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Abstract: Prediction of a battery’s health in data centers plays a significant role in Battery Management
Systems (BMS). Data centers use thousands of batteries, and their lifespan ultimately decreases
over time. Predicting battery’s degradation status is very critical, even before the first failure
is encountered during its discharge cycle, which also turns out to be a very difficult task in real
life. Therefore, a framework to improve Auto-Regressive Integrated Moving Average (ARIMA)
accuracy for forecasting battery’s health with clustered predictors is proposed. Clustering approaches,
such as Dynamic Time Warping (DTW) or k-shape-based, are beneficial to find patterns in data
sets with multiple time series. The aspect of large number of batteries in a data center is used
to cluster the voltage patterns, which are further utilized to improve the accuracy of the ARIMA
model. Our proposed work shows that the forecasting accuracy of the ARIMA model is significantly
improved by applying the results of the clustered predictor for batteries in a real data center.
This paper presents the actual historical data of 40 batteries of the large-scale data center for one
whole year to validate the effectiveness of the proposed methodology.

Keywords: forecasting; clustering; energy systems; classification

1. Introduction

Uninterrupted power source (UPS) batteries are an integral part of any data center, which ensure
the stable performance of the data center during transitional fail-over mechanisms between power
grids and diesel generators [1]. Data centers require steady power for smooth performance, which
is thus managed by the UPS batteries. UPS is installed between the main power grid and the servers [2].
Since the electricity bill of a data center constitutes a significant portion of its overall operational costs,
data centers are now major consumers of electrical energy [3]. In 2013, data centers in U.S.A. consumed
91 billion kilowatt-hours of electricity, and this was expected to continue to rise over the years [4].
In 2017, nearly 8 million data centers required an astronomical 416.2 terawatt-hours of electricity [5,6].
Even a single faulty battery in a pack could cause millions of dollars of damage to the equipment used
in the data centers during transition. The layout of the data center’s design is illustrated in Figure 1.

Despite the increasing improvements in battery manufacturing and storage technology [7],
health estimation of batteries in data centers is still a challenge. Not surprisingly, many studies
have been conducted to develop battery life prediction of the battery packs, such as voltage fault
diagnosis, charge regimes, and state of health (SOH) estimation. Severson et al. [8] demonstrated
a data-driven model to predict the battery life cycle with voltage curves of 124 batteries before
degradation. Tang et al. [9] predicted the battery voltage with the model-based extreme learning
machine for electric vehicles. L. Jiang et al. [10] employed the Taguchi method to search an optimal
charging pattern for 5-stage constant-current charging strategy and improved the lithium-ion battery
charging efficiency by 0.6–0.9%. D. Sidorov et al. [11] presented a review of battery energy storage
and an example of battery modeling for renewable energy applications and demonstrated an adaptive
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approach to solve the load leveling problem with storage. Hu et al. [12] employed advanced sparse
Bayesian predictive modeling (SBPM) methodology to capture the underlying correspondence between
capacity loss and sample entropy. Sample entropy of short voltages displayed an effective variable
of capacity loss. You et al. [13] proposed a data-driven approach to trace battery SOH by using data,
such as current, voltage, and temperature, as well as historical distributions. Song et al. [14] proposed
a data-driven hybrid remaining useful life estimation approach by fussing the IND-AR (Iterative
nonlinear degradation autoregressive model) and empirical model via the state-space model in RPF
(Regularized particle filter) for spacecraft lithium-ion batteries. Zhou et al. [15] combined Empirical
Mode Decomposition (EMD) and Auto-Regressive Integrated Moving Average (ARIMA) models
for the prediction of lithium-ion batteries’ Remaining Useful Life (RUL) in the Battery Management
System (BMS), which is used in electric vehicles. Chen et al. [16] proposed a hybrid approach
by combining Variational Mode Decomposition (VMD) de-noising technique, ARIMA, and GM (Gray
Model) (1,1) models for battery RUL prediction.

Figure 1. Data center layout. PDUS = Power Distribution Units.

The ARIMA model has been one of the most widely used models in time-series forecasting [17–19].
Kavasseri et al. [20] examines the use of fractional-ARIMA or f-ARIMA models to forecast wind speeds
on the day-ahead (24 h) and two-day-ahead (48 h) horizons. A hybridization of Artificial Neural
Network (ANN) and the ARIMA model is proposed by Khashei et al. [21] to overcome the mentioned
limitation of ANNs and yield a more accurate forecasting model than traditional hybrid ARIMA-ANNs
models. The annual energy consumption in Iran is forecasted by using three patterns of ARIMA–ANFIS
model by Barak et al [22].

ARIMA is used in forecasting social, economic, engineering, foreign exchange, and stock problems.
It predicts future values of a time series using a linear combination of its past values and a series
of errors [23–27]. Since batteries in the data center are always on charging mode, the deep discharge
is a rare occurrence for batteries and their distinctive internal chemistry causes different behaviors
like stationary or stochastic for each battery. In addition, failure data is not available in real life which
makes it a challenge to accurately predict the battery status before its first failure. For this paper,
we developed a cluster-assisted ARIMA model framework to improve the accurate prediction of battery
voltage. Clustered patterns are utilized as external regressors to improve the accuracy of the ARIMA
model and provide a more accurate indication of battery status in the future. Clustering in machine
learning is the grouping of a similar set of data points. This aspect is used to group the patterns
of batteries within the data center and improve the forecasting model instead of predicting thousands
of batteries individually. Clustering algorithms, like Dynamic Time Warping (DTW), hierarchical, fuzzy,
k-shape, and TADPole all have unique functionality for grouping similar data points, and the features
selected by clustering improve the model forecasting accuracy [28–30]. The proposed cluster-assisted
forecasting results are compared with actual battery data and without clustered ARIMA forecasting.
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The rest of the paper is organized as follows: Section 2 describes the features of the data center
and data set used for the study. Section 3 describes data preprocessing and explain the methodology
by introducing the algorithms for cluster consistency and clustered ARIMA forecasting. Section 4
shows the steps to implement the proposed clustered forecasting method. Section 5 demonstrates
the battery cluster consistency detection results and cluster-assisted ARIMA forecasting, as well as
discusses the effectiveness of the method by comparing the results with actual data and without the
cluster-assisted forecasting ARIMA model. Section 6 concludes this work.

2. Overview of the Data Set

In this paper, data is collected from a large-scale social media company located in China. One year
of data is used for research with 470,226 data points and a sampling interval time of 1 min. This data set
includes the variables of data center’s main power, transmission units, battery units, cooling systems,
and DC (Direct Current) load values. Data set variables are shown in Table 1.

Table 1. Data center’s data set with all 470,226 feature instances.

Data Center Features Type Attributes

Phase current/active/factor Power 12
3-Phase active/power/factor Power 6
HVDC module load/voltage Transmission units 11

HVDC DC module current/volt Transmission units 12
Battery group current/state Battery units 4

Voltage/Resistance/Temperature Battery units 120
PDU branch current server units 24

AC supply/return temperature Cooling system 24
Humidity Cooling system 19

AC coil temperature Cooling system 6
Up/Down front temperature Cooling system 24

DC meter volt/current DC unit 4

Our objective is to develop a scalable clustering framework to improve the forecasting accuracy
of the ARIMA model for battery voltages in data centers. Voltage measurement of individual batteries
is a common practice in data centers whereas other parameters like current and charging regimes
are also collectively measured from a group of batteries. Voltage is utilized in the simplest of BMS
of small vehicles to large scale data centers. Our data has voltage from 40 batteries; and battery aging
features are selected from domain knowledge of batteries [8].

3. Methodology

Figure 2 shows the flowchart of the proposed method and the steps of the proposed method
are given as follows:

• Data Preprocessing

Step 1: First, separate the battery voltage data from the data set. Extract the historic
values of first-month battery voltages and keep updating the real-time voltage values.

• Cluster Consistency

Step 2: Carry out clustering analysis on first month data and real time updated data set
and proceed to the step 3.
Step 3: Match the clustering results of first month and updated month data for cluster
consistency. If cluster members are different in first and updated month clusters, then go
to the next step.

• Clustered ARIMA Forecasting
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Step 4: Fit an ARIMA model using the cluster members as external predictors to forecast
the battery’s voltage status, and if a cluster has only 1 member, then fit an ARIMA
model without the external predictor. If the forecasted voltage has a declining trend,
then the battery health is dropping comparative to its first-month’s cluster members.

Figure 2. Proposed method flowchart.

3.1. Data Preprocessing

Data cleaning is the first step in the data preprocessing step by identifying the missing values
and correcting the raw data for analysis. See Section 2 for multiple features of the data set.
Battery voltage data is utilized to forecast battery health with the assumption that all the batteries
are new and equally healthy. Data centers keep batteries in a safe and controlled environment,
and all the batteries would show identical behavior and over fitted prediction models if short intervals
are selected considering batteries do not fail in their early months. Our analysis suggests that discharge
events occur sometimes once in a few months and sometimes twice a month. In order to analyze
the effect of these events in a consistent manner, we used one year of data and divided it by 12
to update the data on each iteration on monthly basis. The first month’s data was extracted from



Energies 2020, 13, 1085 5 of 17

the data set and used as a standard for comparing clustering and voltage status with real-time updated
data. See Section 4.1.

3.2. Cluster Consistency

We now present our proposed cluster based predictor configuration Algorithm 1 for batteries
in a data center. The approach to update the clustered predictor for forecasting on monthly basis
is presented in this algorithm. For a detailed description of the k-shape-based and DTW clustering
algorithm, see Appendixes A.1 and A.2.

Algorithm 1: Configuration Algorithm for Cluster Based Predictor.
Input: Vij and LVij are the first and latest month input data sets, respectively; i=time

and j=total number of batteries
Output: Outlined battery cluster DA
initialize
for first month clustering do

B = Vij ←clustering applied to input data set
end
return Set of initial clustering/First month FB
for first month cluster voltage status do

FB←Mean estimation applied to clusters
end
return First month cluster voltage status MB
for latest month clustering do

LB = LVij ←clustering applied to input data set
LB // set of latest month clustering
MC = LB←Mean estimation applied to latest clusters
MC // set of latest month clusters voltage status
DA = LB− FB // Subtract elements of latest cluster set from First month
cluster set

DM = MC−MB // Initial clustering set and latest clustering mean
voltage difference

if DM = ∅ then
No change in cluster voltage status
else

DM 6= ∅
Change in cluster voltage status
DM is the set of changed voltage status batteries
if DA = ∅ then

Consistent clusters
else

DA 6= ∅
Inconsistent cluster
DA is the set of odd batteries

end
return New cluster or outlined batteries DA

end
return Changed cluster voltage status DA

end

Clustering algorithms accept the battery voltage data set, Vij , as the first-month historic voltage
data set and LVij as the latest and updated voltage data set, where (i) is the time, and (j) is the total
number of batteries. FB is the set of batteries when clustering is applied in the first month. LB is the set
of batteries when clustering is applied in the latest month. DA is the set of inconsistent batteries’ cluster
which is a result of a comparison between clustering sets of latest month (LB) and first month (FB).
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If DA is not equal to ∅, it is an inconsistent or outlined battery cluster. MB and MC are the first
and latest month clusters’ mean voltage sets, respectively. These sets also represent cluster voltage
status comparative to other clusters. The difference between MB and MC gives us DM. If DM is not
equal to ∅, cluster voltage status changes.

3.3. Clustered ARIMA Forecasting

Algorithm 2 is proposed to improve the ARIMA accuracy by utilizing clustering results as external
regressors to forecast battery health. ARIMA models are the integration of Auto-regressive (AR) models
and Moving Average models. ARIMA models are good for forecasting stationary time-series data [31].
Input sets are either DA or DM. Extracting a battery element from the set, vj, makes a new set DC.
Extracting another element from DA from the remaining elements results in R, where R is the set
of predictors used to forecast the battery element in DC. Then, fit an ARIMA model with R predictors
to forecast DC. AF is the battery’s forecasted voltage values.

Algorithm 2: Clustered ARIMA Forecasting.

Input: DA, set of outlined batteries
or MA, voltage status changed
Output: AF ARIMA forecasts voltage behavior
initialize
DC = DA− {vj}={vj : vj ∈ DA} // Select a battery from the cluster set
if DC = ∅ then

DA←Fit ARIMA model to DA
AF ←Forecast with fitted ARIMA model
else

DC 6= ∅
DR = DA− DC R = DR− {vj}={vj : vj ∈ DR} // Select predictors
DC ←Fit ARIMA model with R
AF ←Forecast with fitted ARIMA model and R

end
return Battery voltage forecast AF
while AF is the voltage forecast do

Battery voltage forecast status check
if AF Decline in battery voltage then

AF is the set of degrading batteries
else

AF is the set of stable batteries
end

end
return AF Voltage forecast

4. Software Implementation

4.1. Cluster Consistency Detection

Import the time-series data transformed into CSV format in the data preprocessing step for R
programming. Dtwclust package is used for time series clustering in R. For clustering batteries,
data frame should be converted into a matrix by (as.matrix) function. Visualize the clustering results
using Plot function. Repeat this process every month until an inconsistent cluster is detected and then
perform clustered ARIMA forecasting (see Section 4.2). An overview of the clustering inconsistency
detection procedure is shown in Figure 3.
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Figure 3. Battery cluster inconsistency and battery degradation forecast method.

4.2. Implementing Clustered ARIMA Forecasting

The objective of this procedure is to improve the forecasting accuracy of ARIMA model by utilizing
cluster members as an external regressor. An overview of the method is shown in Figure 3. Import
“Forecast” package in R. Select a battery from the inconsistent cluster to forecast. Perform ACF (Auto
Correlation Function), PACF (Partial Auto Correlation Function), and Dickey-Fuller test to check
the data stationarity. Use auto.ARIMA function to build the fitting model for the selected battery.
Select cluster predictors for “Xreg” function in the fitting model; if the cluster contains only one battery,
then “Xreg” function is not required. Use the “forecast” function to forecast the battery voltage. If the
declining trend is shown, the cluster is degrading, and if the trend is stable, then the battery will
be stable in the future, as well.
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5. Result and Discussion

5.1. Data Center Battery Setup

Forty VRLA batteries were installed in a room, with 20 batteries in each rack with an average
voltage level between 13 and 14 V. Voltage data was collected in the BMS of the data center. There
were four discharge cycles and three power surges during one year of battery life in the data center, as
shown in Figure 4.

Figure 4. One year battery voltages in data center.

5.2. Battery Voltage Time Series Clustering

Table 2 shows the Silhouette index test values, which were used to select number of clusters
when clustering is applied on the batteries (see Figure 5). Figure 6 shows consistent cluster members
from the first eight months. Inconsistent cluster is shown in Figure 7 after nine months. Battery 6
is now separated by battery 36 and 39, which was originally in the same cluster from the first month.
Implementing DTW clustering and k-shape-based clustering on similar data resulted in different
cluster members, which can be seen in Figures 8 and 9.

This change in cluster consistency is an indication of a change in battery voltage behavior. Utilizing
this new information as a starting point to predict the battery health from each cluster, an improved
accuracy forecasting model is discussed in Section 5.3.

Table 2. Silhouette index test for cluster number selection.

Silhouette Index

Time Cluster 2 Cluster 3 Cluster 4 Cluster 5

Month1 0.7356 0.7554 0.6295 0.5831
Month8 0.5857 0.5935 0.5440 0.4960
Month9 0.5741 0.6076 0.5607 0.4737
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Figure 5. K-shape-based 1st month clusters.

Figure 6. Consistent clusters after eight months.

Figure 7. Cluster inconsistency encounter after nine months.
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Figure 8. Dynamic Time Warping (DTW) clustering 1st month clusters.

Figure 9. DTW clustering after nine months.

5.3. ARIMA Forecasting

The proposed clustered ARIMA approach was evaluated by comparing actual voltage with CK
predictors (k-shape-based clustered predictors), Single predictors (without clustering),Total predictors
(complete data), and CDTW predictors (DTW clustered predictors). The metrics used are Root
Mean Square Error (RMSE), Mean Average Error (MAE), and Mean Average Percentage Error
(MAPE). One battery from each cluster, such as Battery 6, Battery 15, Battery 19, and Battery 36,
was selected for demonstration. The cluster inconsistency was detected in the 9th month, thus
transforming the data of 9th month for the forecasting model. ACF and PACF for the transformed
data are shown in Figure 10. Table 3 shows the augmented Dickey-Fuller test of the selected batteries.
Batteries were selected from different clusters, and each battery showed different voltage behavior,
which would require a different fitting model for each battery. The forecast package used the
(auto.ARIMA) function to automatically select the best-fitted model by comparing with the other
models. AIC (Akaike information criterion) and BIC (Bayesian information criterion) are both
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penalized-likelihood criteria that were used for fit criteria [32]. Tables 4 and 5 show the AIC and BIC
values of the best-fitted model on the batteries for the Total, Single, CK, and CDTW predictors scenario.

Table 3. The augmented Dickey-Fuller.

Dickey-Fuller Lag Order p-Value

Battery 6 −5.6687 3 0.01
Battery 15 −4.8736 3 0.01
Battery 19 −5.1239 3 0.01
Battery 36 −7.1468 3 0.01

Figure 10. Auto-correlation and partial correlation of the selected battery data.

Table 4. Fitted models AIC and BICvalues.

Battery 6 Battery 36 Battery 15

T-Predictor S = CK-Predictor CK-Predictor S-Predictor T-Predictor CK-Predictor S-Predictor T-Predictor

AIC −251.59 −268.59 −244.52 −228.09 −234.49 −297.4 −220.57 −255.08
BIC −249.5 −206.81 −229.86 −207.31 −217.01 −288.96 −206.27 −252.99

Table 5. Fitted models AIC and BIC values with Dynamic Time Warping (DTW) Clustering.

Battery 19 Battery 36 Battery 15

T-Predictor S = CDTW -Predictor CDTW -Predictor S-Predictor T-Predictor CDTW -Predictor S-Predictor T-Predictor

AIC −280.93 −297.34 −264.44 −228.09 −234.49 −280.38 −220.57 −255.08
BIC −268.46 −268.01 −243.74 −207.31 −217.01 −268.31 −206.27 −252.99

Battery 6 (cluster 2) is a single member in cluster 2, and it has zero external predictor in the cluster
at the point of cluster inconsistency detection by k-shape clustering. This makes battery 6 (cluster 2)
a special case because CK predictor and Single predictor case is equal for battery 6. Prediction results
of battery 6 with Single/CK predictor have better accuracy than Total predictor. This argument is further
verified for Battery 15 (cluster 1) and Battery 36 (cluster 3) with the metrics comparison of the CK
predictor, Single predictor, and Total predictor in Table 6. Battery 15 (cluster 1), Battery 36 (cluster 2),
and Battery 19 (cluster 3) are the chosen batteries from CDTW clustering. Table 7 shows the metrics
comparison of the CDTW predictor, Single predictor, and Total predictor. ARIMA accuracy is improved
when implemented with DTW and k-shape-based clustering. Results show that k-shape-based
clustered ARIMA model has better accuracy than DTW.
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Table 6. Auto-Regressive Integrated Moving Average (ARIMA) performance comparison
of k-shape-based Clustered predictor (CK), Single predictor (S), and Total predictor (T). RMSE =
Root Mean Square Error; MAE = Mean Average Error; MAPE = Mean Average Percentage Error.

Battery 6 Battery 36 Battery 15

T-Predictor S = CK-Predictor CK-Predictor S-Predictor T-Predictor CK-Predictor S-Predictor T-Predictor

RMSE 0.0253 0.0224 0.0252 0.0285 0.0283 0.0180 0.0282 0.0243
MAE 0.0206 0.0167 0.0186 0.0204 0.0219 0.0149 0.0225 0.0191

MAPE 0.1523 0.1233 0.1358 0.1489 0.1597 0.1096 0.1646 0.1398

Table 7. ARIMA performance comparison of Dynamic Time Warping (DTW) Clustered predictor
(CDTW ), Single predictor (S), and Total predictor (T) .

Battery 19 Battery 36 Battery 15

T-Predictor S = CDTW -Predictor CDTW -Predictor S-predictor T-Predictor CDTW -Predictor S-Predictor T-Predictor

RMSE 0.0192 0.0160 0.0267 0.0285 0.0283 0.0200 0.0282 0.0243
MAE 0.0159 0.0130 0.0210 0.0204 0.0219 0.0174 0.0225 0.0191

MAPE 0.1198 0.0977 0.1531 0.1489 0.1597 0.1274 0.1646 0.1398

Comparison of voltage forecast of Battery 6, Battery 15, Battery 19, and Battery 36 with actual voltage,
CK predictor, Single predictor, CDTW predictor, and Total predictor is shown in Figures 11–14, respectively.
Battery 6 is a single member of k-shape-based cluster 2, so it is compared with CK predictor,
Total predictor, and actual voltage in Figure 11. Battery 19 is the only member of Dynamic Time
Warping (DWT) cluster 3, so it is compared with CDTW predictor, Total predictor, and actual voltage
values in Figure 13. It is evident from Figures 6 and 7 and these figures that the CK predictor model
is a better fit for the battery voltage data.

Figure 11. Comparison of measured and ARIMA forecasted voltage with Clustered (Single) predictor
of Battery 6.

Figure 12. Comparison of measured and ARIMA forecasted voltage with CK , Single, Total, and CDTW

predictor of Battery 15 from cluster 1.
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Figure 13. Comparison of measured and ARIMA forecasted voltage with Total predictor of Battery 19.

Figure 14. Comparison of measured and ARIMA forecasted voltage with CK , Single, Total, and CDTW

predictor of Battery 36.

5.4. Effectiveness of Clustered ARIMA Approach

Identifying a battery with a declining voltage is difficult in the data center, as can be seen
in Figure 4. Voltage equalization depends on the voltage threshold levels, which is not a better
solution for batteries in the data center because it causes false alarms during charge and discharge
cycles, and, since the batteries are always on a charging mode, any flaw cannot be observed until it
is too late, whereas weak batteries fail when there is a discharge cycle due to power supply failure.
As battery 6 failed only in the battery discharging event caused by the power failure, Figure 15 shows
that it resumes its voltage status from where it left off when charging recommences. Our proposed
clustered ARIMA framework predicts the battery voltage and provides an estimate of battery status
in the future with improved accuracy. Similarly, one-year actual resistance values of Battery 6, 15, 19,
and 36 verify the predicted results in Figure 16.
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Figure 15. One-year actual voltage value, voltage drop in Battery 6, as well as stable voltages for Battery
15, 19, and 36, validate the proposed method.

Figure 16. One-year actual resistance value, resistance rise in Battery 6, as well as Stable Resistance
for Battery 15, 19, and 36, validate the proposed method.

6. Conclusions

Considering that the prediction model has a significant impact on a forecasting battery’s
degradation status, in order to improve the ARIMA model forecasting accuracy, a clustered ARIMA
forecasting framework was proposed, with the 40 batteries in the data center. Cluster-assisted
results can significantly improve the ARIMA forecasting accuracy compared with the Single predictor
and Total data predictors. It was observed that the k-shape-based clustering assisted results are more
accurate compared to Dynamic Time Warping (DTW) clustering. A few challenges with our data-driven
technique implications are the cleaning and preparation of data set, loss of data, and missing values
that have to be addressed to apply the proposed method.
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Abbreviations

The following abbreviations are used in this manuscript:

UPS Uninterrupted power source
T-predictor Total predictors
S-predictor Single predictors
CK-predictor k-shape-based clustered predictors
CDTW -predictor Dynamic Time Warping clustered predictors
SBD Shape-based
HVDC High Voltage Direct Current
PDU Power Distribution Units
AC Air Condition

Appendix A

Appendix A.1

k-shape clustering is an iterative refinement algorithm to isolate each cluster with keeping
the shapes of time-series data. In k-shape, cross-correlation measures are implemented to calculate
the centroid of all clusters, and then update the members of each cluster [30], where CCw(~x,~y)
is the cross-correlation sequence between ~x and ~y, and Ro is the Rayleigh quotient see Equation (A1).

SBD(~x,~y) = 1−max
w

(
CCw(~x,~y)√

Ro(~x,~x).Ro(~y,~y)

)
. (A1)

Appendix A.2

Several methods have been proposed to cluster time series. All approaches generally
modify existing algorithms, either by replacing the default distance measures with a version
that is more suitable for comparing time series as shown in Equation (A2). Dynamic Time Warping
(DTW) is general and, hence, suitable for almost every domain. A warping path W = {w1, w2, ..., wk},
with k ≥ m, is a contiguous set of matrix elements that defines a mapping between ~x and ~y under
several constraints [30].

DTW(~x,~y) = min
√

Σk
i=1wi. (A2)
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19. Matyjaszek, M.; Fernández, P.R.; Krzemień, A.; Wodarski, K.; Valverde, G.F. Forecasting coking coal prices
by means of ARIMA models and neural networks, considering the transgenic time series theory. Resour. Policy
2019, 61, 283–292. [CrossRef]

20. Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy
2009, 34, 1388–1393. [CrossRef]

21. Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time
series forecasting. Appl. Soft Comput. 2011, 34, 2664–2675. [CrossRef]

22. Barak, S.; Sadegh, S.S. Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm.
Int. J. Electr. Power Energy Syst. 2016, 82, 92–104. [CrossRef]

23. Tseng, F.M.; Tzeng, G.H.; Yu, H.C.; Yuan, B.J. Fuzzy ARIMA model for forecasting the foreign exchange
market. Fuzzy Sets Syst. 2001, 11, 9–19. [CrossRef]

24. Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing
2003, 1, 159–175. [CrossRef]

25. Ma, T.; Antoniou, C.; Toledo, T. Hybrid machine learning algorithm and statistical time series model
for network-wide traffic forecast. Transp. Res Part C Emerg. Technol. 2020, 111, 352–372. [CrossRef]

26. Alsharif, M.H.; Younes, M.K.; Kim, J. Time series ARIMA model for prediction of daily and monthly average
global solar radiation: The case study of Seoul, South Korea. Symmetry 2019, 11, 4018. [CrossRef]

27. Onoh, J.O, Eze, G.P. Stock Market Performance of Firms in the Nigerian Petroleum Sector Using the ARIMA
Model Approach. World J. Finance Investm. Res. 2019, 4, 1–9

28. Yang, J.; Ning, C.; Deb, C.; Zhang, F.; Cheong, D.; Lee, S.E.; Sekhar, C.; Tham, K.W. k-Shape clustering
algorithm for building energy usage patterns analysis and forecasting model accuracy improvement.
Energy Build. 2017, 1, 27–37. [CrossRef]

http://dx.doi.org/10.1145/3007787.3001187
http://dx.doi.org/10.1016/j.est.2018.11.003
http://dx.doi.org/10.1038/s41560-019-0356-8
http://dx.doi.org/10.3390/en11010086
http://dx.doi.org/10.1016/j.apenergy.2019.114148
http://dx.doi.org/10.1109/TII.2019.2932453
http://dx.doi.org/10.1109/TIE.2015.2461523
http://dx.doi.org/10.1016/j.apenergy.2016.05.051
http://dx.doi.org/10.1016/j.microrel.2017.06.045
http://dx.doi.org/10.1016/j.microrel.2016.07.151
http://dx.doi.org/10.3390/en11040820
http://dx.doi.org/10.1007/s00703-018-0591-8
http://dx.doi.org/10.1016/j.resourpol.2019.02.017
http://dx.doi.org/10.1016/j.renene.2008.09.006
http://dx.doi.org/10.1016/j.asoc.2010.10.015
http://dx.doi.org/10.1016/j.ijepes.2016.03.012
http://dx.doi.org/10.1016/S0165-0114(98)00286-3
http://dx.doi.org/10.1016/S0925-2312(01)00702-0
http://dx.doi.org/10.1016/j.trc.2019.12.022
http://dx.doi.org/10.3390/sym11020240
http://dx.doi.org/10.1016/j.enbuild.2017.03.071


Energies 2020, 13, 1085 17 of 17

29. Shahzadeh, A.; Khosravi, A.; Nahavandi, S. Improving load forecast accuracy by clustering consumers using
smart meter data. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–16 July 2015; pp. 1–7.

30. Paparrizos, J.; Gravano, L. k-shape: Efficient and accurate clustering of time series. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne, VC, Australia, 31 May–4 June 2015;
pp. 1855–1870.

31. Wang, H.; Huang, J.; Zhou, H.; Zhao, L.; Yuan, Y. An Integrated Variational Mode Decomposition and ARIMA
Model to Forecast Air Temperature. Sustainability 2019, 11, 4018. [CrossRef]

32. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection.
Soc. Methods Res. 2004, 33, 261–304. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su11154018
http://dx.doi.org/10.1177/0049124104268644
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of the Data Set
	Methodology
	Data Preprocessing
	Cluster Consistency
	Clustered ARIMA Forecasting

	Software Implementation
	Cluster Consistency Detection 
	Implementing Clustered ARIMA Forecasting

	Result and Discussion
	Data Center Battery Setup
	Battery Voltage Time Series Clustering 
	ARIMA Forecasting 
	Effectiveness of Clustered ARIMA Approach 

	Conclusions
	
	
	

	References

