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Abstract: In this paper, a hybrid control strategy for power converters, based on improved
deadbeat control (DBC) and improved finite control set model predictive control (MPC), is proposed.
The presented control strategy employs a switched method to achieve a fixed switching frequency
while maintaining a fast transient time. Moreover, the proposal incorporates error correction to
achieve superior robustness. A prototype of a single-phase voltage source rectifier is established to
verify the performance of the proposal. The comparative results with conventional MPC are given
and illustrate the merits of the proposed control method.
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1. Introduction

Due to some advantages, including the ease of use in various processes and simple application in
multivariable systems, model predictive control (MPC) has attracted widespread attention in dynamic
system control and played an important role in control practice [1–3]. Furthermore, MPC allows for
the incorporation of nonlinearities and constraints into control law in a straightforward manner, as
well as being able to integrate nested control loops in only one loop [4–6].

Usually, finite control set MPC (FCS–MPC) is the most popular among all MPC methods [7,8].
Compared to continuous control set MPC (CCS–MPC), the outstanding merit of FCS–MPC is that, on
the one hand, it directly applies the control action to the converter without a modulation stage, which
results in a fast dynamic response. On the other hand, FCS–MPC presents a simple formulation of
MPC problems [9–12]. However, FCS–MPC has not yet been applied widely due to certain problems,
such as the variable switching frequency leading to electromagnetic interference (EMI) problems, and
model mismatch, which causes unstable systems.

The main advantage of FCS–MPC is the elimination of the modulation stage, but it also leads
to variable frequency spectrum and EMI problems. To solve the issues above, some papers have
proposed corresponding methods. Some introduce the concept of duty cycle control in FCS–MPC by
applying one non-zero vector and one zero vector during one sampling period [13–15]. The non-zero
vector is chosen by evaluating the performance of each non-zero vector, and its duration is obtained
based on the principle of minimizing the errors of both active power and reactive power. Using
the improved method, the constant switching frequency can be obtained approximately. In order
to minimize switching losses, and to achieve a constant switching frequency, the symmetrical 3 + 3
vectors’ sequence, in accordance with the angular position of the required converter voltage vector for a
direct power control (DPC) strategy, is proposed for a two-level voltage source inverter (2L-VSI) [16,17].
A specific cost function was defined in [18] for evaluating the error of load currents and manipulating
the current spectrum. The inclusion of a notch filter in the specific cost function minimized the error
of the controlled variables and enabled the spectrum to be effectively fixed within a specified band.
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It presented a modulated MPC (M2PC) that added the modulation stage into the cost function and
could generate a waveform harmonic spectrum [19]. However, all of the methods mentioned above
cannot realize an absolutely fixed switching frequency. More importantly, the methods can only obtain
excellent performance at a higher sampling frequency, and they may cause the dynamic response
to deteriorate.

Another key class of problems is model mismatch problems. In [10,20], the authors studied
how the change in the value of inductance and resistance influenced the performance of the model
predictive control method. This showed that the resistance had little impact on the predicted model,
whereas the change of the inductance value had a great influence on the prediction of the load
current. To address this issue, a Luenberger observer [21,22] based on MPC was constructed to address
parameter mismatch and model uncertainty, which affect the performance of the system; the results
showed that the proposed observer realized exceptional robustness when the value of the nominal
inductor varied from 37.5% to 200% of the actual value. Similarly, in [23], the disturbances were
estimated, and a feed-forward compensation item was added to the MPC controller with an extended
state observer. It combined adaptive control with MPC to estimate and update the model parameters
in real time in order to reduce the impact of model mismatch [24]. In [25], an estimation method was
proposed, based on the difference between the voltage magnitudes of the grid at two consecutive
sampling instants in the FCS–MPC algorithm, in order to estimate the impedance variation of the
power supply. In [26,27], feedback correction was added to the prediction model, which improved the
robustness. Based on [26,27], we introduced error correction into both deadbeat control (DBC) and
FCS—MPC, and previous works [28,29] demonstrated that this method offers improved robustness
when compared to the traditional DBC and FCS–MPC methods.

With the aim of solving variable frequency spectrum and model mismatch problems, this paper
presents switched predictive control with error correction to achieve a fixed frequency and superior
robustness. To generate a harmonic spectrum, the proposed control strategy used a switched control
technique to adopt DBC in the steady state for a fixed switching frequency and utilized FCS–MPC
in the transient stage, thereby maintaining a fast dynamic response. Regarding model mismatch, an
error correction term with a control coefficient was introduced to improve the robustness for both
predictive control techniques based on [28,29]. By incorporating Lyapunov function into the predictive
control methods, the presented control ensured the whole system’s stability and defined an effective
switched condition. In Section 2, a single-phase rectifier is modeled. In Section 3, the proposal is
outlined in detail. In Section 4, the impact of the control coefficients is analyzed, and more importantly,
the switched condition is creatively defined by incorporating Lyapunov convergence. In Section 5, the
proposed control strategy is tested using a prototype of the single-phase rectifier, and the experimental
results emphasize the advantages of the presented control strategy, in comparison to the traditional
FCS–MPC. Finally, conclusions are drawn in Section 6.

2. Modeling

Figure 1 demonstrates the topology of a single-phase rectifier. In Figure 1, e, V, i, and Vdc are
the grid voltage, rectifier voltage of AC side, AC current injected from the grid, and DC side voltage,
respectively. L is the inductor, R is the series resistance, C is the filter capacitor, and RL is the load. Si

and Di (i = 1, 2, 3, 4) are representations of power switches and antiparallel diodes. The equation of the
rectifier is:

L
di
dt

= e−Ri−V (1)

The derivative di/dt with the forward Euler method is expressed as follows:

di
dt
≈

i(k + 1) − i(k)
Ts

(2)
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Hence, Equation (1) could be rewritten into the discrete form as follows:

i(k + 1) =
(
1−

RTs

L

)
i(k) +

Ts

L
(e(k) −V(k)) (3)

where e(k), V(k), and i(k) are the grid voltage, rectifier voltage of the AC side, and current injected from
the grid at the kth instant, and i(k+1) is the (k+1)th current value.

Figure 1. Single phase rectifier topology.

3. Principle of the Hybrid Control Strategy

In order to more intuitively investigate the performance of the proposal, we offered the reference
current for the current loop control directly, neglecting the voltage loop control.

3.1. The Discrete Lyapunov-Based Method

According to [30–32], to ensure that the actual value could track the reference value precisely, and
to ensure the tracking error asymptotically converging to zero, a Lyapunov function must be built.

As the Lyapunov stability theory states [29], the discrete Lyapunov function, G(∆y(k)), is supposed
to meet criteria, given as follows:

(1) G (0) = 0;
(2) G (y(k)) > 0, ∀ y(k) , 0;
(3) G (y(k))→∞, ∀ ‖y(k)‖ → ∞;
(4) ∆G (y(k)) < 0, ∀ y(k) , 0.

Assume the current tracking error as:

∆i(k) = ir(k) − i(k) (4)

The discrete Lyapunov function G(∆y(k)) is expressed as follows:

G(∆i(k)) =
1
2

∆i2(k) (5)

and:
∆G(∆i(k)) =

1
2

[
∆i2(k + 1) − ∆i2(k)

]
(6)

To make the tracking error converge to zero, the following equation should be defined:

ir(k + 1) − i(k + 1) = d(ir(k) − i(k)) (7)

As a result, Equation (6) can be modified as follows:

∆G(∆i(k)) =
1
2

(
d2
− 1

)
∆i2(k) (8)
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where d is the control coefficient.
Based on the criteria mentioned above, the control coefficient d can be limited as:

− 1 < d < 1 (9)

3.2. The Proposed Control Method

Today, all the presented methods for a generated frequency spectrum would deteriorate the
dynamic response of the conventional FCS–MPC, which is the most outstanding advantage, and
may increase the total harmonic distortion (THD). As discussed in [33,34], DBC not only achieves
fixed switching frequency but also leads to lower THD of the control variable and less tracking error
compared to that of FCS–MPC. As a result, the proposed control strategy chose a switched way by
calculating the defined switching conditions at the beginning of each sampling instant to achieve a
fixed switching frequency FCS–MPC. When the system was stable, DBC was adopted to ensure better
steady-state performance, and FCS–MPC was deployed to control the system states of a converter
toward a neighborhood of the desired references rapidly. This method showed an excellent transient
response while retaining a good and steady state. This method could guarantee fixed switching
frequency and lower THD while retaining excellent transient response. A flowchart of the proposed
control strategy is depicted in Figure 2.

Figure 2. Flowchart of the proposed control method.

However, the switched way did not solve the weak robustness of all of the predictive control. In
order to improve the robustness of the predictive control, error correction term of the grid current was
introduced to the prediction model for both DBC and FCS–MPC.

3.2.1. The Improved DBC with Error Correction

In [33,34], it was claimed that deadbeat control can promise zero-tracking error in the next
sampling interval, which means:

ir(k + 1) − i(k + 1) = 0 (10)
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Hence, the prediction model of the traditional DBC can be given as:

Vr(k) = e(k) + (
L
Ts
−R)i(k) −

L
Ts

ir(k + 1) (11)

where Vr(k) is the predicted reference value of the rectifier voltage at the kth instant.
Once model mismatch occurred, Vr(k) differed from the original value, which influenced the

performance of the system and could even cause system instability. Thus, an error correction term
was introduced in order to compensate for the current error. The modified prediction model of the
improved DBC can be depicted as:

Vr(k) = e(k) + (
L
Ts
−R)i(k) −

L
Ts

ir(k + 1) − α
L
Ts

[i(k) − ir(k)] (12)

where α is the control coefficient.

3.2.2. The Improved FCS–MPC with Error Correction

Because of the computational burden of the conventional FCS–MPC, the simplified FCS–MPC
was proposed in [35], the predicted model of which could also be described as Equation (11). Hence,
according to Equations (11) and (12), the improved FCS–MPC with error correction can be calculated
as follows:

Vr(k) = e(k) + (
L
Ts
−R)i(k) −

L
Ts

ir(k + 1) − γ
L
Ts

[i(k) − ir(k)] (13)

where γ is control coefficient of the improved FCS–MPC.
The switching states of Sa and Sb are defined as follows:

Sa =

{
1 i f S1 is on and S2 is o f f
0 i f S1 is o f f and S2 is on

(14)

Sb =

{
1 i f S3 is on and S4 is o f f
0 i f S3 is o f f and S4 is on

(15)

Thus, according to the working principle of the rectifier and the traits of the insulated gate bipolar
transistor (IGBT) [32], V(k) can be calculated as:

V(k) = Vdc(Sa − Sb) (16)

where Vdc is the DC voltage of the rectifier, and Sa, Sb are the switching state of the bridge legs.
Finally, the cost function of the improved FCS-MPC is chosen as:

J =
∣∣∣Vr(k) −V(k)

∣∣∣. (17)

4. Impact of the Control Coefficient and Selection of the Switching Condition

The above section demonstrated the proposed control, consisting of improved DBC and MPC.
In this section, the impact of the control coefficient to system performance was analyzed and a switching
condition was proposed. According to Equation (9), α and γ can be limited as:

− 1 < α < 1 (18)

− 1 < γ < 1 (19)
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4.1. Robustness Analysis of α for the Improved DBC

According to the previous work [28], delay exits were present in every digital system, and it was
assumed as long as a control period.

A discrete control block diagram of the improved DBC is given in Figure 3.

Figure 3. Control block diagram of the current loop.

The transfer function of the inductor in S domain could be written as:

Gp(s) =
1

sL + R
(20)

Including the delay of a control period by z−1 block, Gp(s) could be rewritten in Z domain as:

Gp(z) =
(
1− z−1

)
Z
[

Gp(s)
s

]
=

Ts

L
1

z− (1−RTs/L)
(21)

The closed-loop transfer function using e(k) as the disturbance is expressed as follows:

G(z) =
i(k)
ir(k)

=
(k3z− k1)z−1Gp(z)

1 + k2z−1Gp(z)
=

z− α

z2 − (1−R Ts
L )z + (1− α−R Ts

L )
(22)

where k1 = αL/Ts, k2 = (1−α)L/Ts−R, and k3 = L/Ts.
To promise the system is stable, the following items should be met:

0 < 1− α−RTs/L < 1 (23)

According to the actual experimental parameters, L, R, and Ts are 3.1 mH, 0.3 Ω, and 100 us,
respectively. Moreover, based on Equations (20) and (25), the constraint of the control coefficient α is
shown as follows:

− 0.005 < α < 0.995 (24)

In order to study the influence of the changes on inductor parameter, the pole locus was analyzed
based on the different values of α [28].

The closed-loop transfer function G(z)a could be modified by replacing L with the actual value of
La, given as follows:

G(z)a =
i(k)
ir(k)

=
(k3az− k1a)z−1Gp(z)a

1 + k2az−1Gp(z)a
=

z− α

z2 − (1−R kTs
L )z + (1− α−R kTs

L )
(25)

where k1a = αLa/Ts, k2a = (1−α)La/T−R, k3a = La/T, and k = L/La.
In Figure 4, in which the zero-pole diagrams of different k with different α are presented, it

can be seen that the larger the α, the farther the poles are from the unit circle, resulting in the
stronger robustness.
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Figure 4. Pole locus diagrams of G(z)a with changes of k (from 0.4 to 1.6 with increments of 0.1) based
on different values of α: (a) the whole sight of pole locus; (b) the pole locus based on α = 0 and α = 0.4;
(c) the pole locus based on α = 0.8; (d) the pole locus based on α = 0.8.

4.2. Robustness Analysis of γ for the Improved FCS–MPC

Similar to the last section, the impact of γ for the improved FCS–MPC was analyzed in this section.
The error between Vr(k) and V(k) is taken as:

∆v(k) = Vr(k) −V(k) (26)

Figure 5 denotes that when the reference value is calculated as Vr1(k), V1(k) should be chosen.
Similarly, V2(k) should be chosen corresponding to Vr2(k). Thus, the error between Vr(k) and V(k)
is bounded:

‖∆v(k + 1)‖ ≤ 0.5Vdc (27)

Figure 5. The error between Vr(k) and V(k).
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The following stability criteria for the Lyapunov function G(∆y(k)) are described in [29,35]:

G(∆i(k)) ≥ c1
∣∣∣∆i(k)

∣∣∣l, ∀∆i(k) ∈ H

G(∆i(k)) ≤ c2
∣∣∣∆i(k)

∣∣∣l, ∀∆i(k) ∈ Γ

G(∆i(k + 1)) −G(∆i(k)) < −c3
∣∣∣∆i(k)

∣∣∣l + c4

(28)

where c1, c2, c3, and c4 are positive constants, and l ≥ 1 is a positive control invariant set and compact set.
According to [29], the Lyapunov function rate of change, ∆G (∆i(k)), could be depicted as follows:

∆G(∆i(k)) =
1
2
(γ2
− 1)∆i2(k) +

1
2

[Ts

L
∆v(k + 1)

]2
− γ

Ts

L
∆v(k + 1)∆i(k) (29)

Solving Equation (29), it could be rewritten as:

∆G(∆i(k)) =( 1
2 − b)(γ2

− 1)∆i2(k + p(∆i(k)),

p(∆i(k)) = b(γ2
− 1)∆i2(k) − γTs

L ∆v(k + 1)∆i(k) + 1
2

[
Ts
L ∆v(k + 1)

]2 (30)

where b is a positive constant from 0 to 1/2.
Therefore, the maximum of p(∆i(k)) is given as Equation (31):

p(∆i(k))max

[ T
Ls

∆v(k + 1)
]2 (1− 2b)γ2 + 2b

4b(1− γ2)
. (31)

Based on Equations (29)–(31), ∆G (∆i(k)) could be expressed as:

∆G(∆i(k)) ≤ (
1
2
− b)(γ2

− 1)∆i2(k) + p(∆i(k))max ≤ (
1
2
− b)(γ2

− 1)∆i2(k) +
1
4
(

Ts

L
Vdc)

2 (1− 2b)γ2 + 2b
4b(1− γ2)

. (32)

Thus, according to Equations (28) and (32), the following equation is defined:

c1 = c2 = 1;
c3 = ( 1

2 − b)(1− γ2);

c4 = 1
4 (

Ts
L Vdc)

2 (1−2b)γ2+2b
4b(1−γ2)

(33)

The rate of the change of the Lyapunov function is considered as:

∆G(∆i(k)) ≤ −2c3G(∆i(k)) + c4 (34)

This means that the current error converges to the compact set as:

A = {∆i(k) |||∆i(k) || ≤
√

c4

c3
=

√√√
1
4 (

Ts
L Vdc)

2 (1−2b)γ2+2b
4b

1
2 b

} (35)

Equation (35) implies that when γ becomes larger, the current error is smaller. Namely, the
robustness is stronger as γ grows larger.

4.3. Transient Response of the Control Coefficient

Based on Equation (8), G (∆i(k)) could be calculated as:

G(∆i(k + 1)) =
1
2

d2G(∆i(k)) (36)



Energies 2020, 13, 1176 9 of 14

Hence, the convergence rate of the Lyapunov function could be investigated by ρ, which is defined
as:

ρ =
G(∆i(k))

G(∆i(k + 1))
=

1
d2 (37)

As described in [36], ρ is proportional to the dynamic response, which means the system becomes
faster as ρ increases. As depicted in Figure 6, as d becomes larger, ρ becomes smaller; namely,
the transient time becomes longer as the robustness improves. As a result, we should select the
control coefficients in compromise to take into account the robustness and convergence speed of the
system simultaneously.

Figure 6. The relationship between ρ and d.

Therefore, based on the previous analysis, α and γ were set to 0.5 and 0.4, respectively.

4.4. Analysis of the Swithing Condition

When error correction is implemented, based on the Lyapunov theorem, the current error gradually
converges to 0, and its rate should be less than 1. When the reference current changes, it would satisfy
the following inequation: ∣∣∣∣∣∣ ∆i(k)

∆i(k− 1)

∣∣∣∣∣∣ > 1 (38)

Thus, we define the switching condition as:

G =

∣∣∣∣∣∣ ∆i(k)
∆i(k− 1)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ir(k) − i(k)
ir(k− 1) − i(k− 1)

∣∣∣∣∣∣ (39)

and:
Gth = 1 (40)

where Gth is the threshold value.
If G is larger than Gth, the reference current changes, so the improved FCS–MPC was used to

achieve a fast transient performance. If G is smaller than or equal to Gth, the converter system is stable,
so the improved DBC was used to achieve a better performance with a constant switching frequency.

5. Experimental Results

A single-phase rectifier prototype was adopted to validate the presented hybrid control method,
as shown in Figure 7. The specific experimental parameters are presented in Table 1. A digital signal
processing (DSP) system consisting of a TMS320F28069 (Texas Instruments, Dallas, TX, USA) was
utilized to carry out the proposed control strategy. A Tektronix oscilloscope was used to obtain
the current waveforms and a power analyzer was utilized to analyze these waveforms. For easier
verification, different grid current references were given directly.
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Figure 7. The experimental prototype.

Table 1. Experimental parameters.

Symbol System Parameters Value

e grid voltage 50 V/50 Hz
L Filter inductance 3.1 mH
R Equivalent series resistance 0.3 Ω
C DC side capacitor 1000 µF
Ts Sampling period 100 us

5.1. Steady-State Performance

When the converter was in the steady state, the improved DBC was used to maintain better
steady-state performance. The experimental results for steady state between the conventional FCS–MPC
and the proposed control strategy are shown in Figure 8. It was observed that with the implementation
of the proposed control strategy, the THD of the grid current was 1.86%, while that of the conventional
FCS–MPC was 4.62%. Moreover, the harmonic frequency was focused on switching frequency 10 kHz
using the proposal. By contrast, the current harmonics were spread with the conventional control.
As the harmonic spectrum of the input current represented the distribution of the switching frequency
in single-phase rectifiers, it proved that the proposed control achieves fixed switching frequency.

Figure 8. Experimental results of the grid current for steady state: (a) the harmonic spectrum of the
conventional finite control set model predictive control (FCS–MPC); (b) the harmonic spectrum of the
proposed control strategy.

The results above convincingly present that the proposal had more amendatory performance
than the conventional FCS–MPC in steady condition, and that it not only achieved constant switching
frequency but also lowered the THD of the grid current.
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5.2. Dynamic Response Performance

To validate the excellent transient response of the presented control compared to the conventional
FCS–MPC, two reference current step changes (from 4 to 6.8 A, and 6.8 to 4 A, respectively) were
generated in both the proposed control strategy and the conventional FCS–MPC.

In Figure 9a, it takes 238 µs to reach a steady-state level with a reference current step up, while it
takes 256 µs in Figure 9b. The settling time in Figure 10a,b is 379 and 388 µs, respectively. These results
illuminate that the dynamic response of the two control methods is nearly the same.

Figure 9. Experimental results of current behavior during a reference current step up from 4 to 6.8 A
peak: (a) the conventional FCS–MPC; (b) the proposed control strategy.

Figure 10. Experimental results of current behavior during a reference current step down from 6.8 to 4
A peak: (a) the conventional FCS-MPC; (b) the proposed control strategy.

5.3. Investigation of Robustness

Model mismatch existed in almost all of the predictive controls, restricting the performance of
the converter, and even deteriorating stability. The experimental results of the current behavior of
different values of inductance are demonstrated in Figures 11 and 12. It was seen that when the
variation of the inductor valued in the range of −20% to +20%, oscillation of the current both appeared
in the conventional FCS–MPC. However, stronger robustness was obtained with the utilization of
the proposal.

Figure 11. Experimental results of current behavior when the inductance deviation is −20%: (a) the
conventional FCS–MPC; (b) the proposed control strategy.
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Figure 12. Experimental results of current behavior when the inductance deviation is +20%: (a) the
conventional FCS–MPC; (b) the proposed control strategy.

6. Conclusions

In this paper, a hybrid control strategy with error correction for fixed frequency and stronger
robustness, based on improved DBC and FCS–MPC, was presented.

To realize a generated frequency spectrum, the proposed control strategy used a switched way,
in which the system adopted the improved DBC in the steady state, and the improved FCS–MPC
was utilized in the transient stage. For the model mismatch problems, both DBC and FCS–MPC
were modified with error correction to compensate for the current error. More importantly, the error
correction term was combined with the Lyapunov method so that the current error converged to zero
with improved robustness. Finally, the proposed method calculated the control coefficient and defined
the switching condition with the Lyapunov stability theorem.

To demonstrate the effectiveness and practicability of the proposal, a single-phase voltage source
rectifier prototype was set up. The results validate the merits mentioned above, including fixed
switching frequency, lower THD, and stronger robustness. This kind of control strategy plays a
promising role in the development of predictive control.
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