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Abstract: Nowadays, there is a wide scientific consensus about the unsustainability of the current
energy system and at the same time, social awareness about climate change and the IPCC’s goals
is increasing in Europe. Amongst the different pathways towards them, one alternative is the
radical transition to a democratic low-carbon energy system where the local scale has a key leading
role. Under this scope, this research is framed within the mPOWER project, financed by the
European Commission’s H2020 programme, which promotes collaboration among different European
municipalities in order to boost the transition to a renewable-based participatory energy system.
This paper presents the starting point of the mPOWER project, where the main energy features of 27
selected European municipalities are collected and analysed for the year 2016. An open public tender
and selection process was carried out among European cities in order to choose the candidates to
participate in mPOWER project. A view of this situation will be taken by the mPOWER project as a
diagnostic baseline for the following steps: a peer-to-peer knowledge-sharing process among these
European municipalities, and subsequently, among a more extensive group. The first finding of
the paper is that, even if those municipalities are trying to reduce their greenhouse gas emissions,
they are highly dependent on fossil fuels, even in cases where renewable energies have significant
presence. Second, their energy consumption is logarithmically related to the human development
index and gross domestic product but not to the size of the cities and their climate characteristics.
Finally, despite the work that these cities are making towards energy transition in general and within
the mPOWER project in particular, the paper shows a high difficulty mapping their energy systems.
The lack of accurate and unified data by the municipalities is a sign of disempowerment at a local and
public level in the energy sphere and makes difficult any strategy to advance towards a bottom-up
energy transition. Among other goals, the mPOWER project aims to reveal these kinds of difficulties
and help local authorities in managing their transition paths.
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1. Introduction

The urgency for changing the current European energy model and transiting towards a more
sustainable one is a well-accepted reality among European inhabitants, policy-makers and scientists.
In line with this, it has been clearly detected that the elevated use of fossil fuels needs to be reduced
in order to keep the temperature increase of the planet to under 2 degrees Celsius [1]. Furthermore,
it has been accepted that the incoming transition will not be merely a technological transition towards
renewable energy systems [2], but will require a change in our way of dealing with democracy, economy
and social values [3,4]. Indeed, there is an on-going debate about how this multi-dimensional transition
will take place [5]. The goals of energy democracy movements all over the world intend to resist the
current energy agenda, and reclaim and restructure the energy sector [6], with desired outcomes such
as shifting public resources away from fossil fuels, leaving fossil fuels on the ground and stopping
extractivist infrastructures, ensuring public or social control of the energy sector, or not prioritising
only the monetary benefit out of the energy system.

A number of different voices point to the need for a locally based energy transition, as the local
scale is related to more participative, inclusive and socially accepted policies and actions. Van der
Schoor et al. [7] argue that local communities should lead a bottom-up transition since they boost the
use of local resources with democratic horizontal governance and own financial strength-based energy
production and supply. Other similar studies maintain that the new energy system will be funded
directly by citizens, since they are at the heart of this new transition based on decentralised renewable
energy cooperatives [8]. In the same vein, Vita et el. [9] show that those individuals who are members
of sustainability-oriented grassroots initiatives have a more sustainable lifestyle compared to their
socio-demographic counterparts, which leads to a more satisfying life and lower carbon footprints in
the analysed domains of housing, transport, clothing and food. Indeed, energy embedded in consumed
products and services [10,11] is a major issue that goes beyond direct energy consumption and needs to
be considered in local energy transitions in order to avoid global rebound effects. Beyond the influence
of a single consumer [12], as Grabs et al. [13] point out, grassroots initiatives play a major role in this
field. After analysing the nexus between individual motivation and collective action in the context of
sustainable consumption, they concluded that individuals can be agents of societal change when they
are organised in groups.

Furthermore, some authors attribute the progress of energy transitions in different countries to the
presence of grassroots initiatives in such countries [14]. In the above-mentioned reference, Kooij et al.
studied what the conditions are for grassroots initiatives to emerge, and how these initiatives create
an impact upon these conditions. They observe that openness to alternative discourses and a shared
knowledge are favourable conditions for the appearance of these kinds of initiatives. In turn, they argue
that the influence they exert upon energy systems is low in the case of those systems with strong vested
interests, and that the support by governments and institutions is crucial for those initiatives to make
a change.

More specifically, in relation to local authorities, in the Sustainable Development Goals of 2015 [15],
the United Nations clearly recognised the key role of local public institutions in the transition towards
a more sustainable future. According to Sperling et al. [16], cities will be relevant in boosting locally
produced and consumed energy systems based on renewables in different sectors. This change will
occur by focusing our attention on underlying social drivers, and releasing the need for economic
growth as a single scope [17]. However, they suggested that the role of municipalities needs to be
outlined very clearly and that the state must provide municipalities with the necessary planning tools,
establishing the required strategy, for the integration of a 100% renewable source-based decentralised
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system [16] or decarbonisation plans [18]. Comodi et al. [19] show that, even while the role of
local authorities is relevant, the results of their actions can be merely partial within a multi-scalar
energy transition. The support and energy policies of nations and states remain central in achieving
decarbonisation goals under democratic principles [20].

This paper has been developed within the mPOWER project, which focuses on the strategies and
actions that municipal authorities carry out towards a sustainable and democratic energy system [21].
Within the framework of the project and despite their limitations, municipalities are recognised as key
political actors in the transformation of the energy system within the European context.

During the last decade, the EU has promoted a proactive climate policy, increasing renewables
and improving energy efficiency [22]. Some of the leading EU countries, going beyond climate change
on the direction of the conservation of the national and global environment, have also opted for nuclear
phasing-out [23]. However, the results do not appear to be sufficient. In Europe (European Union 28,
EU-28), non-renewable energy consumption (coal, oil, gas and nuclear energy) constitutes 85.3% of
the total primary energy supply [24], consuming 23.18 MWh of non-renewable energy per inhabitant
and year (MWh·cap−1

·yr−1) out of the total of 27.16 MWh·cap−1
·yr−1. Even though the consumed

non-renewable energy in EU-28 is 26% less than the average for OECD countries, it is 68.7% greater
than the world average value [24], which has already been considered 2–6 times above sustainable
levels, making it beyond the planetary boundaries [25]. This underlines that there is an urgency to
continue reducing the consumed non-renewable energy in EU-28.

According to Tagliapietra et al. [22], the cost of a fully-fledged energy transition in the EU would
be similar to that of preserving the current non-renewable energy system, and adopting the right
policies to mitigate the distributional effects of said transformation, could make it also socially desirable.
Since the social and metabolic transformations required by a real decarbonisation process are to be so
relevant [26], it will be determinant to control its distributional and democratic aspects. Nevertheless,
concerning local experiences, there is a gap in the current energy system between the new theoretical
sustainable energy systems and the reality that the cities are facing [8]. In order to build bridges among
theoretical roadmaps and practical strategies, the active role of the municipalities is considered a key
factor [9]. Furthermore, difficulties in modelling the impacts of citizens’ behaviour on climate change
have been detected [27], concluding that further collaboration between social scientists and economic
developers are required.

Cities are said to be responsible for 70% of global emissions of CO2eq [28], and different targets
have been established in EU cities in order to face the energy transition towards a sustainable one.
According to van den Dobbelsteen et al. [29], all targets at a municipal level should aim to research the
current energy situation, reduce the total energy consumption, reuse energy (i.e., reuse flows, heat
transfer) and produce renewable energy. To this effect, one of the first targets in the EU was established
by the Swiss government, following the ETH researchers who estimate 17.5 MWh per capita per
annum (equivalent of 2000 watt during 365 days and 24 h) as a sustainable amount [30]. This target
is also aligned with the 1 eqtCO2 emissions per person and year, which would allow us to avoid a
climate change scenario [30]. The percentage of integration of renewable energy or electricity has
also been established, and most European cities have the goal of integrating 20% of renewable energy
into their electric mix by 2020 [29]. The European Commission goes beyond and targets a renewable
energy share of 20% in the gross final energy demand [31,32]. It has also been common to use relative
targets in percentages, such as reductions of CO2eq emissions of 40% by 2030 [31,32] or 85–90% by
2050 [32] (compared to 1990). Another commonly used percentage target is a 27% increase in energy
efficiency compared to a ‘business-as-usual’ projection of future energy demand [30,31]. The existence
of different goals has generated a diversification of targets among different cities, with an absence
of unified targets [33]. Nevertheless, despite the existence of targets, emission reductions in cities
measured in consumption-based accounts do not always occur. In the study developed in six Japanese
cities from 1980 to 2000, it was concluded that consumption-based emissions measured by carbon
inventories have not been reduced, but rather increased from 8 to 9 eqtCO2 per year and capita [28].
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Furthermore, it has been also detected that the energy consumption and carbon emissions of cities are
related to their economic performance, especially in developed countries such as China [34], thus a
massive reduction of energy or emissions could happen to not be attractive or convenient for some
cities, drawing us into a controversial panorama.

Despite these limitations, different initiatives are being developed on the roadmap to more
sustainable cities. One such example is the European Energy Awards [35], given to municipalities for
energy and climate protection activities at the European level. Those cities awarded can be considered
exemplary in energy transition.

In this regard, different bottom-up movements have arisen in recent years to boost the necessary
energy transition. The ‘Covenant of Mayors’ (CoM) [36] is one of the most relevant initiatives,
a movement that involves more than 9000 cities in 131 countries, where local authorities voluntarily
commit to meeting and exceeding the European goals for CO2 emissions reductions [37]. In the same
vein of work, ‘Energy Cities’, the European association of cities in energy transition, is a network
of local authority representatives from 30 countries that gathers frontrunners and energy transition
beginners, city officials and technical experts. Their principal goal is to support the creation of new
policies through National Energy and Climate Plans (NECP) [38]. Similarly, Ursula von der Leyen
presented the plan to make the EU the world’s first ‘climate-neutral’ continent by 2050 [39].

Apart from the work that has been carried out on (and combined with) policy-making, from
an academic perspective, several efforts to model a sustainable energy model have been made.
The MEDEAS project [40] is one of the best examples, a tool to design the transition into a 100%
renewable energy system (RES) in Europe. This initiative considers three different scenarios to model
the energetic macro-economic system from 1995 to 2050: Business as Usual (BAU), Green Growth (GG)
and the Post-Growth or degrowth approach (PG). Other tool to boost this transition in urban districts
is the learning experience through the use of visualisation games, such as Go2Zero [41].

Within the framework of this European energy transition, the mPOWER project is funded by the
European Commission Horizon 2020 Research and Innovation Framework Programme and aims to
boost municipal actions, public engagement and the creation of routes towards the necessary Energy
Transition [42]. The project is managed by seven partners (the University of Glasgow, Platform-London,
the Stichting Transnational Institute, the Society for the Reduction of Carbon Limited, the Institute for
Political Ecology, Energy Cities and the University of the Basque Country). Throughout the 48-month
duration of the project, the partners will detect, through systematic peer review, the best replicable
municipal practices in energy transitions and create a framework to share the different achievements
in a peer-to-peer learning programme.

The central question of this paper is: What is the current situation, regarding energy, of the
27 municipalities that were selected for the initial stages of the learning programme? In addition,
two sub-questions are defined, to be answered throughout the structure of the paper:

- What are the difficulties in describing the current situation?
- How can these difficulties help other authorities in their energy transition?

The analysis used in order to answer these questions is based on the statistical evaluation of
various energy indicators and was carried out using the data provided by municipalities from an online
survey related to energy consumption, renewable production and municipal policies and strategies of
participatory energy transition. The data were collected in order to determine the baseline for year
2016 (in some cases, updated data of 2017 have been used), that is, the reference situation that will be
compared with that of the end of the project. To this end, first, a description is given of the mPOWER
project, as well as the methodology used in the research, which includes the baselining, standardisation
and evaluation of the data. Following this, the results obtained from the 27 cities (i.e., municipalities)
are presented and, finally, a summary provided of the conclusions drawn.
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2. The mPOWER Project

The mPOWER project aims, by means of learning programmes participated in by more than
100 local public authorities, to replicate innovative best practices in municipal energy, and develop
ambitious energy transition plans. The project relies on two learning programmes: first, a bespoke
learning programme (referred to as mPOWER Exchange) in which 27 cities are participating and
second, a peer-to-peer online learning programme (referred to as mPOWER Digital) where around
90 municipalities will participate. This publication deals with the first part of the project, the bespoke
learning process, in which 27 cities are involved. In order to choose the cities, Covenant of Majors [36]
and Energy Cities [43] platforms were used to share the possibility of participating in the project across
all European cities. Furthermore, the institutions leading the mPOWER project (see Acknowledgments)
offered hundreds of municipalities the possibility of applying to take part in the selection process.

Among all the candidate cities, a ranking was developed by the Glasgow University members so
as to choose the most appropriate cities. The ranking was made following an online survey, interviews
and online research and was developed a selection of main learning preferences of cities based on
motivation and participation for an energy transition; experience in renewable energy integration;
experience in energy efficiency and consumption organisation. It is important to note that the cities
were selected not only for their expertise, but moreover for their interest in participating in a learning
programme. The selected cities were classified into three topics: Local Energy Communities, Renewable
Energy Integration and Energy Efficiency. Finally, in order to start the learning process, one or two
working groups have been created for each of the topics. In each of the five different working groups
created, a group leader was selected by the project organiser. The group leaders have the role of showing
the rest of the members the initiatives that have been developed or are planned to be developed.

The mPOWER Exchange programme is based on city visits to share knowledge, and enables
technicians and policy-makers to invest face-to-face time researching, understanding and contrasting
existing and new energy infrastructures and projects, with the aim of promoting participation and
enhancing the exchange of practical knowledge and expertise.

3. Methodology of the Research Baseline

At the initial stage, a baseline evaluation was planned within mPOWER in order to establish a
reference framework to be compared with the situation at the end of the project. This baseline will
serve to gain knowledge on the energy reality of the participating cities and to help to evaluate the
expected impacts from the mPOWER project:

1. To increase energy savings;
2. To increase renewable energy production;
3. To increase the capabilities of public authorities on energy supply and production management;
4. To create city-based strategies for encompassing energy transition.

Because of the lack of a public European or worldwide database about energy consumption and
production at the municipal level [36], and the fact that there is very little up-to-date online information
in this field, our strategy was to directly collect the data via an online survey (see Appendix A Material
for accessing the survey) to be completed by the municipal technicians or politicians in charge of the
mPOWER project in each participating city.

The questions from the survey cover both qualitative and quantitative aspects related to the
objectives and the expected impacts of the project: Amount and type of consumed energy; greenhouse
gas emissions (GHG); renewable energy systems (RES); municipal public staff in the energy sector and
in energy transition projects; municipal public investments related to energy transition; municipal
plans for renewable energy power development; municipality led initiatives and policies for energy
transition; citizenship/cooperative-led initiatives and campaigns for energy transition.

Taking into account the impacts for mPOWER and specific targets for energy transition listed
above, several indicators were chosen to be analysed in this baseline. Some of them were directly
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obtained from the survey, some were found in the literature on the topic and some were calculated
by the authors. The following table lists all the analysed indicators, relating them to the expected
impacts and targets, as well as indicating where in the paper they can be found. Note that impact 3 is
transversal to all targets that is why it is not appearing in Table 1.

The performance of these indicators, by assessing them at the beginning and at the end of the
project, will be used to evaluate the impacts achieved and the success of different strategies and
actions that will be carried out throughout the project. Some of the indicators, such as total energy
consumption and RES percentage, are analysed in this paper in order to evaluate how cities are
currently performing. However, others such as RES installation and production are left for a future
analysis and comparison with the end-of-project situation. This is due to the difficulty in obtaining a
reference target to compare with.

3.1. Survey Data Standardisation Methodology

As mentioned above, we faced difficulties with the data collection since some of the cities did
not complete the survey (or part of it) and, among those cities that did, in some cases the collected
data was not consistent. After compiling all the information on a database, the validity of the RES
production, energy consumption and GHG emission data was assessed as explained below.

In the case of municipal RES production, we related the data on installed power (in MW) with the
total annual production (in MWh) in order to obtain the capacity factor (CF), i.e., ratio of actual energy
output over a whole year to the maximum possible energy output over that year [44]. We considered
the data were consistent only when the CF ranged between 1 and 90%. In those cases where only
installed power or annual production was given, the data could not be checked for consistency (which is
regarded as a lack of data in Figure 1). See Table A1 from the Appendix B. for checking how the RES
data were interpreted.
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are classified in five different working groups.

In the case of the energy consumption and GHG emission data, first the values per capita were
obtained by dividing the values given by each city by the number of inhabitants. We then compared
them to the national per capita average consumption and emission data, taken from the International
Energy Agency (IEA) database (2016) [24]. The data given by the cities were considered consistent
when they were on the same order of magnitude as the ones taken from the IEA: specifically, when the
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data of the cities were no lower than one-third of the IEA data, or they were no higher than three times
the IEA data. When the data were not considered consistent or when no information was given, the
IEA data were used instead.

3.2. Survey Data Assessment Methodology

In this section, we analyse some of the above-mentioned indicators, comparing the obtained data
across all the 27 cities. The number of resources that each municipality assigns to the energy transition
(number of campaigns, people and budget) has been analysed as an indicator of energy democracy.
Total energy consumption was analysed next (how much energy per capita is consumed in each city),
quantifying also what the main energy sources are and in which sectors that energy is consumed.
Hidden Energy Flows were included among the analysed sectors.

Energy consumption has been linked to GHG emissions by comparing the obtained emission
and consumption data, and additionally by estimating the emissions that should be obtained from
the consumed energy; this was done by taking into account each city’s energy mix and the emission
intensities of each type of fuel (eqtCO2 per kWh) provided by the IPCC [45], as well as the electricity
mix per country [24].

Finally, various economic, climatic or size indicators, such as the gross domestic product (GDP),
the human development index (HDI), the heating and cooling degree days (HDD and CDD) and the
number of inhabitants of each city were plotted as a function of the energy consumption and fitted to a
logarithmic equation in order to try to find a correlation, following the methodology of Steinberger
et al. [46], Arto et al. [10] and Akizu et al. [11].

4. Results and Discussion

The aim of this section is to provide an overview of the obtained data, in order to give the cities
an insight into the steps needed for an energy transition, as well as to gain an indication of what to
learn from each other, by comparing their energy consumption and GHG emission data. Nevertheless,
before doing so, careful effort has been made to check the reliability of the data received.

4.1. Survey Data Standardisation

As can be observed, Figure 2 shows the ratio between valid and non-valid data, as well as the
absence of any answer for the energy consumption, GHG emission and RES production data given
by the cities, which was standardised as previously explained in Section 3.1. Regarding energy
consumption, the highest uncertainty corresponds to the case of liquid fuels, where only 37% of the
cities provided reliable data. In the case of coal, all of the received answers were considered valid,
since the consumption of this fuel is very low and most of the cities reported no consumption. Apart
from coal, natural gas consumption data present the highest reliability, with 63% of the answers
considered valid.

Regarding GHG emissions, 59% of the cities provided reliable data. As for RES installation
and production, we observe a better knowledge in the case of electric RES (48% of answers valid) as
compared to thermal, where only 41% of the cities provided an answer, with a validity rate of 33%.

With respect to the total energy consumption per capita, Figure 3 shows the data that we were
able to collect. Note that, in order to calculate this total, only the final consumptions of electricity,
natural gas, liquid fuels and coal were included in the survey. This, in some cases, resulted in a gap
between the total real energy consumption of a city and the total energy consumption calculated in
this assessment. As a further check of the validity of the results, the direct energy consumption data
obtained from the surveys is compared with the national total primary energy supply (TPES) per
capita of the corresponding countries in Figure 2. The ratios between these two range from 26% to 95%,
meaning that this standardisation process has allowed us to map a 49% average TPES per inhabitant of
a country. The gaps, on the one hand, may be due to the fact that a specific city is being compared to its
national average reality. On the other hand, the energy losses in transformation (in order to produce
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electricity and heat from coal, gas or biofuels and waste), the fuels employed for non-energy uses
(crude oil for asphalt and oil products used in agriculture and chemical industry) and other fuels such
as biofuels (biomass, biogas, bioethanol), butane gas or waste were not considered in the survey, which
certainly led to differences.

Energies 2020, 13, 1315  7  of  23 

 

3.2. Survey Data Assessment Methodology 

In this section, we analyse some of the above‐mentioned indicators, comparing the obtained data 

across all the 27 cities. The number of resources that each municipality assigns to the energy transition 

(number of campaigns, people and budget) has been analysed as an indicator of energy democracy. 

Total energy consumption was analysed next (how much energy per capita is consumed in each city), 

quantifying also what the main energy sources are and in which sectors that energy is consumed. 

Hidden Energy Flows were included among the analysed sectors. 

Energy consumption has been linked to GHG emissions by comparing the obtained emission 

and consumption data, and additionally by estimating the emissions that should be obtained from 

the consumed energy; this was done by taking into account each city’s energy mix and the emission 

intensities of each type of fuel (eqtCO2 per kWh) provided by the IPCC [45], as well as the electricity 

mix per country [24]. 

Finally, various economic, climatic or size indicators, such as the gross domestic product (GDP), 

the human development index (HDI), the heating and cooling degree days (HDD and CDD) and the 

number of inhabitants of each city were plotted as a function of the energy consumption and fitted 

to  a  logarithmic  equation  in  order  to  try  to  find  a  correlation,  following  the  methodology  of 

Steinberger et al. [46], Arto et al. [10] and Akizu et al. [11]. 

4. Results and Discussion 

The aim of this section is to provide an overview of the obtained data, in order to give the cities 

an insight into the steps needed for an energy transition, as well as to gain an indication of what to 

learn  from  each  other,  by  comparing  their  energy  consumption  and  GHG  emission  data. 

Nevertheless,  before  doing  so,  careful  effort  has  been made  to  check  the  reliability  of  the  data 

received. 

4.1. Survey Data Standardisation 

As can be observed, Figure 2 shows the ratio between valid and non‐valid data, as well as the 

absence of any answer for the energy consumption, GHG emission and RES production data given 

by  the  cities, which was  standardised  as  previously  explained  in  Section  3.1. Regarding  energy 

consumption, the highest uncertainty corresponds to the case of liquid fuels, where only 37% of the 

cities provided reliable data. In the case of coal, all of the received answers were considered valid, 

since the consumption of this fuel is very low and most of the cities reported no consumption. Apart 

from coal, natural gas consumption data present  the highest  reliability, with 63% of  the answers 

considered valid. 

 

Figure 2. Data standardisation. Figure 2. Data standardisation.

Energies 2020, 13, 1315  8  of  23 

 

Regarding GHG emissions, 59% of the cities provided reliable data. As for RES installation and 

production, we observe a better knowledge  in  the case of electric RES  (48% of answers valid) as 

compared to thermal, where only 41% of the cities provided an answer, with a validity rate of 33%. 

With respect to the total energy consumption per capita, Figure 3 shows the data that we were 

able to collect. Note that,  in order to calculate this total, only the final consumptions of electricity, 

natural gas, liquid fuels and coal were included in the survey. This, in some cases, resulted in a gap 

between the total real energy consumption of a city and the total energy consumption calculated in 

this assessment. As a further check of the validity of the results, the direct energy consumption data 

obtained  from  the surveys  is compared with  the national  total primary energy supply (TPES) per 

capita of the corresponding countries in Figure 2. The ratios between these two range from 26% to 

95%, meaning  that  this  standardisation process has  allowed us  to map  a  49%  average TPES per 

inhabitant of a country. The gaps, on the one hand, may be due to the fact that a specific city is being 

compared to its national average reality. On the other hand, the energy losses in transformation (in 

order to produce electricity and heat from coal, gas or biofuels and waste), the fuels employed for 

non‐energy uses (crude oil for asphalt and oil products used in agriculture and chemical industry) 

and  other  fuels  such  as  biofuels  (biomass,  biogas,  bioethanol),  butane  gas  or  waste  were  not 

considered in the survey, which certainly led to differences. 

 

Figure 3. The total energy consumption by inhabitant computed for the selected cities (by mPOWER 

project) and the national reality reflected by the International Energy Agency averages. The goal in 

energy reduction of 17.5 MWh∙cap−1∙yr−1 has been indicated [30]. 

Another difficulty in the calculation of the total energy consumption was the case of those cities 

with significant production by Combined Heat and Power (CHP) plants, commonly fed by natural 

gas. In CHPs, energy consumption is measured, such as the consumed amount of natural gas, but 

similarly the electricity produced by the CHPs is also taken into account when energy consumed at 

homes is measured. Thus, this could generate small amount of double accounting that this project 

Figure 3. The total energy consumption by inhabitant computed for the selected cities (by mPOWER
project) and the national reality reflected by the International Energy Agency averages. The goal in
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·yr−1 has been indicated [30].

Another difficulty in the calculation of the total energy consumption was the case of those cities
with significant production by Combined Heat and Power (CHP) plants, commonly fed by natural gas.
In CHPs, energy consumption is measured, such as the consumed amount of natural gas, but similarly
the electricity produced by the CHPs is also taken into account when energy consumed at homes is
measured. Thus, this could generate small amount of double accounting that this project has not been
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able to correct. For future research, a specific question could be included to understand the energy
production from CHPs, and thus avoid this double accounting.

From this standardisation we obtained the data to be used in the evaluation of the results
(Section 3.2), which is listed in Table A2 from the Appendix B.

4.2. Survey Data Assessment

Figure 4 shows some of the indicators related to energy democracy: the staff working on energy
and transition, the municipal energy or transition campaigns, and the budget dedicated to energy
transition (shown in Table A3 from Appendix B). These indicators are a measure of the resources
dedicated to energy and transition by enrolled authorities at both the technical and the social level.
With some exceptions, such as Barcelona, Frankfurt, Horst aan de Maas, Vienna and Zenica, most
of the municipalities have from 0 to 20 employees working on energy and energy transition issues.
Similarly, excluding Nis, Pamplona and Rijeka, most of the cities have from 5 to 15 annual campaigns.
In the annual budget for the energy transition, the values differ much more. Whereas most of the cities
dedicate several thousands of euros (within a broad range from 20,000 € to 792,000 €), some of the cities
dedicate millions of euros to the energy transition. Such is the case of Mizil (1 M€) or Frankfurt (1.8 M€).
The highest budgets correspond to Vila Nova de Gaia (5 M€), Manchester (7 M€) and Amsterdam
(87.5 M€), which were left out of the Figure in order to make the rest of the cities visible. It is important
to note that those budgets often depend on external projects (European or national, for instance), that
make it difficult to define a fixed and constant annual budget. Some cities also pointed out the difficulty
to define a budget solely related to energy transition, since this is normally spread out over the overall
budget of the city.
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Regarding the total energy consumption per capita, and going back to Figure 3, we can observe
how energy consumption differs among the cities analysed. Thus, Zenica (Bosnia and Herzegovina)
is the city with the lowest consumption per capita (6 MWh·cap−1

·yr−1) while in Horst aan de Maas
(Netherlands) the consumption is as high as 48 MWh·cap−1

·yr−1, meaning that Zenica consumes 87.5%
less energy than Horst aan de Maas. Comparing it to the previously cited target of 17.5 Mwh per person
and year [30], 17 out of 27 cities do reach the target. From the ones that do not reach it, the total energy
consumption of Frankfurt (Germany), Vienna (Austria), Aradippou (Cyprus), Nottingham (United
Kingdom) and Metz (France) is especially high. Alternatively, when national TPES data are taken
into account, most of the values are higher than the total energy consumption mapped by mPOWER.
For instance, the values change to 22 MWh·cap−1

·yr−1 in the case of Zenica and 51 MWh·cap−1
·yr−1 in



Energies 2020, 13, 1315 10 of 25

the case of Horst aan de Maas, leading to a 57% smaller energy consumption in the former. In this
case, all the consumptions are above the target level, meaning that none of the municipalities is able to
reach it.

Figure 5 depicts the distribution of the municipal energy consumption by type of fuel, taking
into account the national electric mix as that of the municipality. That assumption was made due to a
lack of data on the RES production of some of the municipalities, based on the fact that the electricity
consumed in each city is supplied by the national grid. This data changes considerably from city to city.
It can be observed that in northern countries like Tampere (Finland) and Vaxjo (Sweden), around a 50%
of the whole consumed energy is in the form of electricity. Other countries, such as the Netherlands
(Amsterdam, Horst aan de Maas) and Austria (Vienna) present a stronger dependence on natural
gas. It needs to be clarified that in Horst aan de Maas the high consumption of natural gas is due to
the massive use of heated greenhouses for intensive vegetable production [47]. Finally, southern and
eastern cities, such as Pamplona and Cadiz (Spain), Zenica or Krizevci (Croatia) make, in proportion, a
higher use of liquid fuels, but this could be due to the generalised use of other fuels, such as biofuels or
butane gas (instead of natural gas) that was not taken into account in the calculations. In Figure 5, the
electric consumption has been disaggregated by source, according to the national electricity mix, in
order to obtain the RES percentage of the total municipal energy consumption. It can be seen that only
Vaxjo is above the target of 27% of renewable energy from the total energy consumption, with a 27.1%
share. In the rest of the municipalities, renewable energies cover a maximum of 25.8% (Tampere) and a
minimum of 1.5% (Horst aan de Maas) of the total energy consumed. Northern countries (Finland,
Denmark and Austria) and Croatia show particularly high RES percentages. However, we have
observed that a high renewable electricity mix (in green in Figure 5) does not assure low fossil fuel
consumption. On the other hand, a lower energy consumption does not assure a high renewable share,
i.e., none of the cities that are able to reduce their fossil fuel consumption to below 10 MWh·cap−1

·yr−1

(Aradippou -Cyprus-, Barcelona, Krizevci, Mizil -Romania-, Nis -Serbia-, Vila Nova de Gaia -Portugal-
and Zenica) have an integration of renewable energy above 17.3%.
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Figure 5. Energy consumption by fuel within the direct and indirect (in electric vector) energy
consumptions by municipality (note that the total consumption of cities obtained from mPOWER
survey differs, as shown in Figure 3, from the national average data provided by International Energy
Agency (IEA)).

In order to complement the information given in Figure 5 (taking into account the differences
shown in Figure 3), Figure 6 has been created, where sectorial national direct energy consumption
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averages have been included from IEA balances [24], and national hidden energy flows (HEF) have also
been added from previous analyses carried out by the authors [11]. In order to take into account the
displacements that the impacts related to the consumption of the citizens generate elsewhere, energy
embodied in imported products and services in each country have been included using the latest data
from the year 2014 to obtain the difference between total primary energy footprint (TPEF) and TPES
per capita at a national level, adding it to each city (HEF = TPEF/TPES). The calculations have been
developed using global multi-regional input-output (GMRIO) methodology, and data are available in
Appendix B, Table A4. The accuracy of these calculations could be improved with municipal hidden
energy flows data instead of national average ones, but this would require an input-output analysis at
a local level. Although a methodology for local input-output analysis is currently being developed by
Cazcarro et al. [48] as well as by our team [49], it is currently beyond the scope of this paper.

This last figure shows how only a small percentage of the energy consumption, between 9 and
24%, is consumed by private households in terms of electricity and heat (green numbers in Figure 5),
whereas from 76% to 91% is not consumed in the residential sector (imported and national products
and services, transportation needs for humans and trade, and transformation and distribution losses
of energy).
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Figure 7 shows the relation between energy consumption (in red bars) and GHG emissions
(in blue and green). The red bars correspond to the total per capita energy consumption calculated by
mPOWER. The blue line corresponds to the per capita GHG emission data obtained from the survey
and standardised using the IEA national values (as explained in Section 3.1). Finally, the green line
corresponds to the GHG emissions calculated from the total energy consumption mapped from the
surveys, taking into account the GHG emission intensity of each fuel given by the IPCC (tonnes of
CO2eq per kWh), as well as the emission intensity of the national electricity mix. This way, when the
IEA standardised values and the IPCC estimated values are on the same order of magnitude, it can be
regarded as a further check of the validity of the results. We consider that both GHG emission values
are on the same order of magnitude when the IEA standardised values are within the IPCC estimated
error bars, which cover a range from 50 to 150% of the IPCC estimated value. It can be observed in
general trends that energy consumption and the corresponding CO2eq emissions are related.

Even if the general trend is that the higher energy consumption, the higher the emissions, there
are some exceptions, such as Litomerice, Manchester, Nottingham and Pamplona, which have a
low IEA standardised GHG emission despite their high energy consumption. This can be explained
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by the use of different energy sources (a high natural gas and RES rate in the case of Manchester,
Nottingham and Pamplona) or the uncertainty found in the data (low GHG emission data in the case
of Litomerice). In some other cities, such as Frankfurt, Nis and Tampere, the opposite relationship is
observed: the IEA standardised GHG emission data is high compared to the total energy consumption.
This could be due to an overestimation of the GHG emissions or due to an underestimation of the
energy consumption. In this last case, as well as in the case of Litomerice, we know the inconsistencies
between IEA standardised GHG emissions and energy consumption are due to uncertainties in the data
(and not due to the use of different energy sources), because the GHG emissions estimated from the
IPCC intensities and those standardised with the IEA values are not on the same order of magnitude.
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Finally, in order to understand the energy consumption differences in all the 27 cities, the total
energy consumption detected by mPOWER has been related to the achieved national HDI [50] and
national GDP [51], and also to physical conditions like the climate or the size of each city. All data were
fitted to the equation “y = A ln(x) + B” following the methodology presented by Steinberger et al. [46],
Arto et al. [10] and Akizu et al. [11]. Note that Horst aan de Maas was left out of the analysis because a
large part of its energy consumption is used for industrial agriculture, making it difficult to correlate
with the rest of the cities. This phenomenon could also occur in cities with a high presence of industrial
production, but our results for rest of the analysed cities have not shown alterations as significant as
those detected in Horst aan de Mass, so it has not been taken into account for the rest of the cities.

Figure 8 gives us a comparison of the consumed energy and the benefits obtained from it, using
HDI and GDP indicators as they are the most commonly used in this respect [10,11]. The former,
more related with human behaviours, allows us to understand how energy can affect education,
life expectancy and economy, and the latter only focuses on national economy. The general trends
among analysed cities show that life quality standards, measured in national HDI (Figure 8a) and
GDP (Figure 8b), are directly related to consumed energy. Nevertheless, it can be observed that some
cities can achieve high standards of living with markedly low energy (such as Vaxjo, Frankfurt and
Frederikshavn). It must be noted that since HDI and GDP data are national averages, they are not fully
sensitive to the realities of the cities, and it would be helpful to include city data for both indicators in
the future.
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In Figure 9a, the climate of each city was taken into account by using the heating degree day
(HDD) and cooling degree day (CDD) factors [52]. In the analysed cities, according to the obtained
fitting and R2, there is a low correlation between the energy consumption and the HDD plus CDD,
as shown in Figure 9a. Cities such as Zenica or Krizevci, with a high heating need, have a very low
energy consumption per capita, whereas cities like Amsterdam and Pamplona have a higher energy
consumption with a lower heating and cooling requirement. This could also be related to the difference
in GDP. Figure 8b compares the size of each city (measured in inhabitants) and the energy consumption
per capita, with the previous hypothesis that bigger cities might be more efficient than the smaller
ones. However, Figure 9b shows that this assumption does not correspond to reality. Small cities like
Aradippou show low energy consumption, whereas big cities such as Amsterdam are not especially
efficient because of their large number of inhabitants.
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Figure 9. Energy consumption of each city, and the corresponding heating and cooling need according
to the climate of each city (a), and the corresponding inhabitants (b).
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Table 1. Indicators used in the paper in order to analyse and compare the 27 cities.

Indicator Impact Target Description Unit Where

Validity of the gathered data 3 Energy democratisation Indicates the level of knowledge of public energy employees on
municipal energy issues. % Figure 2

Municipal campaigns 4 Energy democratisation Indicates the number of campaigns that city has create in order to boost
energy transitions. No. · yr−1 Figure 4

Table A3

Staff on energy 3,4 Energy democratisation Indicates the human capacity of the cities in energy transition field. No. · yr−1 Figure 4
Table A3

Staff on transition 3,4 Energy democratisation Indicates the human capacity of cities in ecological transition field. No. · yr−1 Figure 4
Table A3

Budget for transition 1,2,3,4 Energy democratisation Amount of public resources dedicated to boost the energy transition:
increase efficiency, increase RES or increase participation. € · yr−1 Figure 4

Table A3

RES percentage 2 Increase of renewable share RES percentage of the total mapped energy consumption by taking into
account the national electricity mix. % Figure 5

Installed RES 2 Increase of renewable share Total RES installation of the whole municipality. MW Table A2

RES production 2 Increase of renewable share Annual RES production of the whole municipality. MWh·yr−1 Table A2

Plans for RES investment 2 Increase of renewable share A measure of the increase of RES, by comparing the plans to the
actual installed MW for 2020 Table A3

Total energy consumption 1 Reduction of energy consumption Total consumption of the municipality that mPOWER was able to map. MWh·yr−1
·cap−1 Figures 3, 5 and 7

Table A2

Total Primary Energy Supply 1 Reduction of energy consumption Total average national energy consumption. MWh·yr−1
·cap−1 Figure 6

Total Primary Energy Footprint 1 Reduction of energy consumption Total average national energy consumption, including energy embodied
in imported/exported goods and services. MWh·yr−1

·cap−1 Figure 6

Hidden Energy Flows (HEF) 1 Reduction of energy consumption Percentage energy embodied in imported/exported goods and services
(HEF = TPEF/TPES). (%) Figure 6

Table A4

GHG emissions 1 Increase of renewable share Total GHG emissions of the municipality. eqtCO2·yr−1
·cap−1 Figure 7

Table A2

Human Development Index (HDI) 3,4 Reduction of energy consumption This indicator allows to compare the acquired life quality in comparison
of consumed energy. HDI Figure 8a

Gross Domestic Product (GDP) 3,4 Reduction of energy consumption This indicator allows to compare the acquired national economic
development in comparison of consumed energy. US$·yr−1

·cap−1 Figure 8b

Heating Degree Day (HDD) and
Cooling Degree Day (CDD) 1 Reduction of energy consumption This indicator allows us to compare the consumed energy and need of

heating and cooling due to the climate conditions. Degree Days Figure 9a

Inhabitants 1 Reduction of energy consumption This indicator allows us to compare the energy consumption according
the inhabitants of a city.

Number of
inhabitants Figure 9b
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5. Conclusions

In relation to the difficulties in collecting municipal energy data, we have several considerations
that may be relevant for the specific goals of the project and to be taken into account when boosting
the general energy transition in Europe. The low quality of the data gathered by the municipalities
(sometimes literally non-existent) is a clear sign of public disempowerment in energy issues. Despite the
high effort of each municipality, there are not enough public up-to-date municipal data at the European
level and the energy sector is mostly owned by private companies that manage the information
according to their own interests [53]. Therefore, this project reflects how significant it is to have real
energy consumption and production data in order to lead an energy transition at city level.

Nowadays, participation in different energy transition initiatives, such as the Covenant of Mayors,
and thus, the sharing of energy consumption and GHG emission data with citizens is a voluntary act.
However, in some regions, such as the Basque Country [54], the publication of data related to energy
consumption is starting to become compulsory for their cities and villages. We claim this kind of law
to provide citizens with information could boost the incoming energy transition. This knowledge
could facilitate evaluating energy policies, analysing the real needs of each city, or creating roadmaps
and energy plans for incoming sustainable energy transitions. We expect that this project will help
in revealing these kinds of issues, enabling initiatives such as the creation of public databases, and
empowering local public institutions in the management of low-carbon energy transition. Similarly, it
is important to spread the know-how of the current energy reality among citizens and other agents
in cities in order to boost citizen-led initiatives. As an example, and as an alternative to private
energy management, renewable cooperatives could be an opportunity to start a transition towards a
democratic and sustainable energy system [55–57].

Going back to the data collection, it has been observed that the mPOWER baseline survey has
allowed us to map an average of 49% of the energy consumption per capita (in comparison with national
average total primary energy supply values offered by the IEA) consumed by citizens. The remaining
52% is mainly due to transformation losses, and also, to a lesser extent, due to the lack of integration of
non-common energy vectors such as biomass (like firewood or biofuels), butane gas, waste use for
energy purposes and fuel oil boilers. In some cases, the use of CHPs could also generate alterations in
results because of the double accountability they tend to cause when taking into account the gas they
consume, but the electricity produced in homes is also taken into account.

The obtained results reveal that European cities still present a strong dependence on fossil
fuels, ranging from 72% of fossil fuels in the total energy mix mapped in this paper to 98.4%.
The low percentage of electricity in energy supply is also noteworthy, where renewable generation
is still generally minimal. In addition, because of the small percentage of the total (renewable and
non-renewable) energy that is consumed by private homes in the form of electricity and heat, it must be
underlined that energy transition not only needs to be focused on the energy consumption of private
dwellings, but it especially needs to challenge the current model of products and goods consumption.
In this sense, this work provides a view of how consumers have the potential to improve the national
energy system, partaking in shared responsibility with governments [58].

The comparison among the 27 cities analysed clearly relates the achieved human development
index and gross domestic product in a city to the consumed energy, showing a dependence on energy
consumption to maintain the current living standards, and improve them. However, some cities
already show that they can achieve high GDP and HDI values with relatively low energy consumption
(as Vaxjo and Plymouth); hence these cities should be taken as a reference. On the other hand, we can
see that the climate and size of a city do not positively or negatively affect the energy efficiency, and
thus, this gives various types of cities the opportunity to think about different strategies to improve
their own energy systems.

Finally, in relation to the mPOWER project, this baseline has been shown as an effective tool
to obtain an initial picture of the energy situation of different European cities. The results of the
baseline and of this paper will help to improve the development of the project and can encourage
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participant cities to identify the above-mentioned key obstacles and information gaps in the transition
to a participative low-carbon energy system.
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Appendix A. Online Survey

We need some data and information to carry out a baseline assessment of your municipality.
This will allow us to calculate the evolution of the energy transition and the learning process in the
coming years. Thank you very much for your involvement and the data you provide! *Required

1. Name*
2. Municipality*

Renewable energy data

Please fill in the ‘data year’, it is very important for us. The data should be from 2017 or as close
as possible.

3. Installed renewable thermal power MW and (year)
4. Renewable thermal energy production MWh and (year)
5. Installed renewable electric power MW and (year)
6. Renewable electric energy production MWh and (year)

Non-renewable energy data

Please fill in the ‘data year’, it is very important for us. The data should be from 2017 or as close
as possible.
7. Natural gas consumption MWh and (year)
8. Electricity consumption MWh and (year)
9. Liquid fuels MWh and (year)
10. Coal MWh and (year)
11. Greenhouse Gas Emissions eqCO2 tonnes and (year)
12. If your city/municipality has any data documents with more information about energy data, you
can share the link with us here! (or email to name@ehu.eus)

Staff and budget for energy transition

Maybe you have answered these questions before, but it is important that we have the most
up-to-date information.

13. People working in energy issues (number of equivalent full-time municipal employees or subcontracted)
14. People working in energy transition issues (energy efficiency, promotion of RES, energy democracy,
sustainable mobility, etc.,)
15. Annual budget for energy transition (Should exclude personal costs)
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16. If you have any documents about the staff and budget for energy transition that you want to share,
you can paste the link here or email name@ehu.eus

Plans for investment and citizen participation

In this section we are interested in the plans for energy transitions in the future, and the information
about citizen participation in the energy transition of your municipality

17. Does your municipality already have published plans for renewable energy power development?

• Yes
• No

18. If the previous answer was yes, what is the amount of additional MW planned during the next
tax year?
19. Number of municipality-led initiatives and campaigns for energy transition

• 0
• 1–5
• 6–10
• 15+

20. Number of citizenship/cooperative-led initiatives and campaigns for energy transition

• 0
• 1–5
• 6–10
• 15+

21. If you have any interesting documents that you want to share with us about the energy transition
in your municipality, you can paste the link here or send an email to name@ehu.eus



Energies 2020, 13, 1315 19 of 25

Appendix B. Standardised Data of the Research Project

Table A1. Interpretation of some of the received RES data.

City Data Type Received Value Considered
Value Reason

Metz Installed RES electric (MW) 13,100 131.00 Received data is quite high and presents no proportionality with the
energy generation indicated

Horst aan de Maas Installed RES thermal (MW) 3.07 PJ/year 852,777 MWh Unit change from International System to required (MWh) is applied.
Data is allocated in the energy column

Horst aan de Maas Installed RES electric (MW) 3.45 PJ/year 958,333 MWh Unit change from International System to required (MWh) is applied.
Data is allocated in the energy column

Manchester Installed RES thermal (MW) 53.82017 53.8 The last 4 digits refer to the year of the data

G. Manchester Installed RES electric (MW) 1,262,017 126 The last 4 digits refer to the year of the data

G. Manchester Consumption Electricity (MWh/year) 139,322,016 13,932 The last 4 digits refer to the year of the data

G. Manchester Consumption Gas (MWh/year) 216,720,002,016 21,672,000 The last 4 digits refer to the year of the data

G. Manchester Consumption Coal (MWh/year) 5,162,016 516 The last 4 digits refer to the year of the data

Mizil Installed RES electric (MW) 1735 1.735 Based on data given in a preliminary survey 1.735 MW PV

Mizil Production RES electric (MWh) 0.67 670 Produced energy-power ratio is logical with this figure (value was
introduced in GWh)

Nottingham Production RES electric (MWh) - 6 Based on data given in a preliminary survey: 6 MW PV

Pamplona Production RES electric (MWh) 190 0.19 Produced energy-power ratio is logical with this figure (value was
introduced in GWh)

Tampere Production RES thermal (MW) - 315 Based on data given in a preliminary survey: 83 MW Biomass, 232 CHP

Tampere Production RES electric (MW) - 16 Based on data given in a preliminary survey: 16 MW Hydro

Zenica Produced RES electric (MWh) 0.9 900 Produced energy-power ratio is logical with this figure (value was
introduced in GWh)

Zenica Produced RES thermal (MWh) 0.2 200 Produced energy-power ratio is logical with this figure (value was
introduced in GWh)
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Table A2. GHG emission, energy consumption and RES installation and production data of all 27 municipalities, after the standardisation of the results.

Energy Consumption (MWh/Year) RES Installation and Production

City GHG (t CO2
eq/Year) Electricity Gas Liquid

Fuels Coal Total
Thermal

Power
(MW)

Thermal
Energy

(MWh/Year)

Electric
Power
(MW)

Electric
Energy

(MWh/Year)

Amsterdam 4500 5,787,800 11,386,400 6,123,200 437,723 23,735,122 - - - -
Aradippou 98,383 77,482 8737 94,480 2103 182,802 - 9675 1.08 1742
Barcelona 3,413,260 6,825,200 4,755,340 3,414,760 0 15,145,912 101.00 81,268 13.00 16,414

Burgas 1,192,800 1,041,600 558,600 1,146,600 136,416 2,883,216 - - - -
Cadiz 611,660 374,036 84,169 921,060 0 1,379,264 - - 1.07 1385

Dobrich 585,040 510,880 145,710 562,380 0 1,218,970 0.00 0.00 0.00 0.00
Frankfurt 9,467,655 4,699,832 2,708,405 6,045,000 745,125 14,198,362 64.44 10,697 31.00 25,181

Frederikshavn 458,000 420,277 326,944 697,222 0 1,444,443 418.30 - 42.30 330,408.56
Horst aan de Maas 695,050 286,111 1,269,444 486,111 0 2,041,666 - 852,777.78 - 958,333.33

Komotini 350,415 329,450 75,474 373,776 0 778,700 - - - -
Krizevci 79,800 21,211 47,153 81,000 8 149,371 0.00 0.00 0.03 29.60

Litomerice 81,765 161,500 142,250 168,750 78,035 550,535 1.57 - 0.68 672
G. Manchester 13,500,000 13,581,000 21,671,998 19,521,000 516 54,774,514 53.80 - 126.00 -

Metz 869,712 953,885 1,1163,280 1,689,420 0 3,806,585 45.00 94,454 131.00 179,347
Mizil 49,376 38,499 45,655 47,945 5295 137,395 - - 1.74 670
Nis 1,679,600 1,201,200 442,000 868,400 311,451 2,823,051 - - - -

Nottingham 1,257,583 1,240,386 2,333,802 1,395,843 8713 4,978,744 - - - -
Pamplona 1,028,000 667,975 1,223,742 2,747,484 14,394 4,653,595 0.20 350 0.19 225
Plymouth 1,053,000 904,000 1,557,000 1,879,800 17,000 4,357,800 1.80 - 7.30 -

Rijeka 486,400 508,160 524,800 753,920 0 1,786,880 0.00 0.00 0.11 86.43
San Sebastian 1,170,181 680,702 732,568 1,400,855 0 2,814,125 7.34 9159 1.63 1,630

Tampere 1,920,960 3,589,040 283,040 1,939,520 263,065 6,074,664 99.00 - - -
Vaxjo 268,000 670,000 0 718,000 100 1,388,100 - 670,000 - 235,000

Velika Gorica 241,365 252,162 257,800 374,115 0 884,077 - - 0.15 -
Vienna 8,356,000 7,815,00 17,314,000 12,621,000 8,007 37,758,006 283.00 1,270,000 256.00 1,401,000

Vila Nova de Gaia 1,640,837 1,750,868 1,225,720 2,801,294 0 5,777,882 - - 6.50 32,040
Zenica 253,085 132,156 0 379,489 124,534 636,179 3.00 200 1.44 900



Energies 2020, 13, 1315 21 of 25

Table A3. Number of campaigns led by the council or cooperatives/citizens, staff on energy, staff on transition/reducing energy use or RES, budget dedicated to energy
transition and plans for RES investments.

City Council Led Campaigns Staff on Energy (# of FTE Staff) Staff on Transition/Reducing
Energy Use/RES (# of FTE Staff)

Annual Budget Dedicated to
Energy Transition (€)

Plans for RES Investment
(MW for 2020)

Amsterdam >15 - - 87,500,000 -

Aradippou 1–5 2 2 70,000 6.00

Barcelona >15 15 55 - 1.50

Burgas - - - - -

Cadiz 1–5 1 1 70,000 -

Dobrich 1-5 3 3 200,000 -

Frankfurt >15 23 13 1,800,000 -

Frederikshavn 6–10 8 2 58,000 -

Horst aan de Maas 1–5 5,5 3,5 60,000 <1

Komotini 1–5 8 2 500,000 -

Krizevci 1–5 1 1 792,000 -

Litomerice 1–5 2 2 200,000 -

G. Manchester 6–10 15 15 7,020,000 10.00

Metz >15 1 5 500,000 Yes

Mizil 1–5 4 4 1,000,000 -

Nis - 6 3 20,000 1.00

Nottingham - - - - Yes

Pamplona 1–5 3 1 100,000 -

Plymouth 6–10 16 16 589,000 Yes

Rijeka 0 1 1 - -

San Sebastian 1–5 4 11 400,000 0.07

Tampere - - - - -

Vaxjo - - - - Yes

Velika Gorica 1–5 1 1 40,000 -

Vienna >15 25 - - Yes

Vila Nova de Gaia 1–5 10 - 5,000,000 0.50

Zenica 1–5 1 0 250,000
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Table A4. National average energy consumption data corresponding to each city. TPES data have been extracted from IEA, while TPEF and HEF data have been
calculated by the authors using GMRIO methodology.

Country City Transportation National Products
and Services

Imported Products and
Services (HEF)

Transformation
and Losses Residential TOTAL

(MWh/yr/Cap)

Netherlands Amsterdam 7.12 14.40 8.91 22.68 6.74 59.85

Cyprus Aradippou 8.88 6.25 23.92 9.82 4.58 53.46

Spain Barcelona 7.74 7.29 7.68 11.17 3.81 37.69

Bulgaria Burgas 5.46 6.38 6.87 14.07 3.74 22.79

Spain Cadiz 7.74 7.29 7.68 11.17 3.81 37.69

Bulgaria Dobrich 5.46 6.38 6.87 14.07 3.74 22.79

Germany Frankfurt 8.06 12.86 5.99 14.98 7.94 49.84

Denmark Frederikshavn 8.06 8.35 20.91 8.54 8.65 54.52

Netherlands Horst aan de Maas 7.12 14.40 8.91 22.68 6.74 59.85

Greece Komotini 6.24 5.35 14.49 8.30 4.53 38.91

Croatia Grad Krizevci 5.89 5.77 5.65 5.00 6.95 29.26

Czech Republic Litomerice 6.75 10.44 0.81 21.13 7.39 46.52

UK G. Manchester 7.23 6.87 19.93 10.95 6.70 51.68

France Metz 7.61 8.95 8.07 18.98 6.91 50.51

Romania Mizil 3.35 4.65 1.95 6.42 4.31 20.67

Serbia Nis 3.34 5.42 2.87 11.51 4.85 27.99

UK Nottingham 7.23 6.87 19.93 10.95 6.70 51.68

Spain Pamplona 7.74 7.29 7.68 11.17 3.81 37.69

UK Plymouth 7.23 6.87 19.93 10.95 6.70 51.68

Croatia Rijeka 5.89 5.77 5.65 5.00 6.95 29.26

Spain San Sebastian 7.74 7.29 7.68 11.17 3.81 37.69

Finland Tampere 8.36 26.63 3.74 26.75 10.25 68.25

Sweden Vaxjo 9.50 17.45 5.56 22.06 8.68 63.24

Croatia Velika Gorica 5.89 5.77 5.65 5.00 6.95 29.26

Austria Vienna 11.06 13.38 14.57 11.69 8.18 58.88

Portugal Vila Nova de Gaia 6.49 7.47 9.02 7.89 3.05 33.91

Bosnia and Herzegovina Zenica 3.46 3.45 1.31 12.38 3.04 21.02
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