
energies

Article

A Benders’ Decomposition Approach for Renewable
Generation Investment in Distribution Systems

Sergio Montoya-Bueno , Jose Ignacio Muñoz-Hernandez, Javier Contreras * and
Luis Baringo

Department of Applied Mechanics and Project Engineering, University of Castilla-La Mancha,
13071 Ciudad Real, Spain; Sergio.Montoya@uclm.es (S.M.-B.); JoseIgnacio.Munoz@uclm.es (J.I.M.-H.);
Luis.Baringo@uclm.es (L.B.)
* Correspondence: Javier.Contreras@uclm.es

Received: 30 January 2020; Accepted: 21 February 2020; Published: 6 March 2020
����������
�������

Abstract: A model suitable to obtain where and when renewable energy sources (RES) should be
allocated as part of generation planning in distribution systems is formulated. The proposed
model starts from an existing two-stage stochastic mixed-integer linear programming (MILP)
problem including investment and scenario-dependent operation decisions. The aim is to minimize
photovoltaic and wind investment costs, operation costs, as well as total substation costs including
the cost of the energy bought from substations and energy losses. A new Benders’ decomposition
framework is used to decouple the problem between investment and operation decisions, where the
latter can be further decomposed into a set of smaller problems per scenario and planning period.
The model is applied to a 34-bus system and a comparison with a MILP model is presented to show
the advantages of the model proposed.

Keywords: Benders’ decomposition; distributed generation planning (DGP); two-stage stochastic
mixed-integer linear programming (MILP); renewable energy sources (RES)

1. Introduction

Distributed generation (DG) has been used to produce energy in remote and isolated places, where
the distance between the demand and the producer is short [1]. At present, this trend is changing
as it has been proven that DG provides technical, economic, and environmental improvements [2].
The benefits of using DG are based on the reduction of network losses, the voltage level improvement,
or the dependence reduction of energy, fuel prices, and traditional generation. All these advantages
cause CO2 emission reduction [3,4]. On the other hand, DG has also disadvantages, mainly related
to technical aspects due to the fact that the existing networks have not been designed to incorporate
this type of generation [2]. Some drawbacks are reverse current flows, the need for network redesign,
or frequency instability [5].

In addition, planning of distribution networks must account for renewable generation uncertainty
to meet the future demand in any possible future scenario. In that case, the decisions to be made could
be to invest in the network, in substations, in DG generation, or in any combination of them [6]. When
the chosen option is DG, it is necessary to determine the type of location, by solving the Distribution
Generation Planning (DGP) problem. An example of this sort of problems can be seen in [7], where a
linear model that optimizes size and location of DG is used. The objective function maximizes DG real
power. In [6], a model is proposed for minimizing the investment and operation DG costs, the cost of
the electricity bought from the substation, and the cost of network losses of a distribution company.
The model is formulated as a mixed-integer-nonlinear one. Other authors have worked with particle

Energies 2020, 13, 1225; doi:10.3390/en13051225 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-0149-843X
https://orcid.org/0000-0002-9395-3964
https://orcid.org/0000-0002-8678-3258
http://dx.doi.org/10.3390/en13051225
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/5/1225?type=check_update&version=2


Energies 2020, 13, 1225 2 of 19

swarm optimization methods [8], where a multi-objective model considers investment and operating
costs of new generation, the cost of the energy purchased, and CO2 emission cost.

A number of references using Benders’ decomposition to solve computational-complex problems
in distribution [9–12] and transmission systems [13–17] can be found in the technical literature.

The DGP is addressed by a multi-objective mixed-integer linear problem in [9], using Benders’
decomposition with an implicit enumeration algorithm where cost and reliability, among others,
are included in the objectives’ set. No renewable technology is modeled, just feeders and substations.
Another multi-objective operation approach is developed in [10]. In this case, the aim is to minimize the
total operational costs and emissions, as well as to generate Pareto-optimal solutions for the energy and
reserve scheduling problem, using fuzzy decision-making processes. The scenario combination merges
wind generation and forecasted demand. The problem is formulated as mixed-integer non-linear
problem. Reference [11] studies the point of view of a local distribution company to maximize its
profit, using nodal hourly prices within a smart grid. DG, including fossil fuel and renewable units,
is taken into account. Reference [12] deals with the day-ahead unit commitment problem in a microgrid
system. The problem is formulated as a stochastic mixed integer program that takes into account the
uncertainty in PV generation.

A generation expansion planning model is proposed in [13] where the network is disregarded.
It includes a generic model for renewable units (wind and solar) and hydro units modeled as storage
units. Another generation expansion planning in generalized networks is studied in [14] considering
production costs and system reliability in the lower level and the expansion plan in the upper level.
A transmission expansion planning model is proposed in [15] incorporating the uncertainty of wind
units via scenarios, including the cost of the added lines, and wind curtailment and using a DC
power flow. Studies [16,17] propose complementarity models to determine the optimal investment
decisions of a profit-oriented private investor interested in building new conventional and wind-power
generating units, respectively.

The basis of this paper is a two-stage stochastic mixed-integer linear programming problem
(MILP) that is used to determine where and when renewable energy sources should be allocated as
part of generation planning in distribution systems [18]. The model proposed in [18] has an important
limitation; namely, its computational burden is very high if a large number of scenarios and planning
periods is considered. In the worst case, the problem may be even intractable.

Despite this relevant issue, the problem described in [18] has an interesting property: if investment
variables are fixed, the problem can be decomposed per scenario and planning period. The proposed
Benders’ decomposition algorithm takes advantage of this decomposable problem structure to reduce
the computational burden of the problem. This is the main benefit of the proposed approach.

Note that, to the best of our knowledge, there is no reference in the technical literature that
considers a Benders’ decomposition approach for a stochastic multi-stage DGP problem such as the
one considered in this paper. The existing literature has not taken into account the benefits of Benders’
decomposition for solve the DGP problem with a large number of scenarios of renewable energy.
This problem is generally intractable for realistic case studies since it is necessary to consider a large
number of scenarios and time periods to obtain informed expansion decisions. Moreover, it includes
binary variables that further complicate the problem. Therefore, the traditional resolution methods,
as a MILP, for stochastic multi-stage DGP problems are not viable. The Benders’ decomposition model
presented, although it has greater computational complexity, dramatically reduces resolution times.
This model can solve problems with a large number of scenarios and planning periods. In addition,
it is able to solve problems that are typically intractable with traditional methods.

Given the above, the contributions of this work are:

1. The stochastic multi-stage DGP problem is formulated using Benders’ decomposition that
decomposes the problem per both scenario and planning period and
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2. A comparison with a standard MILP model is provided and results with a 34-bus test case are
shown, where the significant computational advantage of using Benders’ decomposition with
respect to the MILP model is also shown.

2. Notation

Subscripts t, k, andω below refer to the values in year t, time block k, and scenarioω, respectively.
Superindex (υ) indicates the values in theυ-th Benders’ iteration. All indices, sets, constants, parameters
and variables used in the document are shown in Table 1.

Table 1. Notation.

Indices and Sets

ΩK Set of indices of time blocks.
ΩL Set of indices of load buses.
ΩN Set of indices of branches.
ΩR Set of indices of blocks used in the piecewise linearization.
ΩSS Set of indices of substation buses.
ΩT Set of indices of years.
Ψω

k Set of indices of scenarios for the k-th block.
k Index of time blocks.
n, m Indices of buses.
r Index used in the linearization.
t Index of years.
ω Index of scenarios.

Constants and Parameters

capv PV module annualized investment cost [€].
cawd Wind turbine annualized investment cost [€].
caSS Transformer annualized investment cost [€].
cipv PV module investment cost [€].
ciwd Wind turbine investment cost [€].
ciSS Transformer investment cost [€].
cibgt Investment budget per year [€].
cibgt

LC
Investment budget throughout the life cycle of the new devices [€].

compv PV module operation and maintenance costs [€/MWh].
comwd Wind turbine operation and maintenance costs [€/MWh].
closs Loss cost [€/MWh].
cns Cost of energy not supplied [€/MWh].
Cpv,n Vector of candidate buses n to install PV modules.
cSS

k,ω Cost of the energy purchased by the substation [€/MWh].
Cwd,n Vector of candidate buses n to install wind turbines.
d Discount rate.
ft Increasing load factor.
f ld
k,ω Demand factor.

f SS
t Increasing energy cost factor.

f wd
k,ω Wind turbine power factor available.

f pv
k,ω PV module power factor available.

In,m Maximum current through branch n, m [Apu].
i Interest rate.
LCSS Transformer life cycle [years].
LCpv PV module life cycle [years].
LCwd Wind turbine life cycle [years].
mn,m,r

t,k,ω Slope of the r-th block of the piecewise linearization for branch n, m.
Nh

k Number of hours in time block k [hours].
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Table 1. Cont.

Indices and Sets

Pld,n Active power load in bus n [MWpu].
Ppv Maximum active power output of PV modules [MWpu].

Pwd Maximum active power output of wind turbine [MWpu].

Pnode Maximum active power that can be installed in each bus [MWpu].
Qld,n Reactive power load in bus n [MVarpu].
Rn,m Resistance of branch n, m [Ωpu].
R Number of blocks used in the piecewise linearization.

SSS Maximum power output of new transformers [MVApu].

SNEW,n Maximum new power allowed for installment in the substation in bus n [MVApu].
SSS,n Existing power in the substation in bus n [MVApu].
Sbase Power base [MVA].
tan

(
ϕSS

)
Tangent angle in substation.

tan(ϕpv) Tangent angle of PV modules.
tan

(
ϕwd

)
Tangent angle of wind turbines.

V Minimum voltage magnitude [kVpu].
V Maximum voltage magnitude [kVpu].
Vnom Nominal voltage of the distribution network [kVpu].
Xn,m Reactance of branch n, m [Ωpu].
Ypv,n Maximum number of PV modules to be installed in bus n.

Ywd,n Maximum number of wind turbines to be installed in bus n.
Zn,m Impedance of branch n, m [Ωpu].
γk,ω Weight of scenario ω in time block k.
∆Sn,m,r

t,k,ω Upper bound of each r block of the power flow through branch n, m [MVApu].
βt Present worth factor.

Variables

cit Investment cost [€].
closst,k,ω Losses cost [€/h].
cnst,k,ω Penalty for not supplied energy [€/h].
cnewt,k,ω Maintenance and operation costs of DG candidates [€/h].
comt,k,ω Maintenance and operation total costs [€/h].
csst,k,ω Cost of energy purchased by the substation [€/h].
Isqr,n,m
t,k,ω Square of current flow magnitude of branch n, m [A2

pu].

PTwd,n
t Active power of wind turbines to be installed in bus n [MWpu].

PTpv,n
t Active power of PV modules to be installed in bus n [MWpu].

Pns,n
t,k,ω Not supplied active power in bus n [MWpu].

Ppv,n
t,k,ω Active power injected by PV modules in bus n [MWpu].

Pwd,n
t,k,ω Active power injected by wind turbines in bus n [MWpu].

PSS,n
t,k,ω Active power purchased by the substation in bus n [MWpu].

P+,n,m
t,k,ω Active power flow in branch n, m in the forward direction [MWpu].

P−,n,m
t,k,ω Active power flow in branch n, m in the backward direction [MWpu].

Qns,n
t,k,ω Not supplied reactive power in bus n [MVArpu].

Qpv,n
n,t,k,ω Reactive power injected by PV modules in bus n [MVArpu].

Qwd,n
t,k,ω Reactive power injected by wind turbines in bus [MVArpu].

QSS,n
t,k,ω Reactive power purchased by the substation in bus n [MVArpu].

Q+,n,m
t,k,ω Reactive power flow through branch n, m in the forward direction [MVArpu].

Q−,n,m
t,k,ω Reactive power flow through branch n, m in the backward direction [MVArpu].

STSS,n
t Total available power in the substation in bus n [MVApu].

SNEW;n
t New power installed in the substation in bus n [MVApu].



Energies 2020, 13, 1225 5 of 19

Table 1. Cont.

Indices and Sets

Vsqr,n
t,k,w Square of voltage magnitude in node n [kV2

pu].
Ypv,n

t Number of PV modules to be installed in bus n.
Ywd,n

t Number of wind turbines to be installed in bus n.
YSS,n

t Number of transformers to be installed in bus n.

YP+,n,m
t,k,ω

Binary variable that defines if the active power flow through branch n, m is in the forward
direction.

YP−,n,m
t,k,ω

Binary variable that defines if the active power flow through branch n, m is in the
backward direction.

YQ+,n,m
t,k,ω

Binary variable that defines if the reactive power flow through branch n, m is in the
forward direction.

YQ−,n,m
t,k,ω

Binary variable that defines if the reactive power flow through branch n, m is in the
backward direction.

∆Pn,m,r
t,k,ω Value of the r-th block associated with the active power through branch n, m [MWpu].

∆Qn,m,r
t,k,ω Value of the r-th block associated with the reactive power through branch n, m [MVArpu].

3. Problem Formulation

3.1. Objective Function

The goal of the model is to minimize the total system costs (TSC) considering DG. The model
utilizes a two-stage stochastic mixed-integer linear programming model. The investment variables
that do not depend on the scenarios are established in the first stage. In the second stage, dependent or
stochastic operation variables that depend on the scenarios are determined.

TSC are composed of two terms (Equation (1)). The first term corresponds to the first-stage
variables that determine the number of new units such as wind turbines, PV modules, and transformers
to install. The second term corresponds to the second-stage variables whose values are obtained after
the outcome of scenarioω is known. See [18] for details.

minTSC =
∑

t∈ΩT

βt

cit +
∑

k∈ΩK

Nh
k

∑
ωεΨω

k

γk,ωcomt,k,ω

. (1)

Total costs are updated using the present worth factor, βt = 1/(1 + d)t.
The interest rate, i, is used to calculate the annualized investment cost payment rates. The payment

contributions for the three technologies, namely, transformers, wind turbines, and PV modules, are
obtained in Equations (2), (3) and (4), respectively.

caSS =
ciSS (1 + i)LCSS

(1 + i)LCSS
− 1

(2)

capv =
cipv (1 + i)LCpv

(1 + i)LCpv
− 1

(3)

cawd =
ciwd (1 + i)LCwd

(1 + i)LCwd
− 1

. (4)

After having determined the payment rates, the investment costs are calculated as shown in
Equations (5) and (6).

cit =
∑

n∈ΩSS

caSS YSS,n
t +

∑
n∈ΩL

(
capvYpv,n

t + cawdYwd,n
t

)
; t = 1 (5)
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cit =
∑

n∈ΩSS

caSSYSS,n
t +

∑
n∈ΩL

(
capvYpv,n

t + cawdYwd,n
t

)
+ cit−1; t > 1. (6)

The operation and maintenance total costs (Equation (7)) take into account the cost of losses
(Equation (8)), the penalty for the energy not supplied (Equation (9)), the cost of purchase of energy
from substations (Equation (10)), as well as renewable DG candidates’ operation and maintenance
costs (Equation (11)).

comt,k,ω = closst,k,ω + cnst,k,ω + csst,k,ω + cnewt,k,ω; ∀(t, k,ω) (7)

closst,k,ω = closs
∑

n,m∈ΩN

SbaseRn,m Isqr,n,m
t,k,ω ; ∀(t, k,ω) (8)

cnst,k,ω = cns
∑

n∈ΩL

Sbase Pns,n
t,k,ω; ∀(t, k,ω) (9)

csst,k,ω = cSS
k,ω f SS

t

∑
n∈ΩSS

SbasePSS,n
t,k,ω; ∀(t, k,ω) (10)

cnewt,k,ω = Sbase
∑

n∈ΩL

(
compvPpv,n

t,k,ω + comwdPwd,n
t,k,ω

)
; ∀(t, k,ω). (11)

3.2. Constraints

The investments in new transformers (Equation (12)), wind units (Equation (13)), and PV modules
(Equation (14)) are limited per node n.

0 ≤
∑

t∈ΩT

YSS;n
t ≤ SNEW;n/SSS; ∀n ∈ ΩSS (12)

0 ≤
∑

t∈ΩT

Ywd,n
t ≤ Ywd

n ; ∀n ∈ ΩL (13)

0 ≤
∑

t∈ΩT

Ypv,n
t ≤ Ypv

n ; ∀n ∈ ΩL. (14)

The maximum value of the power allowed to install at each bus n is limited by Equation (15).

Pnode ≥
∑

t∈ΩT

(
Pwd Ywd,n

t + Ppv Ypv,n
t

)
; ∀n ∈ ΩL. (15)

The investments are limited by Equations (16) and (17). Equation (16) refers to the annual
investment payment limit that describes the budget available for each investment period, while the
portfolio investment (Equation (17)) is related to the amount of money that is available for investment
in the long term.

cit ≤ cibgt; ∀t. (16)∑
t∈ΩT

βt

 ∑
n∈ΩSS

ciSSYSS,n
t +

∑
n∈ΩL

(
cipvYpv,n

t + ciwdYwd,n
t

) ≤ cibgt
LC . (17)

The power flow constraints (Equations (18)–(41)) refer to both active and reactive power equations.
The distribution system is composed of two types of buses (load and substation buses) where each
kind of bus has a different load flow expression.∑

n∈ΩN

(
P+,n,m

t,k,ω − P−,n,m
t,k,ω

)
+ Pns,m

t,k,ω + Pwd,m
t,k,ω + Ppv,m

t,k,ω −
∑

n∈ΩN

(
P+,m,n

t,k,ω − P−,m,n
t,k,ω + Rm,n Isqr,m,n

t,k,ω

)
= ft f ld

k,ωPld,m;∀
(
m ∈ ΩL, t, k,ω

) (18)
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∑
n∈ΩN

(
P+,n,m

t,k,ω − P−,n,m
t,k,ω

)
+ PSS,m

t,k,ω −
(
P+,m,n

t,k,ω − P−,m,n
t,k,ω + Rm,n Isqr,m,n

t,k,ω

)
= ft f ld

k,ωPld,m; ∀
(
m ∈ ΩSS, t, k,ω

)
(19)

∑
n∈ΩN

(
Q+,n,m

t,k,ω −Q−,n,m
t,k,ω

)
+ Qns,m

t,k,ω + Qwd,m
t,k,ω + Qpv,m

t,k,ω −
(
Q+,m,n

t,k,ω −Q−,m,n
t,k,ω + Xm,n Isqr,m,n

t,k,ω

)
= ft f ld

k,ωQld,m0;∀
(
m ∈ ΩL, t, k,ω

) (20)

∑
n∈ΩN

(
Q+,n,m

t,k,ω −Q−,n,m
t,k,ω

)
+ QSS,m

t,k,ω −
(
Q+,m,n

t,k,ω −Q−,m,n
t,k,ω + Xm,n Isqr,m,n

t,k,ω

)
= ft f ld

k,ωQld,m; ∀
(
m ∈ ΩSS, t, k,ω

)
.

(21)

The voltage is related to the different electrical values (Equation (22)) and is limited by the
maximum and minimum values (Equation (23)).

Vsqr,m
t,k,w −Zm,n2Isqr,m,n

t,k,ω −Vsqr,n
t,k,w − 2

(
Rm,n

(
P+,m,n

t,k,ω − P−,m,n
t,k,ω

)
+ Xm,n

(
Q+,m,n

t,k,ω −Q−,m,n
t,k,ω

))
= 0; ∀

(
m, n ∈ ΩN, t, k,ω

) (22)

V2
≤ Vsqr,m

t,k,w ≤ V
2
; ∀

(
m ∈ ΩN, t, k,ω

)
. (23)

Equation (24) represents the maximum current permitted through the distribution feeders. These
limits are applied to the active (25) and (26) and reactive power Equations (27) and (28). Equations (29)
and (30) are necessary to avoid inverse flows.

0 ≤ Isqr,m,n
t,k,ω ≤ Im,n2

; ∀
(
m, n ∈ ΩN, t, k,′ ω

)
(24)

P+,m,n
t,k,ω ≤ Vnom Im,n YP+,m,n

t,k,ω ; ∀
(
m, n ∈ ΩN, t, k,ω

)
(25)

P−,m,n
t,k,ω ≤ Vnom Im,n YP−,m,n

t,k,ω ; ∀
(
m, n ∈ ΩN, t, k,ω

)
(26)

Q+,m,n
t,k,ω ≤ Vnom Im,n YQ+,m,n

t,k,ω ; ∀
(
m, n ∈ ΩN, t, k,ω

)
(27)

Q−,m,n
t,k,ω ≤ Vnom Im,n YQ−,m,n

t,k,ω ; ∀
(
m, n ∈ ΩN, t, k,ω

)
(28)

YP+,m,n
t,k,ω + YP−,m,n

t,k,ω ≤ 1; ∀
(
m, n ∈ ΩN, t, k,ω

)
(29)

YQ+,m,n
t,k,ω + YQ−,m,n

t,k,ω ≤ 1; ∀
(
m, n ∈ ΩN, t, k,ω

)
(30)

The power flow has been linearized using Equations (31) to (41) as explained in [18] and [19].

YP+;n,m
t,k,ω ∈ {0, 1} ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(31)

YP−;n,m
t,k,ω ∈ {0, 1} ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(32)

YQ+;n,m
t,k,ω ∈ {0, 1} ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(33)

YQ−;n,m
t,k,ω ∈ {0, 1} ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(34)

0 ≤ ∆Pn,m,r
t,k,ω ≤ ∆Sm,n,r

t,k,ω ; ∀
(
m, n ∈ ΩN, r ∈ ΩR, t, k,ω

)
(35)

0 ≤ ∆Qn,m,r
t,k,ω ≤ ∆Sm,n,r

t,k,ω ; ∀
(
m, n ∈ ΩN, r ∈ ΩR, t, k,ω

)
(36)∑

r∈ΩR

(
mm,n,r

t,k,ω ∆Pm,n,r
t,k,ω

)
+

∑
r∈ΩR

(
mm,n,r

t,k,ω ∆Qm,n,r
t,k,ω

)
= Vnom2Isqr;m,n

t,k,ω ; ∀
(
m, n ∈ ΩN, t, k,ω

)
(37)

P+;m,n
t,k,ω + P−;m,n

t,k,ω =
∑

r∈ΩR

∆Pm,n,r
t,k,ω ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(38)
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Q+;m,n
t,k,ω + Q−;m,n

t,k,ω =
∑

r∈ΩR

∆Qm,n,r
t,k,ω ; ∀

(
m, n ∈ ΩN, t, k,ω

)
(39)

mm,n,r,t,k,ω = (2r− 1)∆Sm,n,r,t,k,ω; ∀
(
m, n ∈ ΩN, r ∈ ΩR, t, k,ω

)
(40)

∆Sm,n,r,t,k,ω =

(
Vnom Im,n

)
R

; ∀
(
m, n ∈ ΩN, r ∈ ΩR, t, k,ω

)
. (41)

The not supplied active and reactive power must be less than the active and reactive power
demand, respectively. Note that the demand is updated each period.

0 ≤ Pns,n
t,k,ω ≤ ft f ld

k,ωPld,n; ∀
(
n ∈ ΩL, t, k,ω

)
(42)

0 ≤ Qns,n
t,k,ω ≤ ft f ld

k,ωQld,n; ∀
(
n ∈ ΩL, t, k,ω

)
. (43)

The substation available power is subject to yearly updates (44). New investments are made
considering the already existing power and the new possible power of the candidate transformers
(45), (46).

STSS;n
t = SSS;n + SNEW;n

t ; ∀
(
n ∈ ΩSS, t

)
(44)

SNEW;n
t = YSS;n

t SSS/Sbase; ∀
(
n ∈ ΩSS, t = 1

)
(45)

SNEW;n
t = SNEW;n

t−1 + YSS;n
t SSS/Sbase; ∀

(
n ∈ ΩSS, t > 1

)
. (46)

The renewable power (wind turbines and PV modules) available is updated every year. Note that
the vector of the candidate nodes appears in Equations (47) to (50).

PTwd,n
t = Pwd Ywd,n

t Cwd;n; ∀
(
n ∈ ΩL, t = 1

)
(47)

PTwd,n
t = Pwd Ywd,n

t Cwd;n + PTwd,n
t−1 ; ∀

(
n ∈ ΩL, t > 1

)
(48)

PTpv,n
t = Ppv Ypv,n

t Cpv,n; ∀
(
n ∈ ΩL, t = 1

)
(49)

PTpv,n
t = Ppv Ypv,n

t Cpv,n + PTpv,n
n,t−1; ∀

(
n ∈ ΩL, t > 1

)
. (50)

The maximum amount of generation that is available is limited by the generation levels of each of
the technologies available (Equations (51) and (52)).

0 ≤ Pwd,n
t,k,ω ≤ f wd

k,ωPTwd,n
t ; ∀

(
n ∈ ΩL, t, k,ω

)
(51)

0 ≤ Ppv,n
t,k,ω ≤ f pv

k,ωPTpv,n
t ; ∀

(
n ∈ ΩL, t, k,ω

)
. (52)

The active power injected into the distribution system must keep a constant power factor
(Equation (53)). In this way the reactive power is also limited (Equation (54)).

PSS,n
t,k,ω ≤ STSS,n

t /
√(

1 + tan(ϕSS)
2); ∀(n ∈ ΩSS, t, k,ω

)
(53)

QSS,n
t,k,ω ≤ tan

(
ϕSS

)
PSS,n

t,k,ω; ∀
(
n ∈ ΩSS, t, k,ω

)
. (54)

The reactive renewable power that is injected in the distribution system must have a constant
power factor (Equations (55) and (56)).

0 ≤ Qwd,n
t,k,ω ≤ Pwd,n

t,k,ω tan
(
ϕwd

)
; ∀

(
n ∈ ΩL, t, k

)
(55)

0 ≤ Qpv,n
t,k,ω ≤ Ppv,n

t,k,ω tan(ϕpv); ∀
(
n ∈ ΩL, t, k

)
. (56)
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4. Solution Procedure: Benders’ Decomposition

Model (1)–(56) is set as a MILP problem whose size depends on the number of time blocks,
scenarios, and years considered in the study. In order to obtain informed expansion decisions, a large
number of time blocks and scenarios are needed to obtain a good representation of the loads and
renewable power outputs, as well as a large number of years. However, in such a case the MILP problem
(1)–(56) may become computationally intractable. Nevertheless, note that if variables YSS;n

t , Ypv;n
t , and

Ywd;n
t , i.e., the expansion decision variables, are fixed to given values, then, problem (1)–(56) can be

decomposed into a set of smaller problems, one for each time block, scenario, and year. This allows us
to use Benders’ decomposition to solve the problem.

Model (1)–(56) uses binary variables for the linearization of power flow equations. Since Benders’
decomposition cannot have binary variables in the sub-problem, a procedure to fix the values of these
variables must be used. Further details are shown in step 1.

In the following sections superindex (υ) indicates the values in the υ-th Benders’ iteration.
The proposed Benders’ decomposition algorithm comprises the steps below:

1. Step 0. Initialization: Initialize the iteration counter, υ = 1, the upper bound of the objective

function, z(1)up = ∞ and its lower bound, z(1)down = −∞ and solve the following problem:

minimize
YSS;n

t , Ypv;n
t , Ywd;n

t ,α

∑
t∈ΩT

βtcit + α (57)

subject to constraints (12)–(17) and
α ≥ αdown. (58)

This problem has the trivial solution: α(1) = αdown., YSS;n
t

(1), Ypv;n
t

(1), Ywd;n
t

(1) = 0, ∀(t, n).
After problem (57), (58), (12)–(17)above is solved, the lower bound of the optimal value of the

objective function (1) is updated:

z(1)down =
∑

t∈ΩT

βtcit(1) + α(1). (59)

2. Step 1. Sub-problem solution: The variables YSS;n
t , Ypv;n

t , and Ywd;n
t ,∀(t, n) are set, to their optimal

values from the previous step and solve the following sub-problems, one for each year t, time
block k, and scenario ω.  minimize

Ξ1
t,k,ω

βtNh
k γk,ωcomt,k,ω (60)

subject to constraints (7)–(11), (18)–(56) and

YSS;n
t = YSS;n

t
(υ) ;∀n ∈ ΩSS (61)

Ypv;n
t = Ypv;n

t
(υ) ;∀n ∈ ΩL (62)

Ywd;n
t = Ywd;n

t
(υ);∀n ∈ ΩL

}
; ∀(t, k,ω) (63)

where:

Ξ1
t,k,ω ={

Isqr;n,m
t,k,ω , Pns;n

t,k,ω, Ppv;n
t,k,ω, Pwd;n

t,k,ω, PSS;n
t,k,ω, P+;n,m

t,k,ω , P−;n,m
t,k,ω , Qns;n

t,k,ω, QSS;n
t,k,ω, Qpv;n

n,t,k,ω, Qwd;n
t,k,ω, Q+;n,m

t,k,ω , Q−;n,m
t,k,ω , Vsqr;n

t,k,w , YP+;n,m
t,k,ω ,

YP−;n,m
t,k,ω , YQ+;n,m

t,k,ω , YQ−;n,m
t,k,ω , ∆Pn,m,r

t,k,ω , ∆Qn,m,r
t,k,ω

}
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Each instance of the sub-problem, one for each year t, time block k, and scenario ω, is solved
twice. The first simulation solves problem (60)–(63), (7)–(11), (18)–(56) as a MILP problem, to obtain the
values of YP+,m,n

t,k,ω , YP−,m,n
t,k,ω , YQ+,m,n

t,k,ω , and YQ−;n,m
t,k,ω , which are the sub-problem’s binary variables. Then,

the second run uses the optimal values of variables YP+,m,n
t,k,ω , YP−,m,n

t,k,ω , YQ+,m,n
t,k,ω , and YQ−;n,m

t,k,ω , obtained in
the first simulation, as parameters for solving sub-problem (64)–(67), (7)–(11), (18)–(56) i.e., in this case
we solve sub-problem (64)–(67), (7)–(11), (18)–(56) as the following LP problem. minimize

Ξ2
t,k,ω

βtNh
k γk,ωcomt,k,ω (64)

subject to constraints (7)–(11), (18)–(56) and

YSS;n
t = YSS;n

t
(υ) : λ1,n,t,k,ω; ∀n ∈ ΩSS (65)

Ypv;n
t = Ypv;n

t
(υ) : λ2,n,t,k,ω; ∀n ∈ ΩL (66)

Ywd;n
t = Ywd;n

t
(υ) : λ3,n,t,k,ω; ∀n ∈ ΩL

}
; ∀(t, k,ω). (67)

where:

Ξ2
t,k,ω =

{
Isqr;n,m
t,k,ω , Pns;n

t,k,ω, Ppv;n
t,k,ω, Pwd;n

t,k,ω, PSS;n
t,k,ω,Qns;n

t,k,ω, QSS;n
t,k,ω, Qpv;n

n,t,k,ω, Qwd;n
t,k,ω , Vsqr;n

t,k,w , ∆Pn,m,r
t,k,ω . , ∆Qn,m,r

t,k,ω

}
.

The outputs of sub-problem (60)–(63), (7)–(11), (18)–(56) are variables of set Ξ1
t,k,ω, and the outputs

of sub-problem (64)–(67), (7)–(11), (18)–(56) are variables of set Ξ2
t,k,ω, as well as dual variables λ1,n,t,k,ω,

λ2,n,t,k,ω, and λ3,n,t,k,ω. Note that the sensitivities used for Benders’ cuts in (65), (66) and (67) are only
obtained after the second run.

A sub-problem (64)–(67), (7)–(11), (18)–(56) is solved for each year t, time block k, and scenario ω.
In order to formulate the Benders’ cuts in the Master problem (see Step 3), it is necessary to define and
compute parameters λ̃1,n,t, λ̃2,n,t, and λ̃3,n,t as follows:

λ̃1,n,t =
∑

k∈ΩK

∑
ωεΨω

k

λ1,n,t,k,ω;∀
(
n ∈ ΩSS, t

)
(68)

λ̃2,n,t =
∑

k∈ΩK

∑
ωεΨω

k

λ2,n,t,k,ω;∀
(
n ∈ ΩL, t

)
(69)

λ̃3,n,t =
∑

k∈ΩK

∑
ωεΨω

k

λ3,n,t,k,ω;∀
(
n ∈ ΩL, t

)
. (70)

Finally, the upper bound of the optimal value of the objective function (1) is updated as:

z(υ)up =
∑

t∈ΩT

βtcit(υ) +
∑

t∈ΩT

∑
k∈ΩK

∑
ωεΨω

k

βtNh
k γk,ωcomt,k,ω

(υ). (71)

3. Step 2: Convergence checking: Check if the difference between the upper and the lower bounds,

z(υ)up − z(υ)down is lower than a predefined tolerance, ε. If so, the algorithm has converged, and the

optimal solution consists of variables YSS;n
t , Ypv;n

t , Ywd;n
t , ∀(t, n); as well as the variables in set Ξ

for iteration (υ). If not, the algorithm proceeds to the next step.
4. Step 3: Master problem solution: Update the iteration counter, υ← υ+ 1 , and solve the following

master problem:
minimize

YSS;n
t , Ypv;n

t , Ywd;n
t ,α

∑
t∈ΩT

βtcit + α (72)
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subject to constraints (12)–(17) and
α ≥ αdown (73)∑

t,k,ω
βtNh

k γk,ωcomt,k,ω
(υ)

+
∑

t∈ΩT

( ∑
n∈ΩSS

λ̃
(h)
1,n,t

(
YSS;n

t −YSS;n
t

(υ)
)

+
∑

n∈ΩL

[
λ̃
(h)
2,n,t

(
Ypv;n

t −Ypv;n
t

(υ)
)
+ λ̃

(h)
3,n,t

(
Ywd;n

t −Ywd;n
t

(h)
)] )
≤ α; ∀h

= 1, . . . υ− 1

(74)

where cit is defined in Equations (5) and (6) and their parameters in Equations (2)–(4).

Each constraint in (74) is known as a Benders’ cut [20]. Benders’ cuts approximate objective
function (1) from below as a function of the investment variables. Notice that at every iteration the size
of master problem (72)–(74), (12)–(17) increases since a new constraint is added.

Next, the lower bound of the objective function is updated (1):

z(υ)down =
∑

t∈ΩT

βtcit(υ) + α(υ). (75)

Then, the algorithm continues at Step 1.
For clarity purposes, the flowchart of the algorithm is shown in Figure 1.
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Note that the Benders’ decomposition algorithm described in this section can solve each
sub-problem separately, and hence, the computational time of the proposed algorithm grows linearly
with the number of scenarios, time blocks, and years, being its scalability excellent.

5. Case Study Data

This section describes the data used for the simulations of the problem explained in Section 3.
The Benders’ decomposition method is applied to a 34-bus three-phase radial feeder [21], which has
1 substation, 29 buses with load, and 5 buses with no load. The topology of the system is shown in
Figure 2. The data are based on those provided in [18] and [21], but adding new scenarios. In [18]
there are 3 levels of demand, wind production, and solar production per each of the 8 time blocks.
Now, there are 4 levels and 12 time blocks.
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Figure 2. Distribution system under study.

The wind turbines chosen have a capacity of 100 kW and the PV modules have power of 2.5 kW.
The candidate buses for each technology are shown in Figure 2 and the maximum power (wind turbine
and PV modules) that may be installed at each bus is 250 kW. The maximum number of units is
limited to 2 for wind turbines and to 85 for PV modules, and the substation can be expanded adding
transformers of sizes ranging from 1 MVA up to a maximum of 5 MVA. Demand increases 2% each
year along the planning horizon (20 years). The voltage data of the distribution system is 1 pu in the
substation node and the minimum and maximum allowable voltage values are 0.95 pu and 1.05 pu,
respectively. The values defined for the interest and discount rates are 8% and 12.5% [6], respectively.
Investment data of new devices are shown in Table 2.
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Table 2. Investment data.

Unit Investment Cost [€] Life Cycle [years] Tan (ϕ)

Transformer 20,000 20 0.48
Wind turbines 125,155 20 0.48
PV modules 3445 20 0.48

The operation and maintenance costs of the new renewable production units are €0.007/kWh [8].
The annual budget is €150,000 and the maximum portfolio investment for the life time of the devices is
€5,500,000. Data on demand, wind speed, and PV factors used per time block are shown in Table 3,
where wind and PV production levels are also displayed. The different levels are combined with each
other in every time block. There are four levels of demand, wind, and PV production, hence, the total
number combinations (scenarios) per time block is 64. Hence, there are 12 time blocks, 6 per season
(winter (October–March) and summer (April–September)), accounting for 768 scenarios. Note that
energy prices are not used in scenario generation and each price corresponds with a defined demand
factor. These prices are shown in Table 3 and increase 1% each year with respect to the base year.
All the levels in each time block have a probability of 1/4. Therefore, the weight of each of the scenarios
within each time block is 1/64 [22]. Two blocks are used for piecewise linearization, where the cost of
energy not supplied is €15,000/MWh. The tolerance ε of the Benders’ algorithm is specified as €1.

Table 3. Investment data.

Blocks Hours Price
[€/MWh]

Demand
Factors

Wind Speed
Factors

Wind Production
Factors

Irradiation
Factors

PV Production
Factors

1 144

70.99 0.92 0.45 1.00 0.78 0.76
62.89 0.90 0.29 0.76 0.20 0.20
67.36 0.88 0.17 0.37 0.00 0.00
57.74 0.87 0.05 0.00 0.00 0.00

2 1108

53.41 0.85 0.49 1.00 0.71 0.70
48.54 0.82 0.29 0.76 0.17 0.17
42.94 0.80 0.20 0.45 0.00 0.00
44.85 0.78 0.08 0.08 0.00 0.00

3 960

45.59 0.77 0.47 1.00 0.76 0.74
41.21 0.75 0.29 0.77 0.21 0.21
42.09 0.72 0.19 0.42 0.00 0.00
42.55 0.69 0.07 0.04 0.00 0.00

4 1029

41.65 0.66 0.48 1.00 0.73 0.71
39.94 0.62 0.29 0.76 0.22 0.22
37.11 0.59 0.19 0.44 0.00 0.00
35.13 0.55 0.08 0.07 0.00 0.00

5 1027

32.37 0.52 0.49 1.00 0.72 0.70
28.50 0.50 0.28 0.73 0.16 0.16
23.91 0.49 0.19 0.42 0.00 0.00
25.36 0.47 0.07 0.04 0.00 0.00

6 112

18.87 0.45 0.43 1.00 0.76 0.74
16.10 0.44 0.24 0.62 0.18 0.18
18.35 0.43 0.15 0.30 0.00 0.00
3.19 0.40 0.05 0.00 0.00 0.00

7 46

57.38 0.97 0.47 1.00 0.76 0.74
55.58 0.95 0.32 0.85 0.48 0.48
54.79 0.94 0.19 0.45 0.08 0.08
53.64 0.93 0.08 0.06 0.00 0.00

8 1083

53.19 0.89 0.44 1.00 0.69 0.67
52.62 0.85 0.27 0.71 0.27 0.27
49.51 0.82 0.18 0.41 0.01 0.01
48.08 0.80 0.07 0.04 0.00 0.00
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Table 3. Cont.

Blocks Hours Price
[€/MWh]

Demand
Factors

Wind Speed
Factors

Wind Production
Factors

Irradiation
Factors

PV Production
Factors

9 1084

44.25 0.78 0.45 1.00 0.70 0.69
47.11 0.76 0.28 0.73 0.31 0.31
44.67 0.73 0.19 0.44 0.02 0.02
46.98 0.70 0.08 0.07 0.00 0.00

10 1028

47.89 0.67 0.46 1.00 0.71 0.70
47.16 0.65 0.28 0.74 0.30 0.29
43.81 0.62 0.19 0.43 0.01 0.01
42.42 0.58 0.07 0.05 0.00 0.00

11 1025

41.53 0.55 0.47 1.00 0.69 0.67
39.15 0.53 0.28 0.75 0.26 0.26
38.14 0.51 0.20 0.46 0.00 0.00
34.68 0.49 0.08 0.09 0.00 0.00

12 114

34.74 0.47 0.45 1.00 0.64 0.63
36.49 0.47 0.28 0.73 0.20 0.20
32.55 0.46 0.19 0.44 0.00 0.00
33.54 0.44 0.08 0.07 0.00 0.00

6. Results Discussion

Two case studies have been simulated to test the model, where the constraints related to installed
power and limits of investment are different. The results of Benders’ algorithm for each case study
case are compared with the MILP model given in Equations (1)–(56). These results are obtained using
CPLEX 11 under GAMS [23] on an Intel Xeon E7-4820 computer with 4 processors at 2 GHz and 128 GB
of RAM. Table 4 presents the numerical results of each simulation in each study case for 768 scenarios.
The relative gap is set to 0.01 in all simulations for Benders’ simulation.

Table 4. Total system costs (€).

Case
a b

MILP Benders MILP Benders

Total Costs 12,330,870 12,336,090 11,748,580 11,758,350

O&M system costs 11,178,621 11,134,070 9,308,298 9,314,627
Investment costs 1,152,249 1,202,020 2,440,282 2,443,723

CPU time (hours) 742 15 444 24.8

• Case a. Investment limits included: This case represents the most realistic scenario all constraints
of the model are taken in account. The first year of the time horizon the renewable technology
chosen for investment is photovoltaic (PV), with an installed capacity of 1047.5 kW (see Table 5).
The expansion of the substation is carried out in the ninth year, with a new transformer. The new PV
devices are installed at the end of the branches because it reduces the costs associated with energies
losses. The location of the PV modules within the network is displayed in Table 6. The CPU time
decreases by 97.9% when Benders’ decomposition is the method chosen for the simulations.

Table 5. Power installed (kW) in Case a.

Case a

Year Substation Wind PV

1 - - 1047.5
9 1000 - -

Total 2047.5
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Table 6. Nodal allocation of new power installed for Case a.

Year
Substation Wind Photovoltaic

Node No. Units Node No. Units Node No. Units

1 - - - -

11
24
25
26
27
31

77
85
85
85
85
2

9 1 1 - - - -

• Case b. Investment limits not included: in this case, investment constraints (Equations (16) and (17))
are not considered. This new constraint scenario allows the investment in, not only new
transformers and PV modules, but also in wind units (see Table 7). Two expansions of the
substation are made, in years 9 and 16, PV modules are installed in all candidate nodes, and six
wind units, in total, are also installed in the last year. In this case, the new installed capacity is
4725 kW. The location of the PV modules within the network is displayed in Table 8. The CPU
time decreases by 94.4% using Benders’ algorithm.

Table 7. Power installed (kW) in Case b.

Case b

Year Substation Wind PV

1 - - 2125
9 1000 - -
16 1000 - -
20 - 600 -

Total 4725

Table 8. Nodal allocation of new power installed for Case b.

Year
Substation Wind Photovoltaic

Node No. Units Node No. Units Node No. Units

1 - - - -

11
12
24
25
26
27
31
32
33
34

85
85
85
85
85
85
85
85
85
85

9 1 1 - - - -
16 1 1 - - - -

20 - -
21
22
23

2
2
2

- -
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The results are better in Case b than Case a because the problem is less constrained. The introduction
of renewable energy in distribution systems reduces the total operation and maintenance (O&M)
system costs (see Table 9). The reduction of O&M costs is due a reduction of losses costs and purchase
energy by substation. These results highlight the advantages of investing in renewable generation in
the long term.

Table 9. Total O&M system costs (€) for 768 scenarios.

Case
a b a b

MILP Benders MILP Benders

Total O&M Costs 11,178,621 11,134,070 9,308,298 9,314,627

Losses costs 701,609 694,314 598,504 597,734
Not supplied energy cost 13,572 54,010 361 14,866

Purchase energy cost 10,195,660 10,104,480 8,138,853 8,130,402
DG O&M costs 267,780 281,266 570,580 571,625

Finally, Table 10 shows the CPU times required to solve the DGP problem using both the MILP
model (1)–(56) and the Benders’ algorithm for different number of scenarios. The CPU time required to
solve the MILP model (1)–(56) increases drastically with the number of scenarios (Figures 3 and 4).
However, its increment is approximately linear if Benders’ algorithm is considered. This causes that, up
to 64 scenarios, MILP model solves the problem faster than Benders’ algorithm but, from 216 scenarios
on, Benders’ algorithm becomes a much more efficient way to solve it.

Table 10. CPU Time.

Problem Case a Case b

Scenarios 1 8 64 216 768 1 8 64 216 768

MILP 4 s 1.9 m 0.7 h 13 h 742 h 1 s 30 s 3 m 11.1 h 444 h
Benders 36 s 5.3 m 1.7 h 4.9 h 15 h 11 s 90 s 72 m 5.1 h 24.8 h
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7. Conclusions

This paper has considered the DGP problem in a stochastic environment, where both PV and wind
technologies as well as demand are subject to random changes. The use of Benders’ decomposition to
solve the two-stage stochastic investment problem has allowed us to further decompose the problem
by scenarios and planning periods, making it a fully decomposable one. The model has been tested for
a 34-bus example with excellent results.

In terms of computing time, the increase in the number of scenarios makes the differences between
MILP and Benders’ models evident. Up to 64 scenarios, the MILP model is much faster. Benders’ model
needs to perform iterative processes (loops) that increase the computing time. This trend changes
as the number of scenarios increases and Benders’ method becomes faster than MILP. In general,
MILP’s computing time behaves in a non-linear way, whereas Benders’ model is more linear in terms
of computing time. This proves the significant computational advantage of Benders’ with respect to a
conventional MILP model.

Note that applying Benders’ decomposition may also allow extending the investment problem to
address other relevant issues in distribution systems, such as switching or network reconfiguration.
This would be non-viable using the original mixed-integer linear programming problem due to its
high computational burden.

The work developed in this article can help investors to decide the kind and size of renewable
technologies and the place where install the new devices in the distribution system. As improvements
to the proposed problem, other kinds of producers (biomass, hydraulic) can be introduced, incorporate
reliability in generation and electric vehicle. In addition, making a comparative with other uncertainty
management methods such as K-means.
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