systems are overrepresented in failures that
are considered to be ELT&RD. The ratio increases by around two. The opposite applies to failures,
which happen in the converter system (=MSE), the environmental measurement system (=CK]J) and the
yaw system (=MDL). Here a decrease of the ratio is seen. A ratio of one would indicate that the share
of systems (ELT&RD) compared to all systems considered did not change, yet this is not recognized.

In Figure 5, the development of the criticality over the timestamps in the prediction period is
visualized. On the last day of the prediction, failure is seen. The time of constant criticality indicates
the OM service, which happened after a failure is detected at the WT. The failures shall be discussed
briefly. An anomaly is almost present in every timestamp in the prediction period before a failure
showed up in the central lubrication system (=MDV). The amount of grease was low and therefore
had to be refilled. This caused a shutdown of the WT. Similar behavior of the criticality is seen
before a failure appeared in the rotor system (=MDA). Some adjustments of connectors needed to be
made. In the case of the failure in the meteorological measurement system (=CKJ) many anomalies are
detected as well. Here both of the anemometers had to be replaced during the service after the failure.

2.00 A
1.75 A
1.50 A
1.25 A

ystems Share

1.00 A
n

0.75 A

0.50 A

Ratio of

0.25 A

0-00 T T T T T T T T
=MDV =MST =MDA =CKA =MDY =MSE =CK] =MDL

Figure 4. The ratio of Share of Systems with expected long term and reliable detection to all
possible detections.
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Figure 5. Development of criticality.
6. Discussion

The model of the AE was taken from Vogt et al. [12] and further developed. A hyper parameter
optimization (HPO) is not implemented for every model. Rather, the best parameters of one model are
selected to be valid for all other models as well. A HPO should be part and further explained in future
work. As for now, the false discovery rate is chosen to select the best value for the threshold. Part
of future research should probably be to apply and test different methods to calibrate the threshold.
Furthermore, different time windows for the prediction period need to be investigated. Additional
work should also focus on different imputation methods for different lengths of data gaps and
for sensors with varying characteristics in terms of the system inertia which they are measuring.
The implementation of an AE, based on the proposed methodology, on WT data is especially helpful
to detect anomalies that are rather dynamic. To also investigate long term trends, a system needs to be
combined with the AE developed.

By using an AE, it is possible to identify abnormal WT behaviour. Nevertheless, domain
knowledge is still needed to validate if an anomaly is likely to turn into a failure. Furthermore,
it is still required to identify which system, subsystem or component is the root cause for the detected
anomaly. Additional research will also focus on identifying not only the WT, which is critical, but
also the sensor or set of sensors that are most probably causing the anomaly. This will lead to ease of
decision making.

Three assumptions are to be mentioned:

1. Itis to be expected that the WT is performing according to its design specification most of the
time and a training of the AE will represent normal behaviour.

2. Itis expected that deviations from a normal state can be seen in the ten-minute-average data of
the sensors and the operational data, and this is indicated as an anomaly by the trained AE.

3. It is expected that the information in the service reports and the descriptions of the work
performed are correct and standardized correctly.

7. Summary and Outlook

The AE developed here shows a good possibility to detect historical failures in various
WT-systems. This can be deduced because many anomalies are seen before a failure has happened.
At first, the AE is developed, and secondly, the failures are structured and standardized according to
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RDS-PP® and ZEUS. After doing so, those two approaches were linked and the detectability of failures
with the AE were validated on a set of standardized historical failures. Of all the failures, around 35.7%
were subject to likely midterm detection, which can be interpreted as at least six hours of constant
anomalies. About 17.8% of all failures are considered as expected long term detection, which can be
understood as at least 24 h of constant anomalies. About 5.2% can be detected reliably. This can be
interpreted as at least 72 h of constant anomalies. By standardizing the failures, we can state which
system failures are more easily detectable. These systems were as follows: The central lubrication
system, the generator transformer system and the rotor system.

The usage of an AE could help to identify failures and upcoming repair measures in various
WT-systems and thereby to increase the revenue and the uptime of the WT by a significant extent.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Autoencoder

ANN Artificial Neural Network

CAE Contractive Autoencoder

CMS Condition Monitoring System

DAE Denoising Autoencoder

DDM Data Driven Model

ELT&RD  Expected Long Term Detection and Reliable Detection

ENO Expected Normal Operation

FGW Fordergesellschaft Windenergie und andere Dezentrale Energien
HPO Hyper Parameter Optimization

LCOE Levelized Cost of Energy
MTTR Mean Time to Repair

NBM Normal Behaviour Model

OEM Original Equipment Manufacturer
oM Operational Mode

Oo&M Operation and Maintenance

ROC Receiver Operation Characteristic

RDS-PP®  Reference Desigantion System for Power Plants®
SCADA  Supervisory Control and Data Acquisition

SHM Structural Health Monitoring System
UCA Under Complete Autoencoder

WE Wind Farm

WT Wind Turbine

ZEUS Zustand-Ereignis-Ursachen-Schliissel (Engl: State Event Cause Code)
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