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Abstract: For wireless electric vehicle charging, the relative position of the primary and secondary
coils has significant impacts on the transferred power, efficiency and leakage magnetic flux. In this
paper, a magnetic positioning method using simultaneous power and data transmission (SWPDT)
is proposed for power coil alignment. Four signal coils are installed on the primary coil to detect
the secondary coil position. By measuring the positioning signal amplitudes from the four signal
coils, the power coil relative position can be obtained. Moreover, all the communication needed in
the positioning process can be satisfied well by SWPDT technology, and no extra radio frequency (RF)
communication hardware is needed. The proposed positioning method can work properly both in
power transfer online condition and in power transfer offline condition. Thus, a highly integrated
wireless charging system is achieved, which features simultaneous power transfer, data transmission
and position detection. A positioning experimental setup is built to verify the proposed method.
The experimental results demonstrate that the positioning resolution can be maintained no lower
than 1 cm in a 1060 mm × 900 mm elliptical region for a pair of 510 mm × 410 mm rectangular power
coils. The three-dimensional positioning accuracy achieves up to 1 cm.

Keywords: electric vehicle charging; magnetic positioning; online positioning; simultaneous wireless
power and data transmission

1. Introduction

Wireless electric vehicle charging (WEVC) is gaining worldwide attention and developing very
quickly [1–3]. Compared to the conductive charging method, WEVC eliminates the bulky cables,
the requirement of a manual connection, and the associated hazards. WEVC exhibits many attractive
advantages such as convenience, safety and weatherproofing. Both inductive power transfer (IPT) and
capacitive power transfer (CPT) can be used for WEVC [3]. This paper is focused on the IPT system.

For IPT systems, the coil misalignment greatly deteriorates the transferred power, efficiency
and leakage of magnetic flux [3,4]. Much research to improve the misalignment tolerance of IPT
systems has been conducted [5–12]. The preferred approach is to optimize the coil structure [5–7],
which maintains a relatively uniform magnetic field distribution during misalignment. Another
approach is to optimize the compensation network, which improves the circuit performance under
misalignment conditions [8–12]. However, the improvement of misalignment tolerance is limited, and
the charging still needs to take place in a limited charging zone. To confirm the pickup coil being
within the charging zone, the position detection of power coils is indispensable for a practical wireless
charger, as described by SAE J2954 [13]. On the other hand, if the position detection method is of
high accuracy, it can be combined with the autonomous parking technology to align the power coils
accurately. This will reduce the need to design an IPT system with large misalignment tolerance.
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Accordingly, the extra hardware cost and control cost for the misalignment tolerance improvement
can be reduced. Therefore, for a commercialized wireless EV charger, the cost of improving position
detection accuracy and the cost of improving misalignment tolerance should be traded off.

Some position detection methods available on the market have been considered for WEVC, such as
radio frequency (RF) positioning [14–20], optical positioning [21,22] and acoustical positioning [23].
However, RF positioning and acoustical positioning both suffer signal multipath impairment and
non-line-of-sight impairment when they work in a complex environment. The optical positioning
methods, including visual image analysis and infrared positioning, are susceptible to obstacles, dust and
harsh weather. Meanwhile, all the methods above are limited by their high cost and difficulty in
integrating with the power pads. Magnetoresistive (MR) sensors are investigated to be used for coil
misalignment detection [24–27], but this method has not achieved precise three-dimensional (3D)
coordinate output, and plenty of sensors involved in the sensor matrix greatly increase the system cost
and complexity. Moreover, some magnetic positioning methods are proposed in [28–33], which utilize
auxiliary coils to measure the magnetic field generated by the primary power coil. The magnetic
positioning methods are of high accuracy, low cost, not susceptible to the environment and are easy to
integrate with power pads. In [28–33], the primary power coil needs to generate a very weak magnetic
field for positioning. Thus, the primary resonant tank is excited by a very low-voltage source during
positioning. For this very low-voltage mode, the primary high-power inverter has to switch to a very
low direct current (DC) bus voltage [31,32], or to operate with a very large phase-shift angle [33].
However, either the added bus selection switches or the large phase-shift operation will decrease the
reliability and safety of the high-power inverter. Moreover, the inverter can only work in the high
voltage mode for power transfer, or the low voltage mode for positioning at a time. Thus, position
detection and power transfer cannot be simultaneously conducted, i.e., the online position monitoring
is impossible.

We have proposed a simultaneous wireless power and data transmission (SWPDT) system in [34],
which is based on the frequency division multiplexing (FDM) technique and quadrature phase-shift
keying (QPSK) modulation. A high-frequency data carrier is modulated by four discrete phase shifts
to represent two binary bits. The data carrier is injected into one side of the IPT system, and then it
transfers to the other side through the magnetic coupling between power coils. The data carrier is then
extracted and demodulated, so that the near-field communication can be achieved. In this method,
the amplitude of the data carrier is not utilized for communication purpose. However, the receiving
amplitude of the data carrier is proportional to the mutual inductance between power coils, which
means it contains the relative position information of power coils. Unfortunately, the three-dimensional
(3D) position cannot be determined exactly by only one mutual inductance. Thus, more independent
mutual inductances should be involved to derive the 3D coordinate. This idea has been revealed in
our preliminary work [35].

Based on the near-field communication technology in SWPDT, this paper proposes a magnetic
positioning method, which has the following features:

(1) Four auxiliary signal coils are added for positioning while other hardware is shared with the
SWPDT system.

(2) The positioning signal is transmitted by the signal coils rather than the primary power coil, so
the very low voltage mode of the high-power inverter, as mentioned before, is avoided.

(3) The positioning process can be carried out both in the power transfer online condition and in
the power transfer offline condition. The proposed amplitude measurement method is immune to the
power fundamental interference and ensures online positioning accuracy.

(4) The communication need in the positioning process can be well satisfied by SWPDT technology.
A highly integrated IPT system for WEVC is achieved, i.e., simultaneous power transfer, data
transmission and position detection.
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2. Magnetic Positioning Integrated with Near-Field Communication in Simultaneous Wireless
Power and Data Transmission (SWPDT) System

2.1. Communication Principle of SWPDT System

The original SWPDT system proposed in [34] is shown in Figure 1a, and labelled as
“communication setting” in this paper. The subscripts “1” and “2” stand for the primary side
and the secondary side, respectively. The forward communication channel can be expressed as
TX1→LTX1→L1→L2→LRX2→RX2, where LTX1 is used to inject the data carrier into the power circuit, and
LRX2 is used to extract the data carrier from the power circuit. Similarly, the backward communication
channel is TX2→LTX2→L2→L1→LRX1→RX1. The configurations of the forward communication and
the backward communication are fully symmetrical. The only difference is that they use two different
data carrier frequencies, i.e., f d1 (5 MHz) for the forward and f d2 (6.25 MHz) for the backward. Thus,
the forward communication is illustrated as an example in the following.
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Figure 1. Simultaneous wireless power and data transmission (SWPDT) system: (a) original 
communication setting; (b) proposed positioning setting. 

For the primary data transmitter TX1, the switching frequency of Q1 is equal to the data carrier 
frequency fd1. The gate drive signal vG1 is modulated with four kinds of phase shift φ, i.e., 0, π/2, π, 
3π/2, as shown in Figure 2 [34]. The transmitting signal vTX1 with each phase shift for a certain 
duration Tsymbol is called a symbol. As shown in the mapping table of Figure 2, the data is represented 
by the phase change Δφ between two adjacent symbols, namely differential quadrature phase-shift 
keying (DQPSK). The transmitting signal vTX1 and the adjacent phase change Δφ can be expressed by: 

( ) { }TX1 1 d1( ) sin 2π ( ) , ( ) 0,π / 2,π,3π / 2v t A f t n nϕ ϕ= + ∈ , (1)

( )= ( )- ( -1)n n nϕ ϕ ϕΔ , (2)

where A1 is the constant amplitude, and n is the symbol sequence number. 
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Figure 1. Simultaneous wireless power and data transmission (SWPDT) system: (a) original
communication setting; (b) proposed positioning setting.

For the primary data transmitter TX1, the switching frequency of Q1 is equal to the data carrier
frequency f d1. The gate drive signal vG1 is modulated with four kinds of phase shift ϕ, i.e., 0, π/2,
π, 3π/2, as shown in Figure 2 [34]. The transmitting signal vTX1 with each phase shift for a certain
duration Tsymbol is called a symbol. As shown in the mapping table of Figure 2, the data is represented
by the phase change ∆ϕ between two adjacent symbols, namely differential quadrature phase-shift
keying (DQPSK). The transmitting signal vTX1 and the adjacent phase change ∆ϕ can be expressed by:

vTX1(t) = A1 sin(2π fd1t + ϕ(n)), ϕ(n) ∈ {0,π/2,π, 3π/2}, (1)

∆ϕ(n) = ϕ(n) −ϕ(n− 1), (2)

where A1 is the constant amplitude, and n is the symbol sequence number.
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The transmitting signal vTX1 is injected into the power circuit by the loose coupling between LTX1

and the power line, and then transfers to the secondary side through the coupling of power coils L1L2.
The receiving capacitor CRX2 is resonant with the signal extractor LRX2 at the data carrier frequency f d1,
which forms a narrow passband filter to extract the data carrier f d1. The data signal received on CRX2

can be expressed by:
vRX2(t) = K12A1 sin(2π fd1t + ϕ(n) + ϕ12), (3)

where K12 and ϕ12 are the forward transfer gain and phase shift, respectively. K12A1 is the receiving
signal amplitude, which is denoted as |VRX2|.

Through the demodulation circuit in RX2, the adjacent phase change ∆ϕ(n) can be calculated by
(4) [34]. Then the data can be demodulated according to the mapping table in Figure 2, so that the
forward communication is achieved.

∆ϕ(n) = ϕcal(n) −ϕcal(n− 1), (4)

where
ϕcal

(
n) =

{
cos−1 α(n), 2π− cos−1 α(n)

}
∩

{
sin−1 β(n), π− sin−1 β(n)

}
α(n) = vsin 2(n)√

v2
sin 2(n)+v2

cos 2(n)
, β(n) = vcos 2(n)√

v2
sin 2(n)+v2

cos 2(n)

2.2. Integration of Magnetic Positioning

For the forward communication discussed above, the transmitting signal amplitude A1 is a
constant. The signal forward transfer gain K12 in (3) is proportional to the mutual inductance of the
power coils M12. Thus, the receiving signal amplitude |VRX2|, namely K12A1, is also proportional to the
mutual inductance M12.

|VRX2| = K12A1 = χ12M12, (5)

where χ12 is the proportionality constant determined by system parameters.
On the other hand, the mutual inductance M12 is related to the physical dimensions and relative

position of the power coils according to the Neumann formula [32]:

M12 =
µ0
4π

∮
l1

∮
l2

→

dl1 ·
→

dl2
r12

. (6)

It can be derived from (6) that if the physical dimensions of power coils are fixed, the mutual
inductance is only a function of the relative position between two power coils as (7).

M12 = F12(x12, y12, z12), (7)

(x12, y12, z12) = (x2 − x1, y2 − y1, z2 − z1), (8)

where (x12, y12, z12) is the relative coordinate of the secondary coil referenced to the primary coil, given
that the primary coil coordinate is (x1, y1, z1) and the secondary coil coordinate is (x2, y2, z2).

According to (5) and (7), the receiving signal amplitude is a function of the relative position
between two power coils.

|VRX2| = χ12F12(x12, y12, z12). (9)

From (9), it can be seen that for any given relative position of the power coils, there is always a
unique receiving amplitude value |VRX2|. However, for a given receiving amplitude |VRX2|, the relative
coordinate (x12, y12, z12) cannot be determined uniquely, since the coordinate has three unknown
variables. Thus, the original configuration of a SWPDT in Figure 1a is insufficient to determine the
3D relative position coordinate. In order to obtain the 3D relative position coordinate, at least three
independent signal amplitudes are needed. This means at least three independent signal transmitting
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coils on the ground side or three independent signal receiving coils on the vehicle side are needed.
However, adding the signal receiving coils will increase the hardware volume in the vehicle. Also,
the signal receiving coils on the vehicle may suffer the position shift due to the vehicle jolt, which
will degrade the positioning accuracy. Thus, adding the signal transmitting coils on the ground side
is better.

Based on the analysis above, four identical signal transmitting coils LA–LD are employed for
position detection, as shown in Figure 1b. Since the secondary-side setting of positioning system is same
as that of communication system in Figure 1a, it is not redrawn in Figure 1b. The signal transmitting
coils LA–LD are placed on the primary power coil and connected to the existing data transmitter TX1

through switches SA–SD, respectively. All the signal coils LA–LD have the same inductance value as
the signal injector LTX1, so that the compensation capacitor CTX1 in TX1 can be shared. Compared
to the three-coil configuration, the adopted four coils can improve the positioning accuracy by one
redundant measurement. Moreover, even if one of the four coils malfunctions, the other three coils can
still achieve the 3D positioning. Thus, the four-coil configuration is cost-effective.

In the positioning process, switch ST1 is always off, so that the signal injector for communication
is cut off from the transmitter TX1. Switches SA–SD are switched on and off in turns, which means the
signal coils LA–LD are in turns energized by TX1 to transmit the positioning signals, i.e., the data carrier
f d1. Thus, only one signal coil can be energized to transmit a signal at a time. The four positioning
signals are transferred to the secondary coil in turns, and then received by the secondary receiver RX2.
According to the amplitudes of the four receiving signals, the relative position between the primary
and secondary coils can be determined.

Figure 3 shows the positioning circuit model when SA is switched on and the signal coil LA is
energized by TX1. The circuit models for the other signal coils during working are the same. In Figure 3,
both the power inverter on the primary side and the power rectifier on the secondary side can be seen
as a short circuit for data carrier f d1 due to their large DC bus capacitors. Three mutual inductances are
formed between the primary power coil L1, the secondary power coil L2 and the energized signal coil
LA, respectively M12, MA1 and MA2. The power resonant tank L1C1 and L2C2 are both resonant at the
power frequency f p (85 kHz). At the data carrier frequency f d1 (5 MHz), the parasitic capacitances of
the power inductors and the parasitic inductances of the power capacitors should be considered, which
are denoted by CL1_para, CL2_para, LC1_para and LC2_para, respectively. Thus, the primary impedance Z1

and the secondary impedance Z2 at the data carrier frequency f d1 can be derived as:

Z1(ωd1) = jωd1L1 +
1−ω2

d1LC1_paraC1

jωd1
(
C1 + CL1_para −ω2

d1LC1_paraC1CL1_para
) , (10)

Z2(ωd1) = jωd1L2 +
Zbranch

1 + jωd1CL2_paraZbranch
. (11)

where

Zbranch =
1

jωd1C2
+ jωd1LC2_para + jωd1L′RX2 +

ω2
d1M2

RX2

RLRX2_para

Given that the current through LA is Ie, the induced electromotive force (EMF) on the secondary
power coil is:

ε2(A)(ωd1) = jωd1MA2Ie + jωd1M12I1

= jωd1

(
MA2 −M12

ω2
d1M12MA2+ jωd1MA1Z2

ω2
d1M2

12+Z1Z2

)
Ie

(12)

The term in the parentheses of (12) can be defined as the effective mutual inductance Meff(A)

between the signal coil and the secondary coil, which synthesizes the reflection effect of the primary
induced current I1. The definition is:
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Meff(A) = MA2 −M12
ω2

d1M12MA2 + jωd1MA1Z2

ω2
d1M2

12 + Z1Z2
. (13)
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Thus, the EMF on the secondary power coil when LA is energized can be rewritten as:

ε2(A)(ωd1) = jωd1Meff(A)Ie. (14)

Since the four signal coils LA–LD are identical, the energized currents through them are same and
equal to Ie. When LA–LD are energized in turns, the secondary induced EMF vector can be obtained as:

ε2(A)

ε2(B)
ε2(C)

ε2(D)

 = jωd1Ie ·


Meff(A)

Meff(B)
Meff(C)

Meff(D)

, (15)

where the subscript A, B, C or D represents the coil LA, LB, LC or LD is energized, respectively.
Since the secondary signal extractor LRX2 is fixed around the power line as shown in Figure 1a,

the mutual inductance MRX2 in Figure 3 is a constant. Meanwhile, in Figure 3, LRX2 is resonant with
CRX2 at frequency ωd1, and RLRX2_para is the parasitic resistance of the signal extractor. Thus, the
receiving amplitude |VRX2| is proportional to the EMF on the secondary power coil, which can be
derived as:

∣∣∣VRX2(A)

∣∣∣∣∣∣VRX2(B)

∣∣∣∣∣∣VRX2(C)

∣∣∣∣∣∣VRX2(D)

∣∣∣


=

∣∣∣∣∣∣∣ ω2
d1MRX2LRX2(

ω2
d1L2CL2_paraZbranch −Zbranch − jωd1L2

)
RLRX2_para

∣∣∣∣∣∣∣ ·


∣∣∣ε2(A)

∣∣∣∣∣∣ε2(B)

∣∣∣∣∣∣ε2(C)

∣∣∣∣∣∣ε2(D)

∣∣∣


. (16)

Since four signal coils are fixed on the primary coil, the effective mutual inductance of each signal
coil Meff(A)–Meff(D) is a function of the power coils’ relative position coordinate (x12, y12, z12).

Meff(A)

Meff(B)
Meff(C)

Meff(D)

 =


F(A)(x12, y12, z12)

F(B)(x12, y12, z12)

F(C)(x12, y12, z12)

F(D)(x12, y12, z12)

. (17)
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From (15)–(17), the relationship between the receiving signal amplitudes and the relative coordinate
of power coils can be derived as:

∣∣∣VRX2(A)

∣∣∣∣∣∣VRX2(B)

∣∣∣∣∣∣VRX2(C)

∣∣∣∣∣∣VRX2(D)

∣∣∣


=

∣∣∣∣∣∣∣ jω3
d1MRX2LRX2Ie(

ω2
d1L2CL2_paraZbranch −Zbranch − jωd1L2

)
RLRX2_para

∣∣∣∣∣∣∣ ·


F(A)(x12, y12, z12)

F(B)(x12, y12, z12)

F(C)(x12, y12, z12)

F(D)(x12, y12, z12)


. (18)

The functions F(A), F(B), F(C) and F(D) in (18) can be derived from the Neumann formula (6),
but they do not have the analytical expressions. Thus, Equation (18) cannot be used to directly
calculate the relative coordinate from the receiving amplitudes. However, it confirms the one-to-one

correspond-ence between the amplitude vector
→

VRX2(|VRX2(A)|, |VRX2(B)|, |VRX2(C)|, |VRX2(D)|) and the

power coils’ relative coordinate
→

C12(x12, y12, z12). Thus, the lookup table method can be used to
determine the position coordinate according to the amplitude vector.

3. Optimal Number and Locations for Auxiliary Signal Coils

According to (17) and (18), the change of the secondary coil position leads to the change of effective
mutual inductances, and further leads to the change of receiving signal amplitudes. For the same
position change, the more the effective mutual inductances change, the higher position resolution will
be obtained, i.e., the higher positioning accuracy. Thus, the optimal locations for the signal coils are the
places where the gradient of effective mutual inductance ∇Meff is maximized.

∇Meff =
∂Meff

∂x
→
x +

∂Meff

∂y
→
y +

∂Meff

∂z
→
z . (19)

Simulations were conducted in ANSYS Electromagnetics Suite to find the optimal locations.
The Cartesian coordinate system for positioning is built in Figure 4, of which the origin is set to
the three-dimensional geometric center of the primary coil. The dimensions of the power coils and
signal coils are listed in Table 1. The position of each coil is represented by the coordinate of its
three-dimensional geometric center. In the normal alignment condition, the primary coil coordinate
(x1, y1, z1) is (0, 0, 0), and the secondary coil coordinate (x2, y2, z2) is (0, 0, 160 mm).
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Table 1. Coil dimensions.

Power Coils

Primary coil outer dimension l1 × w1 × h1 510 mm × 410 mm × 2.5 mm
Primary coil copper width wc1 52.5 mm
Secondary coil outer dimension l2 × w2 × h2 510 mm × 410 mm × 2.5 mm
Secondary coil copper width wc2 52.5 mm
Normal air gap g 160 mm

Auxiliary Signal Coils

Signal coil outer diameter do 63 mm
Signal coil inner diameter di 58 mm
Signal coil height hs 10 mm

To minimize the installation space of the signal coils in practice, it is better to place the signal
coils in parallel with the primary coil, i.e., in parallel with the XOY plane. In this condition, only the
z-component of flux density through the signal coil will contribute to the effective mutual inductance
with the secondary coil. Thus, we can energize the secondary coil and find the places where the gradient
of flux density z-component ∇Bz is maximized. These places also have the maximized gradient of
effective mutual inductance ∇Meff. The gradient of flux density z-component ∇Bz is defined as:

∇Bz =
∂Bz

∂x
→
x +

∂Bz

∂y
→
y +

∂Bz

∂z
→
z . (20)

In the simulation, the secondary coil is energized with a 1-A current. Since the thickness of the
signal coil is 10 mm, the gradient magnitude |∇Bz| on the plane 10 mm above the primary coil is
depicted in Figure 5. It can be seen that the highest gradient magnitude appears at the four inner
corners. This means the mutual inductance at these places will change to the greatest extent when the
secondary coil position changes. Thus, the position resolution can be maximized when the signal coils
are placed at the inner corners above the primary coil.
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coils are colored by pink. Their coordinates are also given in Figure 6. 
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To verify the optimal locations for the signal coils, three kinds of signal coils placement are
simulated and compared, as shown in Figure 6. The primary coil is colored by green, and the signal
coils are colored by pink. Their coordinates are also given in Figure 6.
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Figure 6. Three placements of auxiliary signal coils: (a) placed above four inner corners of the primary
coil; (b) placed above four sides’ midpoints of the primary coil; (c) placed above the primary coil interior.

In the simulation, the primary coil coordinate (x1, y1, z1) is always fixed at (0, 0, 0). In the initial
condition, i.e., the normal alignment condition, the secondary coil coordinate (x2, y2, z2) is (0, 0,
160 mm), which is also denoted by (x20, y20, z20). Then the secondary coil moves along three axes, and
its position change along three axes are denoted by ∆x2, ∆y2 and ∆z2, respectively.

(∆x2,∆y2,∆z2) = (x2 − x20, y2 − y20, z2 − z20), (21)

The total change of effective mutual inductances ∆Mtotal is used to evaluate the performance of
coil placement, which is defined as:

∆Mtotal =
∣∣∣Meff(A) −M′eff(A)

∣∣∣+ ∣∣∣Meff(B) −M′eff(B)

∣∣∣
+

∣∣∣Meff(C) −M′eff(C)

∣∣∣+ ∣∣∣Meff(D) −M′eff(D)

∣∣∣, (22)

where M’eff(A), M’eff(B), M’eff(C), M’eff(D) are the effective mutual inductances in the initial condition,
i.e., when (x2, y2, z2) is equal to (x20, y20, z20), and Meff(A), Meff(B), Meff(C), Meff(D) are the effective
mutual inductances when the secondary coil is moved. Thus, ∆Mtotal describes the total change of four
effective mutual inductances relative to those of the initial position (x20, y20, z20).

When the secondary coil moves along three axes, ∆Mtotal in the three placement conditions are
depicted in Figure 7a–c. It can be seen that the Placement I always has the maximum ∆Mtotal for the
same position change along x, y and z axes. The results are consistent with the gradient analysis
in Figure 5. This means the Placement I will produce the maximum change of the receiving signal
amplitude vector (|VRX2(A)|, |VRX2(B)|, |VRX2(C)|, |VRX2(D)|). As a result, the highest positioning resolution
can be obtained from Placement I.
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Figure 7. Cont.
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Figure 8. Placement with different coil number: (a) three signal coils; (b) four signal coils; (c) five 
signal coils. 

Figure 7. Total change of effective mutual inductances ∆Mtotal when the secondary coil moves along:
(a) x axis; (b) y axis; and (c) z axis.

To find out the optimal number of signal coils, placements with different numbers of signal coils
are analyzed. To achieve 3D positioning, at least three signal coils are needed. Thus, the placements
with three coils, four coils and five coils are simulated, as shown in Figure 8. The placement with three
coils occupies three inner corners to maximize the sensitivity, as shown in Figure 8a. The placement
with four coils in Figure 8b is same as the Placement I in Figure 6a, which has been proved the best
placement for the four-coil structure. The placement with five coils adds a central coil, as shown in
Figure 8c. The results of ∆Mtotal for different numbers of coils are depicted in Figure 9a–c. Compared
to three coils, four coils can significantly improve the position sensitivity in all three directions. These
improvements are indicated by the shadow areas in Figure 9a–c. Specifically,∆Mtotal is increased 42% at
∆x = 100 mm, increased 51% at ∆y = 100 mm, and increased 35% at ∆z = −50 mm. However, from four
coils to five coils, the further improvement is very limited. There are nearly no improvements in∆Mtotal

when moving along x and y axes. In the z direction, ∆Mtotal is increased only 25% at ∆z = −50 mm.
Thus, four coils are the most cost-effective with regard to accuracy and complexity. More than four
coils bring little improvement in positioning accuracy but increase complexity and costs.
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Figure 8. Placement with different coil number: (a) three signal coils; (b) four signal coils; (c) five
signal coils.
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4. Amplitude Measurement of Positioning Signal

In Figure 3, the receiving positioning signal vRX2 is a high-frequency sine wave (5 MHz).
The conventional method to measure the amplitude is to rectify the high-frequency wave and sample
the DC voltage by analog-to-digital converter (ADC) [33], i.e., the envelope detection. However,
in the power transfer online condition, the envelope detector will be severely interfered by the power
fundamental component, which is also received by signal extractor LTX2. Thus, it is unsuitable for
online positioning.

In [34], the data receiver circuit RX2 has been proved immune to the power fundamental component
when it works as data demodulator. Also, it is not hard to see that the data receiver output also contains
the amplitude information of the receiving signal vRX2, which is just neglected in the communication
process in [34]. Thus, we can reuse the data receiver RX2 to measure the positioning signal amplitude.
No extra hardware is needed and the measurement is immune to the power fundamental interference.

The amplitude measurement circuit is separated from Figure 1a and redrawn in Figure 10a.
Similar to (1) and (3), the transmitting signals vLA–vLD and the receiving signals vRX2(A)–vRX2(D) in
positioning can be expressed as:

vLi(t) = |VLi| sin(2π fd1t + ϕ(n)), (23)

vRX2(i)(t) =
∣∣∣VRX2(i)

∣∣∣ sin
(
2π fd1t + ϕ(n) + ϕt(i)

)
, (24)

where i = A, B, C or D, which indicates the transmitting coil. |VLi| is the transmitting amplitude
on LA–LD, |VRX2(i)| is the receiving amplitude from LA–LD, and ϕt(i) is the phase shift of the transfer
channel. ϕ(n) is the transmitting phase shift containing data bits, as illustrated in Section 2.1.

Since the receiving signals vRX2(A)–vRX2(D) are equivalent for the amplitude measurement circuit,
the subscript i (i = A, B, C or D) is omitted in the following analysis for simplification. In Figure 10a,
the receiving signal vRX2 is divided by two identical resistors RRX2 which are grounded at the center to
produce a pair of differential outputs vRX2+ and vRX2−.
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vRX2+ = +
vRX2

2
=

1
2
|VRX2| sin(2π fd1t + ϕ(n) + ϕt), (25)

vRX2− = −
vRX2

2
= −

1
2
|VRX2| sin(2π fd1t + ϕ(n) + ϕt). (26)

The differential signals vRX2+ and vRX2– are respectively connected to the two inputs, a and b, of
the single-pole double-throw analog switches, Scos2 and Ssin2. The output table of the analog switch is
shown in Table 2.

Table 2. Output table of analog switch.

Control Pin c Output Pin o

High Connected to input a
Low Connected to input b

The control signals of two switches vc_sin2 and vc_cos2 are square waves with frequency f d1’, and
they are shifted by π/2 with each other, as shown in Figure 10b. Thus, each analog switch output vo_sin2

or vo_cos2 is equal to vRX2+ multiplied by the respective square wave as:

vo_ sin 2 = vRX2+ ×
4
π

∑
k

sin(k·2π f ′d1t+k·ϕc)
k

= 2|VRX2 |
π sin(2π fd1t + ϕ(n) + ϕt) ×

∑
k

sin(k·2π f ′d1t+k·ϕc)
k

, (27)

vo_ cos 2 = vRX2+ ×
4
π

∑
k

cos(k·2π f ′d1t+k·ϕc)
k

= 2|VRX2 |
π sin(2π fd1t + ϕ(n) + ϕt) ×

∑
k

cos(k·2π f ′d1t+k·ϕc)
k

, (28)

where k = 1, 3, 5 . . . ; ϕc is the phase shift between the receiver control signal and the transmitter
reference phase. In Figure 10b, ϕc and ϕt are both set to zero for clarity.
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Applying the trigonometric product-to-sum formula to (27) and (28), it can be derived that vo_sin2

and vo_cos2 are composed of f d1 ± kf d1’ (k is odd) frequency components. If we set the control frequency
f d1’ equal to the data carrier frequency f d1, vo_sin2 and vo_cos2 will have a DC component (i.e., f d1 – f d1’)
and all the other components are higher than 2f d1, as shown in Figure 10b. Since 2f d1 � 0, the DC
components in vo_sin2 and vo_cos2 are easy to be obtained through low-pass filters (LPF), which are:

vsin 2(n) =
|VRX2|

π
cos

(
2π( fd1 − f ′d1)t + ϕ(n) + ϕt −ϕc

)
, (29)

vcos 2(n) =
|VRX2|

π
sin

(
2π( fd1 − f ′d1)t + ϕ(n) + ϕt −ϕc

)
. (30)

The DC voltages vsin2(n) and vcos2(n) are sampled by the digital signal processor (DSP). Then the
amplitude of vRX2 can be calculated by:

|VRX2| = π ·

√
v2

sin 2(n) + v2
cos 2(n). (31)

It should be noted that if there is no PLL (phase-locked loop) in the receiver to synchronize the
control signal frequency f d1’ with the receiving positioning signal frequency f d1, these two frequencies
cannot be exactly equal. The results of (29) and (30) will be two very low-frequency (f d1 – f d1’) sine
waves rather than two DC voltages, which is determined by the small deviation between f d1 and f d1’.
However, this deviation will not affect the amplitude calculation, since (31) will eliminate the deviation
frequency item 2π (f d1 – f d1’) t. Thus, the amplitude of high-frequency signal vRX2 still can be determined
by measuring these two very low-frequency sine waves. On the other hand, the receiving amplitude
|VRX2| is independent of the transmitting phase shift ϕ(n) which is related to data transmission. This
means the position detection and the data transmission can work simultaneously through auxiliary
coils LA–LD.

In the power transfer online condition, the power fundamental component interference f p received
on CRX2 will be transformed to f p ± kf d1’ (k is odd) components at the outputs of analog switches
according to (27) and (28). Since f p << f d1’, all the transformed components can be easily filtered out by
LPF. Thus, the amplitude measurement is immune to the power fundamental component interference.

As discussed in Section 2, Equation (18) confirms the one-to-one correspondence between the

amplitude vector
→

VRX2(|VRX2(A)|, |VRX2(B)|, |VRX2(C)|, |VRX2(D)|) and the power coils’ relative coordinate
→

C12(x12, y12, z12). Thus, the lookup table method can be used to determine the position coordinate
→

C12(x12, y12, z12) according to the measured amplitude vector
→

VRX2(|VRX2(A)|, |VRX2(B)|, |VRX2(C)|,



Energies 2020, 13, 1081 14 of 22

|VRX2(D)|). The procedure of deriving the 3D position coordinate is illustrated by the flowchart in
Figure 11.Energies 2020, 13, x FOR PEER REVIEW 14 of 22 
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5. Experimental Results 

To verify the proposed magnetic positioning method, an experimental setup was built, as shown 
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signal coils LA–LD are connected to the primary data transmitter TX1 output through switches SA–SD, 
respectively. The positioning signal is extracted by LRX2 and further processed by the secondary data 
receiver RX2. The system parameters are listed in Table 3. 
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5. Experimental Results

To verify the proposed magnetic positioning method, an experimental setup was built, as shown
in Figure 12. The adopted data transceiver hardware is same as that proposed in [34]. Four auxiliary
signal coils LA–LD are connected to the primary data transmitter TX1 output through switches SA–SD,
respectively. The positioning signal is extracted by LRX2 and further processed by the secondary data
receiver RX2. The system parameters are listed in Table 3.
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vLD are the voltages on auxiliary signal coils LA–LD, respectively. It can be seen that LA–LD are enabled 
in turns to transmit positioning signals, and the enabled time is 1 s for each coil. The transmitting 
amplitudes of the four signal coils are equal, and keep constant during the power coils’ misalignment. 
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Table 3. System parameters.

Power Transfer Circuit

Power carrier frequency f p 85 kHz
Power Coils L1 and L2 (uH) 85 and 85
Compensation capacitors C1 and C2 (nF) 45 and 42
Load resistor RL (Ω) 10

Primary Data Transmitter TX1

Forward data carrier frequency f d1 5 MHz
Input voltage Vd1 12 V
Auxiliary signal coils LA, LB, LC and LD 1.3 uH
CTX1 800 pF
Cs1 1000 pF
DC chokes Lf1 33 uH
MOSFET Q1 TPH3206LD
Power consumption 1.5 W

Secondary Data Receiver RX2

Signal extractors LRX2 1.4 uH
CRX2 700 pF
RRX2 15.1 kΩ
Analog switches Ssin2 and Scos2 TS5A23159
Corner frequency of LPF f c 35 kHz

The transmitting waveforms of four auxiliary signal coils are shown in Figure 13a, where vLA–vLD

are the voltages on auxiliary signal coils LA–LD, respectively. It can be seen that LA–LD are enabled
in turns to transmit positioning signals, and the enabled time is 1 s for each coil. The transmitting
amplitudes of the four signal coils are equal, and keep constant during the power coils’ misalignment.
There is a 20 ms dead time between two adjacent signal coils. Each signal coil sends its unique identity
(ID) at 100 ms after being enabled, to tell the receiver which coil is sending the signal. The zoom-in
waveforms in Figure 13b show the positioning signal is 5 MHz sine wave.
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The ID detection waveforms are shown in Figure 15. The DQPSK communication method is 
adopted, which has been illustrated in Section II-A. The IDs for LA–LD are “A”–“D” in ASCII code, 
respectively. According to the data mapping table in Figure 2, the data transmitter TX1 changes the 
signal phase to modulate the coil ID into the signal. In Figure 15, the phase change will result in the 
transient responses in both transmitter and receiver, which accounts for the voltage spikes in vLA–vLD 
and vRX2 waveforms. The duration for each data symbol Tsymbol is 31.25 us, and the bit rate is 64 kbps. 
On the receiver side, the phase changes are demodulated back to data, which are displayed by the 
high-bit pin and low-bit pin of DSP, as shown in Figure 15. The demodulation delay is 16 us. 

Figure 13. (a) Transmitting waveforms of auxiliary signal coils; (b) zoom-in waveforms when LC

is enabled.

The receiving waveforms of secondary signal extractor LRX2 is shown in Figure 14a. The signal
extractor receives the positioning signal sent by LA–LD in turns. Since Figure 14a is measured without
power coils’ misalignment, the voltage amplitudes received from LA–LD are nearly the same. The output
of the amplitude measurement circuit is shown in Figure 14b. Since PLL is not adopted in the receiver,
it can be seen that the waveforms of vsin2 and vcos2 are two very low-frequency sine waves (41 Hz)
rather than two DC voltages due to the small deviation between f d1 and f d1’, as analyzed in Section 4.
DSP samples these two very low-frequency sine waves, and the voltage amplitude received from each
auxiliary signal coil |VRX2(A)|–|VRX2(D)| can be calculated according to (31).
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Figure 14. (a) Receiving waveforms of secondary signal extractor LRX2; (b) amplitude measurement
waveforms when LA is enabled.

The ID detection waveforms are shown in Figure 15. The DQPSK communication method is
adopted, which has been illustrated in Section 2.1. The IDs for LA–LD are “A”–“D” in ASCII code,
respectively. According to the data mapping table in Figure 2, the data transmitter TX1 changes the
signal phase to modulate the coil ID into the signal. In Figure 15, the phase change will result in the
transient responses in both transmitter and receiver, which accounts for the voltage spikes in vLA–vLD

and vRX2 waveforms. The duration for each data symbol Tsymbol is 31.25 us, and the bit rate is 64 kbps.
On the receiver side, the phase changes are demodulated back to data, which are displayed by the
high-bit pin and low-bit pin of DSP, as shown in Figure 15. The demodulation delay is 16 us.
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while the voltage amplitudes received from LA and LD are decreased. In Figure 16c, the secondary coil 
was moved 100 mm along the y axis. The voltage amplitudes received from LA and LB are increased 
while the voltage amplitudes received from LC and LD are decreased. In Figure 16d, the secondary 
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Figure 15. Identity (ID) detection waveforms of auxiliary signal coils: (a) LA; (b) LB; (c) LC; and (d) LD.

When the secondary power coil position was changed, the receiving voltage waveforms vRX2

were measured, as shown in Figure 16. In Figure 16a, the voltage amplitudes received from LA–LD are
nearly equal when the secondary coil is aligned with the primary coil. This is because four signal coils
are symmetric with respect to the secondary coil in this condition. In Figure 16b, the secondary coil
was moved 100 mm along the x axis. The voltage amplitudes received from LB and LC are increased
while the voltage amplitudes received from LA and LD are decreased. In Figure 16c, the secondary coil
was moved 100 mm along the y axis. The voltage amplitudes received from LA and LB are increased
while the voltage amplitudes received from LC and LD are decreased. In Figure 16d, the secondary
coil was moved 50 mm along z axis. The voltage amplitudes received from LA–LD are nearly equal
once again due to the symmetry. However, the receiving amplitudes in Figure 16d are smaller than
those in Figure 16a because the effective mutual inductances between the auxiliary signal coils and the
secondary power coil are reduced.
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the linear track y = x are shown in Figure 18a–d, respectively. The measurement is taken every 1-cm 
position change along x axis, y axis or z axis. The voltage amplitudes of |VRX2(A)|–|VRX2(D)| are 
represented by the digital values in DSP, which are calculated according to (31). The amplitude value 
at each position shown in Figure 18 is the average value of 20 repeated measurements. In the 
measurement, the maximum amplitude variation due to the background noise is 9 in digital value. 
Thus, the digital amplitude change less than 9 will be deemed as noise, and cannot be used to 
distinguish position. In Figure 18a, when Δx2 ≥ 530 mm, the amplitude changes of |VRX2(B)| and 
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Figure 16. Receiving voltage waveforms when the position change of secondary power coil (∆x2, ∆y2,
∆z2) is equal to: (a) (0, 0, 0) mm; (b) (100, 0, 0) mm; (c) (0, 100, 0) mm; and (d) (0, 0, 50) mm.

In the condition of 3.3 kW power transfer, the power interference to the positioning amplitude
measurement was tested, as shown in Figure 17. In Figure 17a, the power inverter output voltage vp

and current ip are shown in CH1 and CH2, respectively. The positioning transmitting waveform vLA

and receiving waveform vRX2 are both superimposed with a 85 kHz component. Since the 85 kHz
component received by LRX2 is much larger than the 5 MHz component, the 5MHz component nearly
cannot be identified in the receiving waveform vRX2 in Figure 17a. However, in Figure 17b, it can be
seen that the small 5 MHz component can still be extracted through the analog switches and LPF, and
transformed to 41 Hz sine wave, i.e., vsin2 and vcos2. Meanwhile, the large 85 kHz power fundamental
component has no effect on the waveforms of vsin2 and vcos2, which are sampled by DSP for amplitude
calculation. Thus, the amplitude measurement is immune to the power fundamental interference,
as analyzed in Section 4. The online positioning is achieved. It should be noted that the power losses
caused by the signal coils during online positioning can be neglected, since the signal coils are resonant
with the compensation capacitor CTX1 at 5 MHz, which forms a bandpass filter to greatly suppress the
power carrier of 85 kHz.
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receiving waveform vRX2; (b) amplitude measurement waveforms vsin2 and vcos2.

The measured voltage amplitudes when the secondary coil moves along x axis, y axis, z axis
and the linear track y = x are shown in Figure 18a–d, respectively. The measurement is taken every
1-cm position change along x axis, y axis or z axis. The voltage amplitudes of |VRX2(A)|–|VRX2(D)| are
represented by the digital values in DSP, which are calculated according to (31). The amplitude value at
each position shown in Figure 18 is the average value of 20 repeated measurements. In the measurement,
the maximum amplitude variation due to the background noise is 9 in digital value. Thus, the digital
amplitude change less than 9 will be deemed as noise, and cannot be used to distinguish position.
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In Figure 18a, when ∆x2 ≥ 530 mm, the amplitude changes of |VRX2(B)| and |VRX2(C)| due to a 1-cm
position change will be less than 9. When ∆x2 ≤ −530 mm, the amplitude changes of |VRX2(A)| and
|VRX2(D)| due to 1-cm position change will be less than 9. In Figure 18b, when ∆y2 ≥ 450 mm, the
amplitude changes of |VRX2(A)| and |VRX2(B)| due to a 1-cm position change will be less than 9. When
∆y2 ≤ −450 mm, the amplitude changes of |VRX2(C)| and |VRX2(D)| due to a 1-cm position change will
be less than 9. According to the amplitude change rule mentioned above, a conservative positioning
region in the normal air gap condition (g = 160 mm) can be derived as a 1060 mm × 900 mm elliptical
region. Inside this region, the positioning resolution can keep no lower than 1 cm. The results of air
gap changing conditions are shown in Figure 18c. The variation range of air gap is ± 100 mm. It can be
seen that the positioning resolution along z axis can also keep no lower than 1 cm. Figure 18d shows
the results when the secondary coil moves along the linear track y = x in the normal air gap condition.
Since ∆y2 is always equal to ∆x2 on the line y = x, Figure 18d can be drawn in a two-dimensional
plot, and ∆x2 is set as the horizontal axis. It can be seen that in the range |∆x2| ≤ 350 mm, every 1-cm
position change also can be distinguished.
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interval between these test points is 1 cm. Finally, all the coordinates of the total 681 test points were 
output accurately without error. The results show that the positioning accuracy of 1 cm is achieved. 

Figure 18. Measured receiving voltage amplitude when the position of secondary power coil changes
along: (a) x axis; (b) y axis; (c) z axis; and (d) the line y = x in the normal air gap condition.

In the positioning experiment, the lookup table method was used to derive the real-time position
coordinate according to the measured amplitude vector. The lookup table that links the amplitude

vector
→

VRX2 (|VRX2(A)|, |VRX2(B)|, |VRX2(C)|, |VRX2(D)|) to the power coils’ relative coordinate
→

C12(x12,

y12, z12) was established by the initial calibration. In the calibration, the amplitude vector
→

VRX2 was
measured every 1-cm step along x, y and z axes in the whole positioning region, and then recorded

together with the current coordinate
→

C12. After calibration, 227 horizontal positions under three air gap
conditions, respectively 110 mm, 160 mm and 210 mm, were tested to verify the positioning accuracy.
The 227 horizontal positions are marked by red points in Figure 19, which include the positions on
the outline of the quarter elliptical region and the positions on y = x. The minimum interval between
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these test points is 1 cm. Finally, all the coordinates of the total 681 test points were output accurately
without error. The results show that the positioning accuracy of 1 cm is achieved.Energies 2020, 13, x FOR PEER REVIEW 20 of 22 
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6. Conclusions  

In this paper, a magnetic positioning method based on the SWPDT system is proposed. A high 
integration of simultaneous power transfer, data transmission and position detection is achieved. The 
three-dimensional positioning accuracy achieves up to 1 cm. Compared to the conventional methods, 
the proposed positioning signal is transmitted by the auxiliary signal coils rather than the primary 
power coil. Thus, the operation of the primary high-power inverter will not be affected in the 
positioning process, and the online positioning can be achieved. The optimal locations for the 
auxiliary signal coils have been analyzed by finite element method (FEM) simulation, which are 
found to be the inner corners of the primary rectangular power coil. Since the signal coils for 
positioning are installed on the ground side, it can save the in-vehicle space and avoid the accuracy 
degrading due to the vehicle jolt. The amplitude measurement of the positioning signal is achieved 
by the data receiver circuit, which is immune to the power fundamental interference and ensures the 
online positioning accuracy. Moreover, all the communication needs in the positioning process can 
be satisfied well by SWPDT technology, and no extra RF communication hardware is needed. 
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6. Conclusions

In this paper, a magnetic positioning method based on the SWPDT system is proposed. A high
integration of simultaneous power transfer, data transmission and position detection is achieved.
The three-dimensional positioning accuracy achieves up to 1 cm. Compared to the conventional
methods, the proposed positioning signal is transmitted by the auxiliary signal coils rather than the
primary power coil. Thus, the operation of the primary high-power inverter will not be affected in
the positioning process, and the online positioning can be achieved. The optimal locations for the
auxiliary signal coils have been analyzed by finite element method (FEM) simulation, which are found
to be the inner corners of the primary rectangular power coil. Since the signal coils for positioning are
installed on the ground side, it can save the in-vehicle space and avoid the accuracy degrading due to
the vehicle jolt. The amplitude measurement of the positioning signal is achieved by the data receiver
circuit, which is immune to the power fundamental interference and ensures the online positioning
accuracy. Moreover, all the communication needs in the positioning process can be satisfied well by
SWPDT technology, and no extra RF communication hardware is needed.
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