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Abstract: In order to effectively reduce the energy consumption of the vehicle, an optimal
torque distribution control for multi-axle electric vehicles (EVs) with in-wheel motors is proposed.
By analyzing the steering dynamics, the formulas of additional steering resistance are given. Aiming
at the multidimensional continuous system that cannot be solved by traditional optimization methods,
the deep deterministic policy gradient (DDPG) algorithm for deep reinforcement learning is adopted.
Each wheel speed and deflection angle are selected as the state, the distribution ratio of drive torque
is the optimized action and the state of charge (SOC) is the reward. After completing a large number
of training for vehicle model, the algorithm is verified under conventional steering and extreme
steering conditions. The maximum SOC decline of the vehicle can be reduced by about 5% under
conventional steering conditions based on the motor efficiency mapused. The combination of artificial
intelligence technology and actual situation provides an innovative solution to the optimization
problem of the multidimensional state input and the continuous action output related to vehicles or
similar complex systems.

Keywords: electric vehicles (EVs); independent-drive technology; deep reinforcement learning (DRL);
optimal torque distribution

1. Introduction

The vehicles independently driven by in-wheel motors removes the transmission system of
traditional vehicles and the drive torque of each wheel is independently controllable. Besides,
the information such as the motor torque and speed can accurately feedback in real-time, so that the
transmission efficiency of the vehicle is greatly improved and the layout design becomes more flexible.
More importantly, the driving form has significant advantages in terms of stability control, active
safety control and energy saving control [1,2], which is a huge attraction for multi-axle heavy vehicles.
However, battery technology has always been one of the key issues limiting the development of pure
electric vehicles [3]. For heavy vehicles, both the demand and consumption of energy are greater,
which means the energy problem is more serious. In the case that the existing battery core technology
cannot be solved temporarily, it is necessary to adopt an energy-saving control strategy for the electric
vehicle, especially the multi-axle heavy-duty electric vehicle [4].
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At present, the energy-saving driving control strategy for electric vehicles is mainly based on
three aspects: motor control energy saving, energy feedback and traction control energy saving.
The energy-saving of the motor is mainly based on the motor efficiency characteristic curve [5,6],
aiming at the optimal system efficiency, and changing the actual working point of each motor by
adjusting the front and rear axle torque distribution coefficients to avoid working in the low-efficiency
zone, but this method is often only for straight-line driving conditions. Energy feedback mainly
refers to regenerative braking technology, which hopes to maximize the recovery of braking energy
by using different control strategies during vehicle braking [7–9]. In terms of traction control energy
saving, the drive torque and braking torque of each wheel can be controlled independently for electric
vehicles. By properly distributing the torque of each wheel, for example, taking the minimum sum of
the tire utilization ratios of the driving wheels as the control target [10–12], so as to reduce the energy
consumption rate or increase the power of the vehicle [13]. Generally, the optimization method is to
turn the torque distribution formula according to vehicle dynamics into the parameter optimization
problem under certain constraints [14–16]. However, this kind of method has great limitations in
optimizing a multidimensional system.

At present, most of energy-saving control researches are aimed at the straight-line driving
conditions evaluated by driving cycles [17] and there are relatively few studies on the vehicle
energy-saving control for steering conditions. Compared with two-axle independent drive vehicles,
only the two-dimensional optimal torque distribution control between the front and rear axles and
between the left and right wheels is needed [18]. Multi-axle electric vehicles need to optimize the
multidimensional independent space vector. Meanwhile, there are dynamic and kinematic connections
between the wheels, which cannot be solved by traditional optimization algorithms.

The deep deterministic policy gradient (DDPG) [19,20] is an algorithm that improves on the basis
of the deep Q network (DQN) [21,22] to solve continuous action problems. In reality, the vehicle is an
extremely complex system, and the external environment is dynamic, complex and unknown, which
means that it is difficult to simplify it into a fixed expression for quantitative analysis. The DDPG
algorithm is highly adaptable and can be optimized for the black-box system in a dynamic environment,
which is suitable for solving the practical problems of continuous action.

In the current paper, the four-axle (8 × 8) independent drive electric vehicle is taken as an
example to study the torque distribution problem in the steering condition, and a 23-DOF (Degree
of Freedom) vehicle dynamics model was built by MATLAB/Simulink (R2015a, MathWorks, Natick,
MA, USA). After completing the relevant code of the DDPG algorithm, the data interaction between
the algorithm and the vehicle model was realized, and the model was trained enough times through
off-line simulation comparing energy consumption of the vehicle under the same conditions, so as to
prove that the proposed control algorithm can effectively reduce energy consumption by reasonably
distributing the drive torque of each wheel. Under the conventional steering condition and using
the motor efficiency map of the current paper, energy consumption of the vehicle can be reduced by
up to 5%.

2. Dynamics Model and Energy Analysis

2.1. Model Overview

As the number of axles increases, the dynamics of multi-axle vehicles becomes more complicated.
Theoretically, the more the degrees of freedom of the vehicle are considered, the better the simulation
effect will be, but the more parameters are actually required to be input, which will affect the results
when relevant parameters cannot be obtained. In order to more accurately simulate the impact of
vehicle systems and environment on the vehicle during driving, the classical 2-DOF linear model
is not used in the vehicle dynamics model. Instead, based on the vehicle system dynamics theory,
the differential equations of dynamics and kinematics are derived respectively about vehicle body,
wheel and other systems. The suspension part is assumed to be static balance problem, and the tire part
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is analyzed by "Magic Formula". Finally, the related physical quantities between each system are used
to connect the parts into a whole, as shown in Figure 1. Meanwhile, the way of modeling is also suitable
for two-axle vehicles, and the simulation accuracy is higher. Based on the dynamics and kinematics
equations of each system, the vehicle dynamics model is established by using MATLAB/Simulink.
Taking into account 6-DOF of the vehicle body, including longitudinal, lateral, vertical, yaw, pitch, roll,
as well as the vertical runout and rotation freedom of each wheel, and steering wheel angle, a total
of 23-DOF. In addition, the vehicle adopts the steer-by-wire technology, which can realize all-wheel
steering. In the model, according to the fixed relationship between the steering wheel angle and the
deflection angle of the right wheel of the first axle and Ackerman steering principle, the S-Function
module is built to calculate the actual deflection angle of each wheel, which is directly input into the
vehicle dynamic model. The main parameters of the vehicle are shown in Table 1.

Energies 2020, 13, x FOR PEER REVIEW 3 of 19 

 

each wheel, and steering wheel angle, a total of 23-DOF. In addition, the vehicle adopts the steer-by-
wire technology, which can realize all-wheel steering. In the model, according to the fixed 
relationship between the steering wheel angle and the deflection angle of the right wheel of the first 
axle and Ackerman steering principle, the S-Function module is built to calculate the actual deflection 
angle of each wheel, which is directly input into the vehicle dynamic model. The main parameters of 
the vehicle are shown in Table 1. 

 
Figure 1. Vehicle dynamics model architecture. 

Table 1. Main parameters of the whole vehicle. 

Basic Parameters Value 
Total mass of the vehicle (kg) 25,000 

Height of the mass (m) 1.20 
Wheel rolling radius (m) 0.59 

The angle relationship between the steering wheel and the right wheel of the first axle 20:1 
1st axle and 2nd axle wheelbase L1 (m) 1.42 
2nd axle and 3rd axle wheelbase L2 (m) 2.00 
3rd axle and 4st axle wheelbase L3 (m) 1.42 

Wheel center distance(m) 2.60 
Drive reduction ratio 10.8 

Battery rated capacity CN (Ah) 120 
Battery voltage U (V) 900 

For electric vehicles with in-wheel motors, due to the complete decoupling of each wheel, in 
order to achieve electronic differential control, torque control mode is usually adopted for each in-
wheel motor [23]. As shown in Figure 2, the drive control architecture is adopted. The total drive 
torque of the vehicle is obtained by the output of the PID (Proportion Integration Differentiation) 
controller, and the input of the controller is the deviation of the target speed and the actual speed. In 
general, the driving torque is evenly distributed to each wheel, so that the speed of wheel will follow 
according to its stress state. The average distribution mode can ensure the normal driving of vehicles, 
but it is not the optimal distribution method. Therefore, the optimal distribution mode of drive torque 
should be proposed, which is the main research content of the current paper. 

 
Figure 2. Vehicle drive control. 

Figure 1. Vehicle dynamics model architecture.

Table 1. Main parameters of the whole vehicle.

Basic Parameters Value

Total mass of the vehicle (kg) 25,000
Height of the mass (m) 1.20

Wheel rolling radius (m) 0.59
The angle relationship between the steering wheel and the right wheel of the first axle 20:1

1st axle and 2nd axle wheelbase L1 (m) 1.42
2nd axle and 3rd axle wheelbase L2 (m) 2.00
3rd axle and 4st axle wheelbase L3 (m) 1.42

Wheel center distance(m) 2.60
Drive reduction ratio 10.8

Battery rated capacity CN (Ah) 120
Battery voltage U (V) 900

For electric vehicles with in-wheel motors, due to the complete decoupling of each wheel, in order
to achieve electronic differential control, torque control mode is usually adopted for each in-wheel
motor [23]. As shown in Figure 2, the drive control architecture is adopted. The total drive torque
of the vehicle is obtained by the output of the PID (Proportion Integration Differentiation) controller,
and the input of the controller is the deviation of the target speed and the actual speed. In general,
the driving torque is evenly distributed to each wheel, so that the speed of wheel will follow according
to its stress state. The average distribution mode can ensure the normal driving of vehicles, but it is not
the optimal distribution method. Therefore, the optimal distribution mode of drive torque should be
proposed, which is the main research content of the current paper.
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2.2. Motor and Battery Model

As a high-speed rotating component, the speed characteristic of the motor also determines its
high-speed response [24]. In general, the instantaneous response speed of the motor is tens of times
faster than that of the wheel, so it can be simplified to a second-order response system [25], whose
transfer function is as follows.

G(s) =
Tmi
T∗mi

=
1

2ξ2s2 + 2ξs + 1
, (1)

where Tmi is the actual input electromagnetic torque of each in-wheel motor, Tmi* is the desired input
electromagnetic torque of each in-wheel motor, ξ denotes the damping ratio, which is related to the
parameters of the drive motor. According to the response characteristics of PMSM, the value of ξ
is 0.001.

At the same time, the motor efficiency map model is adopted. According to the speed and
torque of the motor, the working efficiency can be obtained to calculate the corresponding energy loss.
The efficiency map of the in-wheel motor used is shown in Figure 3.
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For the battery model, in order to accurately compare the energy consumption, the ampere-hour
integral method is adopted to estimate the battery SOC [26]. The formula is as follows.

SOC = SOC0 −
1

CN

∫
ηIdt = SOC0 −

1
CN

∫
η

P
U

dt, (2)

where SOC0 is the initial state of charge and discharge, CN denotes the battery rated capacity, I is
the instantaneous current of the battery, η represents the Coulomb efficiency coefficient, P is the
actual working power of the battery, and U is the battery voltage. Generally, without considering the
influence of temperature, the battery voltage will decrease with the decrease of SOC, but when the
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battery consumption is between 10% and 90%, the battery voltage variation is relatively small. In
order to avoid the impact of the battery voltage change on the SOC drop, it is assumed that the battery
consumption is always within this range, that is, the battery voltage remains constant.

2.3. Analysis of Steering Energy Consumption

When the vehicle enters the steering condition from the straight driving and the accelerator
pedal opening is constant, the vehicle speed will decrease, which indicates that the vehicle driving
resistance has increased. The movement of the vehicle is the result of the force from the ground to the
vehicle body through the tire. Generally, the force between the tire and the ground is decomposed
into longitudinal force and lateral force, and the motion of the vehicle is the result of the combined
action. That is, the combined force of the longitudinal force and the lateral force causes the vehicle to
generate steering motion. The direction of the resultant force is affected by factors such as drive torque,
steering angle, and tire side-slip angle, and in the case of the same drive torque and steering angle, its
direction is determined by the tire side-slip angle. When the vehicle turns, the tire force is shown in the
Figure 4 below.
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As shown in Figure 4, δ1 represents the wheel deflection angle, α is the tire side-slip angle, Fx

and Fy denotes the tire longitudinal force and lateral force. Due to δ1 and α, the lateral force of the
wheel will produce a reaction force along the longitudinal axis of the vehicle body, which increases the
driving resistance. This explains why the speed of the vehicle will decrease when cornering and the
opening of accelerator pedal remains the same, and it also means that if the vehicle wants to maintain
the original speed, it needs to consume more energy. By establishing a single-track linear model and
assuming that the vehicle moves in a uniform circular motion, the longitudinal force balance equation
of the vehicle can be derived as follows.

4∑
i=1

Fxi = F f + Fa + m
u2

ρ
(

l4
L

sinα1 +
l3
L

sinα2 +
l2
L

sinα3 +
l1
L

sinα4), (3)

where Fxi is the longitudinal force of each axle, Ff is rolling resistance, Fa denotes air resistance, m is
the total mass of the vehicle, u represents the longitudinal velocity, ρ denotes the curvature radius,
li is the horizontal distance from ith axle to the center of mass, L represents the distance between
1st axle and 4th axle, αi is the side-slip angle of ith axle. On the left side of the equation is the sum
of longitudinal force of each axle and the first two terms on the right are the conventional driving
resistance of vehicles. Therefore, the last term is the additional steering resistance caused by the tire
slid-slip when the vehicle is steering [27,28], which denoted by Faf. If the drive torque of each wheel is
changed, the drive force of the outboard wheels is increased and the drive force of the inboard wheels
is decreased, then Equation (3) changes as follow.

4∑
i=1

Fxi = F f + Fa + Fa f −

4∑
i=1

BF∆

L
sin δi, (4)
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where B is the wheel base, F∆ denotes the change in the drive force, δi is the deflection angles of
the wheels. With other conditions unchanged, the smaller additional steering resistance, the smaller
driving force required by the vehicle, and the less energy consumption. Then it can be seen from
Equations (3) and (4) that under certain condition the increase of F∆ is conducive to the reduction of
driving resistance. However, as it increases, the tire side-slip angle also increases, which will lead to
the increase of the additional steering resistance, so it is not a monotonous change for the total driving
resistance. Besides, the speed and deflection angles of wheels also affect the tire side-slip angle, so it is
necessary to find the optimal torque distribution ratio at different speeds and steering angle, so as to
make the driving resistance of the vehicle minimum.

In addition, the torque distribution of each wheel will also affect the actual working efficiency of
the motor. Therefore, the total energy consumption of the vehicle should be taken as the optimization
goal, and efficiency of all in-wheel motor is taken into account to achieve dynamic optimization.

3. The DDPG Algorithm

The deep deterministic policy gradient (DDPG) [29,30] is an improved algorithm based on DQN
algorithm that can solve the problem of multidimensional continuous action output. This optimization
method can operate for continuous action space, and it ignores the specific optimization model,
which can complete the black-box learning, focusing on only three concepts [20]: state, action, and
reward, and the goal is to get the most cumulative reward.

The selection of DDPG algorithm mainly considers the following points.

(1) The research object of the current paper is the 8 × 8 independent drive electric vehicle, which is
equivalent to operating an eight-dimensional independent space vector. It is far different from
the two-dimensional optimization problem for 4WD vehicles. The DDPG algorithm is just able to
optimize for the problem of multidimensional input and multidimensional continuous output.

(2) The multi-axle vehicle system [31] is complex and difficult to simplify into a fixed expression,
whereas DDPG algorithm is more adaptable and capable of learning and optimizing the
black-box system.

(3) The actual driving state of the vehicle is constantly changing. In addition to being influenced by
the outside, the optimization action at each moment will affect the driving state of the vehicle at
the next moment. DDPG algorithm is essentially a kind of reinforcement learning, which can
adapt to interact and optimize in a dynamic environment to achieve a better state of adapting to
the environment.

In the real word, there is an interaction process between the Agent and its surrounding dynamic
environment [32], which can be explained as follows: after the Agent generates an action under a
certain state, the environment will give the Agent corresponding reward, and then the Agent enters the
next state and will generate the next action. Reinforcement learning is a machine learning model whose
modeling goal is to construct the Agent in the environment so that the Agent can always generate
actions in the environment to maximize reward. Considering the definition in reinforcement learning,
the state of the Agent at time t is st, the action under state st is at, the feedback from the environment
is rt, and the next state the agent enters is st+1. Corresponding to the content of the current paper,
at time t, the vector (wt, δt) composed of the wheel speed (wt) and deflection angle (δt) of each wheel is
regarded as st. The drive torque distribution ratio of each wheel (pt) can be regarded as at, the vehicle
SOC (ut) can be regarded as rt. The vector (wt+1, δt+1) stands for st+1.

In reinforcement learning, the commonly used optimization objective (Rt) is the expectation of
the total future reward at time t, which corresponds to the expectation of battery SOC in the future,
as follows.

Rt = rt + γ · rt+1 + γ2
· rt+2 + . . . =

+∞∑
i=0

γi
· rt+1, (5)
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where γ is a coefficient, 0 < γ < 1, which makes sure that Rt convergence. In order to be able to solve
Rt, the above formula can be rewritten as an iterative formula.

Rt = rt + γ ·Rt+1, (6)

In the study of Q-learning, if we have the function Q∗ : State×Action→ R to represent Rt, and then
the optimal action strategy functionA∗ can be obtained.

A
∗(st) = argmax

at

Q
∗(st, at), (7)

Usually as the environment is poorly understood, Q∗ cannot be directly accessed but Deep Neural
Network has been proved to be universal function approximator, so it can be used to approximate
Q
∗. In the current paper, Deep Neural Network is expressed as Q(st, at; Θ), where Θ represents the

parameter to be solved. In fact, the deep fully-connected neural network is used. Therefore, when Q
approaches Q∗, Θ is the optimal parameter Θ∗, and the following equation can be obtained.

Q(st, at; Θ∗) = rt + γQ(st+1, at+1; Θ∗), (8)

Due to the optimal action strategy functionA∗.

A
∗(st) = argmax

at

Q(st, at; Θ∗), (9)

so the Equation (8) can be expressed as follows.

Q(st, at; Θ∗) = rt + γQ(st+1,A∗(st); Θ∗), (10)

Therefore, the optimization objective of Deep Neural Network can be defined as follows.

L(Θ) =E(st,at,rt,st+1)∼P[((rt + γargmax
at

Q(st+1, at; Θ)) −Q(st, at; Θ))2]

argmin
Θ
L(Θ),

, (11)

where L(Θ) denotes the optimization objective function with Θ as the independent variable. E is
expectation, and P represents a probability distribution. The above equation is the optimization
objective of DQN algorithm, but the optimization objective is only applicable when at is discrete. In the
current paper, at is the multidimensional continuous space. So, considering an improved algorithm of
DQN, DDPG uses Deep Neural NetworkA(st; Φ) to approximate the optimal action strategy function
A
∗, so the optimization objective is as follows.

L1(Θ) = E(st,at,rt,st+1)∼P[
(
(rt + γQ(st+1,A(st+1; Φ); Θ)) −Q(st, at; Θ))2

]
L2(Φ) = Est∼P[Q(st,A(st; Φ); Θ)]

argmin
Θ
L1(Θ)

argmax
Φ
L2(Φ)

, (12)

where L1(Θ) represents DQN algorithm optimization target, L2(Φ) denotes the optimization target of
approximating the action strategy functionA∗. In order to make the optimization process more stable,
Φ and Θ in the Equation (12) are replaced with Φs and Θs corresponding to the soft update parameters.

Φs = τΦ + (1− τ)(Φs)

Θs = τΘ + (1− τ)(Θs)
, (13)
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where τ is a coefficient, 0 < τ < 1. The expected calculation of L1(Θ) and L2(Φ) can be estimated
approximately by Monte Carlo sampling, so the optimization objective is rewritten.

L1(Θ) = 1
N

N∑
i=1

((r(i)t + γQ(s(i)t+1,A(s(i)t+1; Φs); Θs)) −Q(s
(i)
t , a(i)t ; Θ))

2

L2(Φ) = 1
N

∑N
i=1Q(s

(i)
t ,A(s(i)t ; Φ); Θ)

argmin
Θ
L1(Θ)

argmax
Φ
L2(Φ)

, (14)

where N is the number of the dimension, N = 8, (i) denotes the corresponding wheel number. In fact,
stochastic gradient descent algorithm is used to optimize the two optimization targets alternately, and
the parameter update method is as follows.

Θ(t) = Θ(t−1)
− αΘ∇L1

(
Θ(t−1)

)
Φ(t) = Φ(t−1) + αΦ∇L2

(
Φ(t−1)

) , (15)

When the optimal objective is reached, the parameters Θ∗ and Φ∗ are obtained, corresponding to
Deep Neural NetworkQ(st, at; Θ∗) andA(st; Φ∗). The functionA(st; Φ∗) can output a set of drive torque
distribution ratio when the wheel speed and deflection angle are input in real time. The distribution
ratio can make the expectation of SOC in the future maximum.

The network of at is called Actor network, then there are two networks in the algorithm, namely
Rt-Q network and Actor network. Actor network is responsible for generating the action, which is
the torque distribution ratio of each wheel. Rt-Q network is also commonly referred to as the Critic
network, which is used to fit the sum of the system SOC for the next n steps, so that Actor network can
have a clear optimization target. When the overall algorithm is executed, according to the training
logic, Θ in the Q network is updated first, and then as a parameter is input to the Actor network to
update Φ, with the aim of minimizing −Q. The actual training process is to train Θ and Φ in the two
networks, and this process is called joint alternation training.

The overall implementation of architecture design is shown in Figure 5. The DDPG algorithm
is directly embedded into the vehicle dynamics model by MATLAB Function to ensure real-time
interaction. During the training process, the vehicle system outputs state and reward in real time.
A total of 16-dimensional state signal is input to the Actor-network, including eight-dimensional wheel
speed and eight-dimensional wheel deflection angle signals, and eight-dimensional wheel torque
distribution ratio signal is output. For the Critic network, the same 16-dimensional state signal and
eight-dimensional action signal output by the Actor-network are taken as the input to fit the sum of the
energy consumption in the next n steps. In addition, the Train function is completed, which contains
the logic of the algorithm training process, so that the Actor network and Critic network can update
alternately according to the algorithm and complete the corresponding output.

In order to avoid the possible problems of data interaction between the two networks and Train
function due to the synchronization of update in the model, all of them are written in a MATLAB
Function module and directly called internally. At the same time, taking into account the actual passing
ability of the vehicle, and preventing the long-term high torque output of individual motors to reduce
the service life, the additional limitation is that the single-axle drive is not allowed in straight-line
driving, with the 1st axle and 3rd axle as the main power distribution axle.

In addition, it needs to be clarified that the difference between the application scenario of the
current paper and that of the traditional neural network algorithm is that the current action will directly
affect the environment at the next moment. If the environment cannot be changed, actually only one
step in the overall process is optimized.
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4. Offline Simulation Verification

After the relevant algorithm code is completed and can interact with the vehicle model, the model
needs to be trained for a certain number of times first. The purpose is to make the Actor and Critic
network update their internal parameters according to the training logic of Train function to adapt to
the whole system.

At present, there is no standard cycle condition for the evaluation of vehicle steering energy
consumption, which results in the training condition of the model needs to be designed artificially.
Different training conditions will affect the final optimization results of the model. The designed
training condition should contain enough state samples of the optimized system. At the same time,
it should be avoided that due to the influence of training environment, experience with certain type
characteristics is particularly abundant, while experience with other type is scarce. At best, experience
should have difference and similar experience should be minimized. During neural network training,
some unexpected changes are not considered in the current paper, because they are difficult to be
included completely. However, in order to avoid related problems, the average distribution as a
conservative control scheme was combined with the neural network. By comparing the reward at any
time, the control scheme with a higher reward is adopted, so as to ensure that the energy consumption
of the vehicle was not lower than the conventional driving mode under any working condition, which
is a supportability control strategy.

The state variables in the algorithm are the wheel speed and the wheel deflection angle. Therefore,
based on the above principles, the model input of target vehicle speed and steering wheel angle are
shown in Figure 6. During training, only the first and second axles were steering axles. Meanwhile,
considering the stability problem of the vehicle in high speed, the amplitude of the steering angle
decreased after 40 seconds.

According to the training conditions, after completing about 100, 200, ..., 500 times training, data
and driving state curves were recorded. Figure 7a shows the change process of vehicle speed after
different training times. The change of vehicle speed was little affected by the drive torque distribution
and the target vehicle speed could be well followed. Since the optimal torque distribution is equivalent
to applying an additional yaw moment for the vehicle, so the yaw rate of the vehicle was increased in
each period after distributing, which can be seen in Figure 7b, and it is in line with the actual situation.
Figure 7c is a comparison of the SOC change after the corresponding training number. It can be seen
that the SOC decline decreased with the increase of training times. After 500 times of training, the SOC
decline of this training condition was reduced by about 4.5320%.
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After completing the training, only the parameter matrix in the Actor network is retained and
stored into the MATLAB Function, which receive the driving state of the vehicle in real-time and
generate the optimal distributing action. In theory, the more training times, the more stable and
optimal parameters in the Actor network tend to be, and the better the optimization effect will be.
However, with the increase of training times, the rate of optimization return is decreased. Meanwhile,
in order to ensure the optimal effect, a fixed simulation step size of 1 millisecond was adopted in
the Simulink, while the action was updated every 10 steps by the control algorithm, which led to a
significant increase in the computational burden of the model. After completing 400 and 500 times
training, and comparing the simulation results, it can be found that the optimization effect was almost
the same. Therefore, considering the optimization efficiency, finally the model training was completed
for 500 times.

4.1. Conventional Low-Speed Step Steering Condition

The low-speed simulation condition was designed to accelerate the vehicle from the stationary
state with a target speed of 30 km/h. At the 20 s, the steering wheel turned about 230◦ within 1 s,
and only the first and second axles were steering axles. Figure 8a shows the actual change in speed of
vehicle. It can be seen that after the steering angle change, the vehicle speed decreased slightly, which
was caused by the increase of driving resistance. It is consistent with the actual situation. Figure 8b is a
detail view of vehicle speed. Compared with the average distribution, the steady-state vehicle speed
increased slightly after the optimal distribution of drive torque, but the difference was not significant.
Because the redistribution of drive torque led to the reduction of additional steering resistance, the
drive torque required to maintain steady state was reduced. It can be seen from Figure 2 that under the
condition that the target vehicle speed remained unchanged, the actual vehicle speed increased.
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Figure 9 shows vehicle yaw rate change and the vehicle track comparison respectively.
After optimization control, the yaw rate of the vehicle increased by around 1.02%, and the radius of the
track was also slightly reduced. From Figures 8 and 9, it can be seen that optimal torque distribution
promoted the steering trend, but the influence on the various driving state parameters of the vehicle
was not significant, and did not cause the stability problem.
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(b). Comparison of driving trajectory.

It can be seen from Figure 10a that after adopting torque optimization control, SOC decline was
significantly reduced and the energy consumption was reduced by about 3.7856% between 0 s and 40 s.
However, it included the linear acceleration phase, although the torque was also optimally distributed
during straight-line driving, the motor basically worked on the external characteristic curve during
acceleration. At the same time, there was no training for the straight-line driving condition, so the
optimization effect was not obvious. Then only for the steering phase between 20 s and 40 s, the vehicle
energy consumption can be reduced by about 5.112% after optimization.
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Figure 10b shows the change of the drive torque of each wheel. In the linear acceleration phase,
the drive torque of the whole vehicle was mainly distributed to 1st axle and 3rd axle, similar to the
two-axle drive, which increased the working load of some drive motors and improved overall work
efficiency. When steering, the drive torque of the outboard wheel increased, and the drive torque of the
inboard wheel decreased. Besides, the drive torque of rear axle of the outboard wheel was relatively
larger, because in the same cases, the change of the drive torque of the rear axle had a greater influence
on the additional yaw of the whole vehicle, which is more conducive to the reduction of the energy
consumption. In addition, the multi-axle vehicle body is longer, resulting in the effect is relatively
more obvious. When the vehicle was in steady-state steering, the driving torque of the whole vehicle is
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about 3107 Nm by average distribution, while the total driving torque is about 2975.4 Nm by optimized
distribution, which is relatively reduced by about 4.2356%. Another part of the reduction in energy
consumption comes from the improvement of motor working efficiency.

Figure 11 shows the comparison of working point change in the motor efficiency map. The wheel
speed and output torque during steady-state steering are respectively derived. Based on the deceleration
ratio, the actual working points of each in-wheel motor were calculated. As the relative speed difference
between the left and the right wheel was very small, which can be approximately ignored, a point was
used to represent the actual working point of each motor when the drive torque was evenly distributed.
After the optimal torque distribution control was adopted, the actual working point of each motor
was changed. The drive torque of the outboard wheel was increased, and the working efficiency was
improved. Though the working efficiency of inboard wheel reduced, its drive torque was small, which
led to the overall working efficiency being improved.Energies 2020, 13, x FOR PEER REVIEW 13 of 19 

 

 
Figure 11. Comparison of motor working points. 

4.2. Conventional High-speed Sinusoidal Steering Condition 

The high-speed simulation condition was designed to accelerate the vehicle from the stationary 
state with a target speed of 70 km/h. At 20 s, the steering wheel input a sine wave with an amplitude 
of 110° as shown in Figure 12a. Similarly, 1st axle and 2nd axle were steering axles. Figure 12b and 
Figure 12c show changes of the vehicle speed and the yaw rate. Similar to the step steering condition, 
the change of driving state was not obvious and the peak of yaw rate increased slightly. Figure 12d 
shows the change of drive torque. Due to the input of the steering wheel constantly changing, the 
curvature radius of the vehicle driving was also changing. It can be seen from Equation (3) that the 
additional steering resistance fluctuated accordingly. Therefore, when the driving torque was evenly 
distributed, the driving torque of each wheel also changed correspondingly. After optimized 
distribution, the more drive torque was distributed to the wheel of the outboard and rear axles, which 
promoted the steering of the vehicle. Under the dynamic steering condition, the driving torque of 
each wheel could follow the changes of system input, which indicates that the optimal control 
algorithm could adapt to the dynamic environment. 

 

(a) 

 

(b) 

Figure 11. Comparison of motor working points.

4.2. Conventional High-speed Sinusoidal Steering Condition

The high-speed simulation condition was designed to accelerate the vehicle from the stationary
state with a target speed of 70 km/h. At 20 s, the steering wheel input a sine wave with an amplitude of
110◦ as shown in Figure 12a. Similarly, 1st axle and 2nd axle were steering axles. Figure 12b,c show
changes of the vehicle speed and the yaw rate. Similar to the step steering condition, the change of
driving state was not obvious and the peak of yaw rate increased slightly. Figure 12d shows the change
of drive torque. Due to the input of the steering wheel constantly changing, the curvature radius of
the vehicle driving was also changing. It can be seen from Equation (3) that the additional steering
resistance fluctuated accordingly. Therefore, when the driving torque was evenly distributed, the
driving torque of each wheel also changed correspondingly. After optimized distribution, the more
drive torque was distributed to the wheel of the outboard and rear axles, which promoted the steering
of the vehicle. Under the dynamic steering condition, the driving torque of each wheel could follow
the changes of system input, which indicates that the optimal control algorithm could adapt to the
dynamic environment.

The changes of SOC can be seen from Figure 13a. After the optimization control, the SOC
decline reduced by 2.6213% between 0 s and 40 s. If only comparing the SOC change during steering
phase, the energy consumption of the vehicle decreased by 4.0482% after optimization as shown in
Figure 13b. It was proved that the optimal torque distribution control based on energy consumption
could reasonably distribute the drive torque of each wheel and reduce the energy consumption
under the dynamic condition. That means the optimization algorithm adopted was not limited to
specific working conditions, which can be for any steering conditions, whether static or dynamic.
The optimization algorithm could optimize the distribution of driving torque in real time and reduce
the vehicle energy consumption. However, the optimization effect was slightly worse than that of low
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speed test, which was mainly for two reasons. On the one hand, the sine wave input was a dynamic
process all the time, but there had to be system inertia in the mechanical system, which may have led
to the actual action and control signals not being completely synchronized. Although the effect was
relatively small for the electric vehicle with in-wheel motor, it could not guarantee that the drive torque
of each wheel was optimal at any time; on the other hand, when the motor worked at a high speed,
the high efficiency area on the efficiency map was relatively large, so the optimization effect after the
control was slightly lower.
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4.3. Extreme Steering Condition

In order to further reflect the control effect of optimal torque distribution, the extreme steering
condition test was carried out. The four-axle reverse phase steering mode was adopted, with the first
and second axles deflecting in the opposite direction to the third and fourth axles. The target speed of
the vehicle was set to 10 km/h. At 20 s, the right wheel of the first axle deflected about 23◦ within 2 s,
and the deflection angles of other wheels were calculated according to Ackerman steering principle,
as shown in Figure 14a. For the change of speed, the vehicle speed after optimal control was still
slightly higher than that under average distribution as shown in Figure 14b, which was the same as
the previous simulation results. However, when the vehicle was in steady-state steering, the vehicle
speed was basically unchanged compared with driving in the straight line, which indicates that the
additional steering resistance was relatively small in this working condition.
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As shown in Figure 15, the driving track of the vehicle remained unchanged basically after
optimization. The steering radii of the vehicle after average distribution and optimal distribution were
8.1165 m and 8.1053 m respectively, which means that the optimal distribution of drive torque control
did not have a great impact on the vehicle trajectory and body posture.Energies 2020, 13, x FOR PEER REVIEW 16 of 19 
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Figure 16 shows the change of wheel drive torque. 0 s to 20 s was a linear acceleration phase, and
the drive torque was distributed between the axles. Since the motor was in the state of low speed
and low torque at this stage, in order to improve the overall working efficiency, the driving torque of
the vehicle was mainly distributed to the first axle and the third axle to increase the workload of the
motor. When entering the steering at 20 s, due to the increase of the driving resistance, the driving
torque of the vehicle increased in order to maintain the target speed. However, when the vehicle was
in steady-state steering, the drive torque was basically the same as that when the vehicle traveled in a
straight line, which was caused by the reduction of driving resistance by the four-axle reverse phase
steering. It can be seen that the optimization control made the distribution ratio of the outboard and
rear axle wheels increase, which further promoted the reduction of driving resistance, thus achieving
the purpose of reducing the driving energy consumption.
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When the vehicle was in steady-state steering, the total required drive torque of the vehicle with
the average torque distribution was 1860.0376 Nm, and after the optimal distribution control, it was
only 1656.6745 Nm, which was about 10.9332% lower. Then the change of the vehicle SOC during
the steering phase was compared. The actual energy consumption decreased by about 13.3679%,
which was much more obvious than the conclusion obtained by the above that maximum reduction
in energy consumption is about 5%. This is mainly because the working efficiency of the motor is
extremely low under low speed conditions [33]. Meanwhile, according to the motor efficiency map
used in this paper, when the vehicle speed was lower than 30 km/h, the efficiency changed greatly with
the torque, so the optimization control effect was better under this working condition. Besides, it was
found that when other conditions were the same and four-axle reverse phase steering was adopted,
the vehicle demand torque was far less than that when two-axle steering was adopted, sometimes
less than half of that. Smaller drive torque led to lower working efficiency, which also led to the more
obvious optimization effect.

4.4. Performance Evaluation

It should be emphasized that the optimal distribution of drive torque control can achieve the
maximum energy saving effect of about 5% in the conventional steering conditions, but it is only for
the motor efficiency map used in the current paper (Figure 3). The motor efficiency map had a great
influence on the actual optimization effect. If the high efficiency area of the in-wheel motor was small,
the energy saving control effect on the vehicle was obvious. In addition, the selection of algorithm
training conditions should be closer to the actual driving state of the vehicle, and enough training times
should be ensured to make the parameters in the Actor network tend to the stable and optimal value.
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5. Conclusions

(1) Based on the theory of vehicle system dynamics, the dynamic model of an 8 × 8 independent
drive electric vehicle is built by MATLAB/Simulink, which contains 23-DOF to more accurately
describe the multi-axle vehicle dynamics. On the basis, combining with the analysis of tire
force and the mathematical derivation of the single-track linear model, it is concluded that
through the reasonable distribution of the driving torque can reduce the additional steering
resistance, and then reduce the energy consumption of the vehicle. However, due to the change
of the tire side-slip angle and the influence of the motor efficiency, the optimization process is
necessarily dynamic.

(2) Considering the research object and content of the current paper, the DDPG algorithm is adopted
to optimize the distribution of the drive torque between each wheel to reduce the energy
consumption of the vehicle. The formula of DDPG algorithm is derived, and the overall system
architecture is designed. The Actor network, Critic network and Train function are completed
to interact with the vehicle model with the help of MATLAB Function, and realize the joint
alternation training.

(3) Since there is no standard for the evaluation of steering energy consumption, the training
condition is designed artificially. After completing 500 times training, the parameter matrix
in the Actor-network is stored into the MATLAB Function, which receive the driving state
of the vehicle in real-time and generate the optimal distributing action. The low speed, high
speed conventional steering and extreme steering simulation tests are carried out respectively.
The results show that the vehicle energy consumption can be reduced by about 5% at most
under the conventional steering condition with using the motor efficiency map of the current
paper, which effectively reduces the energy consumption for the multi-axle electric vehicles with
in-wheel motors. Meanwhile, the current paper provides an innovative solution to the vehicle
optimization problem of multidimensional state input and multidimensional continuous output.
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