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Abstract: In this paper, a co-estimation scheme of the state of charge (SOC) and available capacity is
proposed for lithium–ion batteries based on the adaptive model-based algorithm. A three-dimensional
response surface (TDRS) in terms of the open circuit voltage, the SOC and the available capacity
in the scope of whole lifespan, is constructed to describe the capacity attenuation, and the battery
available capacity is identified by a genetic algorithm (GA), together with the parameters related
to SOC. The square root cubature Kalman filter (SRCKF) is employed to estimate the SOC with the
consideration of capacity degradation. The experimental results demonstrate the effectiveness and
feasibility of the co-estimation scheme.

Keywords: state of charge; available capacity; adaptive model-based algorithm; square root cubature
Kalman filter; joint estimation

1. Introduction

Nowadays, energy crises and environmental damage have become the main concerns of society,
and require being tackled with high attention [1]. Transportation electrification provides a possible
manner to reduce emissions and dependence upon fossil fuels. Electric vehicles (EVs) and hybrid EVs
(HEVs) are promising solutions, which however, require electrical energy storage systems to completely
or partially replace propelling power supplied by traditional internal combustion engines [2]. In this
context, applications of lithium–ion batteries have been intensively spurred due to their numerous
advantages, such as their wide environmental temperature operation capability, high energy density,
long lifespan and their large charge/discharge current [3]. For lithium–ion batteries, the state of charge
(SOC) and available capacity, usually provided by battery management systems (BMSs), are crucial
parameters for evaluation of the electrical performance of the battery, as well as for the control of
the vehicle.

Typically, estimation methods of the SOC can be divided into four categories, including the
coulomb counting method, and characterization parameter-based methods such as the open circuit
voltage (OCV) method, model-based methods and data-driven methods. Amongst them, the coulomb
counting method [4] and OCV method [5] have been widely applied in BMSs of EVs, because of
their simplicity and ease of implementation, whereas the former is prone to the production of large
accumulated errors, due to interferences or uncertainties of current sensors/transducers and inaccurate
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initial values, and the latter is not suitable for online estimation, as it usually costs long shelving time
to acquire the OCV value. With the development of computation technologies and machine learning,
a variety of artificial intelligence-based, data-driven methods, such as neural networks [6] and support
vector machines [7], are proposed for SOC estimation by establishing black-box models. Data-driven
methods feature a strong nonlinear mapping capability with high accuracy; however, these approaches
show high complexity, and require a considerable amount of training data. Alternatively, model-based
methods have been widely investigated and applied for SOC estimation, thanks to the capabilities
of online application, high precision and the independence of initial values. Conventional modeling
manners mainly include electrochemical models and the equivalent circuit models (ECMs). Compared
with complicated electrochemical models, ECM is commonly used to describe the electrical behavior
of batteries, and subsequently to estimate the SOC due to its simplification and preferable precision.
Yanwen Li et al. proposed a multi-model probability fusion algorithm to describe the battery’s electrical
characteristics, and subsequently estimate the SOC [8]. In model-based methods, the combination
of the battery model and the intelligent filtering algorithm is a hotspot in SOC estimation research.
The frequently used filtering algorithms include Kalman filtering (KF) [9], the H-infinity filter (HIF) [10],
particle filter (PF) [11], and their various extensions. In particular, the extended KF (EKF) is widely
employed to execute SOC estimation using a first-order Taylor expansion on the basis of the battery’s
nonlinear model [12]. Nonetheless, the second and higher order expansion is usually neglected, thus
leading to slow a convergence rate, and even divergence. The unscented KF (UKF) is exploited to
estimate battery SOC, based on the recursive unscented transformation to approximate the nonlinear
observation without Taylor polynomial expansions [13]. The UKF shows better estimation precision
and robustness than the EKF in strong, nonlinear systems [14]. On the basis of the radial–spherical
cubature criterion, the cubature Kalman filter (CKF) leverages a set of volume points to approximate
the mean and covariance of states with additional Gaussian noise [15]. Although CKF outperforms
EKF and UKF in terms of filtering divergence and estimation error, it is susceptible to inaccurate, initial
difference and disturbances, and is difficult to guarantee a symmetric and nonnegative definition of the
covariance matrix all the time. HIF is applied in state estimation and model parameters identification
of batteries, due to its good, anti-interference performance in high nonlinear systems [16]. PF exhibits
attractive advantages in solving nonlinear, non-Gaussian distribution problems, and highlights more
application potential than EKF. Thus, it has been widely developed and applied in multifarious fields,
such as batteries, robotics and navigation systems [17]; however, it is limited by strong dependence
upon noise and time-varying parameters of the system.

In addition, battery aging is an irreversible process with operation, where the most intuitive
appearance is a decline of capacity and the increase of internal impedance [18]. In general, the attenuation
process is nonlinear, complex, and even difficult to predict. To attain it, a body of algorithms have
been successfully proposed and applied to achieve capacity estimation, mainly including experimental
analysis methods and model-based methods. The most direct and easiest manner of evaluating the
capacity is to conduct the calibration test [19]. However, it is obviously time-consuming, and only
supports offline estimation. Additionally, the battery’s impedance variation also highlights the capacity
degradation trend [20]. However, the online electrochemical impedance measurement is not suitable for
practical applications, due to its exceptional complexity of experiment. Motivated by these difficulties
and constraints, incremental capacity analysis (ICA) is introduced to conduct capacity estimation
by evaluating the increment of capacity in a certain charging interval [21]. Similar algorithms also
include differential voltage analysis (DVA), with the help of analyzing the variation characteristics
of voltage curves in predetermined charge/discharge operations [22]. Yes, they can reflect the aging
mechanism of batteries, and highlight preferable accuracy; nonetheless, they are intractable to apply
in practice, as chances of encountering the interval with predetermined current are seldom. Since it
is time-consuming to measure and determine the battery capacity directly; model-based estimation
approaches may supply an indirect manner to evaluate it. The model-based methods can leverage
adaptive algorithms (such as joint estimation approaches [23] and fuzzy logic algorithms [24]) to
identify the battery capacity.
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These algorithms are easy to be implemented, and meanwhile demonstrate preferable accuracy;
whereas, in the model-based approaches, the battery capacity is regarded as a key parameter or state
variable, and is obtained by parameter identification, or estimated together with the SOC, with an
established circuit model or electrochemical model. From this point of view, the model accuracy can
directly affect the estimation accuracy of our battery capacity.

The above-mentioned state estimation methods are mostly developed for either SOC or capacity
estimation individually, rather than for both simultaneously. SOC refers to the residual capacity rate
over nominal values, while SOH represents the nominal capacity value with operations. To a certain
extent, battery capacity shows the same significance as SOC, and essentially, they are tightly coupled
with each other [25]. Apparently, SOC estimation based on the known and unchanged capacity exhibits
certain limitations in practice. A common knowledge is that the internal parameters of batteries change
with degradation. The internal resistance will increase, and the capacity decreases gradually, thus
resulting in the challenges and difficulties of estimating the SOC reliably and robustly. Consequently,
it is critical to update the model parameters, particularly the capacity, in a timely manner. Motivated
by this, a joint estimation scheme is proposed in this study to improve the estimation accuracy of the
SOC and capacity in the entire lifespan of the battery. Firstly, a second-order resistance–capacitance
(RC)-based ECM is established, and the co-estimation scheme of SOC and the battery capacity is
presented. In it, the square root cubature Kalman filter (SRCKF) algorithm is employed to estimate
the SOC; meanwhile, the battery capacity, as one of the key model parameters, is identified by the
genetic algorithm (GA), based on the constructed three-dimensional response surface (TDRS). Finally,
the estimation results of the SOC and battery capacity are verified by different experimental validations
over their entire lifespans. This study dedicates to the following two contributions: 1) A novel capacity
estimation method based on a TDRS is proposed, and the model parameters are updated synchronously;
and 2) based on the capacity and parameters revision, a co-estimation scheme is established for the
SOC and capacity estimation simultaneously against different degradation statuses.

In the remainder of this study, Section 2 details the second-order RC model and the experiment test
profiles. In Section 3, the co-estimation scheme of both capacity and SOC is elaborated. The validation
results are exhibited and discussed in Section 4. Finally, Section 5 draws the main conclusions and
looks to future works.

2. The Lithium–Ion Battery Model and the Experimental Details

2.1. Battery Modeling and Analysis

To better estimate battery states, various mathematical models have been established, including
electrochemical models [26] and ECMs [27]. However, they differ greatly in accuracy, computation
complexity and reliability. Considering the precision and complexity of models, a second-order
RC-based ECM, as shown in Figure 1, is deployed in this work, thanks to its relatively satisfactory
precision and acceptable computation intensity [28]. As can be seen, it contains two parallel RC
networks connected in series topology to characterize the battery polarization. Based on Figure 1,
the circuit equation can be built, as:

.
Us = −

Us

RsCs
+

I
Cs

(1)

.
Ul = −

Ul
RlCl

+
I

Cl
(2)

Ut = Uocv −Us −Ul −ReI (3)

where Rl and Cl indicate the internal resistance and capacitance of electrochemical polarization, while
Rs and Cs denote the internal resistance and capacitance of the concentration polarization.
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Figure 1. The second-order resistance–capacitance (RC) equivalent circuit model. 
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Figure 1. The second-order resistance–capacitance (RC) equivalent circuit model.

Us and Ul denote the voltage drop across RsCs and RlCl, respectively; Ut indicates the terminal
voltage; I is the loading current; Uocv stands for the open circuit voltage; and Re represents the internal
ohmic resistance. In addition, the SOC denotes the ratio of available remaining capacity over the rated
capacity (the maximum available capacity), as:

SOC(t) = SOC(t0) −

∫ t
t0
ηcI(t)dt

QN
(4)

where SOC(t) indicates the SOC value at t, respectively; SOC(t0) stands for the SOC value at t0; QN is
the rated capacity of battery; and ηc represents the columbic efficiency.

2.2. Experiments

The basic specifications of the battery are illustrated in Table 1. The battery’s nominal voltage
is 3.6 V, and the nominal capacity is 2.55 Ampere hour (Ah). To characterize the battery’s electrical
performance, some prerequisite experiments are conducted, including an accelerated aging test,
performance test, and dynamic test. The accelerated cycle life aging test is carried out at 25 ◦C, which
is divided into seven stages. They are separated by the cycles 0, 30, 60, 90, 120, 150 and 180 (defined as
cyc0, cyc30, cyc60, cyc90, cyc120, cyc150 and cyc180 hereinafter). The battery cell is charged by means
of the constant current-constant voltage (CCCV) scheme with the current rate of 1 C, and discharged
by means of constant current (CC), with the current rate of 2 C in each cycle. Here, C denotes the rated
capacity value of the battery with the unit of Ah. The performance tests, including the capacity test
and hybrid pulse power characterization (HPPC) test, are carried out periodically during the cycle life
test. In addition, a typical dynamic test based on the urban dynamometer driving schedule (UDDS) is
executed to verify the performance under dynamic operating conditions. Figure 2 shows the decay
variation of the discharge capacity. It can be clearly observed that the discharge capacity basically
remains unchanged from cyc0 to cyc30, and it tends to decline faster after 30 cycles, and the amount of
electric energy decreases faster as the cycle number increases. After 180 cycles, the maximum discharge
capacity decreases from the initial 2.614 Ah to 1.129 Ah, which remains only 44.3% of the nominal
capacity. The discharge capacity decreases to 1.97 Ah at the fifth stage (cyc120), which is 77.25% of the
nominal capacity. When the capacity drops to 80% of the rated value, the battery should be abandoned;
and therefore, only the experimental results of the first five aging stages are applied to analyze and
verify the performance of proposed algorithm in this work.

Table 1. The specifications of the battery cell.

Material Ternary Lithium–Ion Battery

Nominal capacity 2.55 Ah
Nominal voltage 3.6 V

End-of-charge voltage 4.2 V
End-of-charge current 51 mA

End-of-discharge voltage 2.5 V
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Figure 2. The decay of battery cell discharge capacity under 180 cycles.

Furthermore, battery degradation not only features the capacity reduction, but also embodies
the variation of the OCV-SOC relationship. The relationship curve between OCV and SOC at various
aging status is presented in Figure 3. It is apparent that the OCV–SOC relationship curve changes
gradually as the cycle number increases. When the SOC is more than 20%, the trend of the curves
remains basically the same. However, when the SOC is less than 20%, especially under 10%, the OCV
changes significantly. Generally, to protect and extend the battery life of EVs, the battery discharge
cut-off SOC is usually set to 10% or 20%. When the SOC ranges from 20% to 60%, the OCV at different
aging status differs obviously, and the maximum difference value is 20 mV. When the SOC is more
than 60%, the OCV values at different aging statuses are relatively close, and the maximum difference
is within 10 mV.
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Figure 3. The relationship curve of the open circuit voltage (OCV) and state of charge (SOC) at different
aging stages.

3. The Joint Estimation of SOC and Battery Capacity

The framework of the joint capacity and SOC co-estimation is shown in Figure 4. It mainly includes
four parts: the strategy module, the modeling module, the capacity and parameters estimation module,
as well as the SOC estimation module. First, the strategy module starts to accumulate the experimental
data until the length of data is more than the preset threshold. Then, the capacity estimation module
employs the GA to conduct the parameter identification and capacity estimation, based on the acquired
data and the established model. After finding the model parameters and capacity, the SOC estimation
module is triggered to estimate the SOC based on the SRCKF. Note that the modeling and parameters
estimation modules are not invoked every time. The detailed co-estimation procedure is elaborated in
the following.

3.1. The Capacity Estimation Algorithm

The battery capacity is deemed to be a significant parameter that needs to be identified. Firstly,
based on the OCV–SOC curves illustrated in Figure 3, a TDRS with respect to the capacity, SOC and
OCV, is constructed, as plotted in Figure 5. Next, the TDRS is imported into the established battery
model. Finally, the usable battery capacity is incorporated into the battery model parameters, and is
identified by the GA [29].
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By this manner, the problem of usable battery capacity estimation can be transformed into the
problem of searching the optimal OCV–SOC relationship match on the built TDRS by applying the
optimization algorithm. It is worth noting that the ambient temperature plays an important influence
on battery capacity. However, the temperature influence is not taken into account in this study, as the
battery system onboard is generally equipped with a good thermal management system, thereby
ensuring the temperature variation is within ±5 ◦C [30].

In consideration of accuracy and complexity, a fifth-order polynomial function is selected to
describe the relationship among OCV, SOC and capacity, as:

UOCV(SOC, Ca,i) = α1,i × SOC5 + α2,i × SOC4 + α3,i × SOC3 + α4,i × SOC2 + α5,i × SOC + α6,i (5)

where Ca,i represents the available battery capacity at the ith capacity point.
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α j,i( j = 1, · · · , 6) denotes the fitting coefficient of OCV and SOC at the ith capacity point, which is
no longer a constant, and is herein defined as a quadratic function of Ca,i, as:

α j,i = b2,iC2
a,i + b1,iCa,i + b0,i (6)

where bt,i(t = 0, 1, 2) denotes the capacity coefficient. The above equation can be rewritten into a
matrix form, as:

[α1,i,α2,i,α3,i,α4,i,α5,i,α6,i]
T = Γ ×

[
C2

a,i Ca,i 1
]T

(7)

where Γ refers to a 6× 3 capacity coefficient matrix, which can be obtained by the polynomial fitting,
and the results are described in Equation (8).

Γ =



14.2473 −57.3965 61.0568
−39.1366 155.6827 −165.5359
38.9053 −151.7664 161.0539
−16.8787 63.8408 −66.9571

3.0020 −10.7412 11.42.84
−0.1149 0.2951 3.2020


(8)

Now, according to Equations (5)–(8), a nonlinear relationship can be built among OCV, capacity
and SOC. Once the SOC is determined, it will be a deterministic mapping function between OCV and
SOC. Together with Equations (1)–(3), the capacity identification can be conducted simultaneously
with other parameters, including those of the RC networks. During the parameters identification,
the variation of model parameters is eventually reflected by the difference between the estimation
result and the terminal voltage. Based on the OCV model, the discrete mathematical expression of the
second-order RC-based ECM can be reformulated as:

Ut,k = Uocv,k(SOCk, Ca) −
{
exp(−∆t/τs)Us,k + Rs[1− exp(−∆t/τs)]Ik

}
−

{
exp(−∆t/τl)Ul,k + Rl[1− exp(−∆t/τl)]Ik

}
− IkRe

(9)

where ∆t indicates the time interval, and both τs = RsCs and τl = RlCl belong to time constants. As can
be seen from Equation (9), the TDRS based on the OCV model in Equation (5) is imported into the ECM.
Hence, the difference of relationship between SOC and OCV at different capacity levels is eventually
highlighted by the estimation results of the terminal voltage. In this manner, the battery capacity can
be added into the model parameter series for identification. To attain it, the GA is employed to find the
optimal combination of model parameters and capacity, in which the optimal parameter group to be
identified can be expressed as:

θoptimal = [Re, Rs, Rl, Cs, Cl, Ca] (10)

During the identification process, the minimum root mean squared error (RMSE) of the terminal
voltage is taken as the fitness function, as:

ϕ(θoptimal) = min|RMSE|

RMSE =

√
N∑
k
[Ut,k−Ût,k(θoptimal)]

2

N

(11)

where Ut,k and Ût,k(θoptimal) represent the measured terminal voltage and the estimated terminal
voltage at step k, respectively.
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In addition, the constraints of optimization algorithm are subject to:
20% ≤ SOC ≤ 100%
0.005 Ω ≤ Re, Rs, Rl ≤ 0.1 Ω
0.5 s ≤ τs ≤ 1000 s
0.5 s ≤ τl ≤ 1000 s

(12)

The setting of these constraints is explained as follows. In practical applications, to avoid the
over-charge and over-discharge of the battery, the range of the SOC is generally set to 20% to 100%
for guaranteeing proper operation and extending the service life of batteries [31]. The upper limits
of internal ohmic resistance Re, internal resistance Rl of electrochemical polarization and internal
resistance Rs of the concentration polarization are determined in terms of the specifications of batteries
and the technical parameters supplied by the manufacturers. Their low limits are all determined to be
0.005 Ω, based on the parameter calculation of ECM introduced in [32], as well as the experimental
analysis. Meanwhile, the range of Cl and Cs can be deduced to be 100 F to 104 F. In addition, τl and τs

are time constants, where τl = RlCl and τs = RsCs. Hence, the range of τl and τs can be limited with
0.5 s to 1000 s. In summary, when the above-mentioned battery model parameters and capacity are
identified, these parameters will be transmitted into the SOC estimation module. However, it is worth
noting that the parameter identification based on the GA requires a certain amount of data to obtain
an ideal identification result. Therefore, the capacity estimation method proposed in this paper only
runs when the data length reaches a pre-set condition, and the determination of data length will be
discussed in the next section.

3.2. The SOC Estimation Algorithm

After obtaining the model parameters and battery capacity, the SRCKF is proposed to attain the
estimation of battery SOC with the cyclic recurrence based on the established second-order RC ECM.
In comparison with the traditional cubature Kalman filter (CKF), the SRCKF can directly perform
iterative update in the form of calculating the square-roots of the covariance matrices during the
filtering process, which determines the non-negative definite value of the covariance matrix, and avoids
the divergence of filter [33]. In general, a discrete nonlinear dynamic system with enhanced noise can
be modeled, as: {

xk+1 = f (xk, uk) + wk
zk = h(xk, uk) + vk

(13)

where xk ∈ Rn and zk indicate the system state vector and the system output at time k, respectively. f (·)
and h(·) denote the nonlinear system state function and nonlinear measurement function, respectively.
wk stands for random process noise indicating uncertain input. vk denotes the observation noise,
which is generally employed to simulate sensor noise affecting the output measurement. Additionally,
the corresponding covariance of wk and vk are Qk and Rk, respectively. Based on the established ECM,
the time-discrete state equation and measurement equation can be respectively expressed, as:

Us,k+1
Ul,k+1

SOCk+1

 =


exp(−∆t/τs) 0 0
0 exp(−∆t/τl) 0
0 0 1




Us,k
Ul,k

SOCk

+


Rs(1− exp(−∆t/τs))

Rl(1− exp(−∆t/τl))

−ηc∆t/Ca

Ik +


w1,k
w2,k
w3,k

 (14)

Ut,k = Uocv,k(SOCk, Ca) +
[
−1 −1 0

]
Us,k
Ul,k

SOCk

+ [−Re]Ik + vk (15)

where the system state variable xk =
[

Us,k Ul,k SOCk
]T

, input variable uk = Ik and system output
zk = Ut,k. In this study, The SRCKF algorithm is adopted to estimate the SOC, of which the general
process is summarized in Table 2, where n is the state dimension, and m denotes the total number
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of volume points, which number is twice those of the state dimension. The sample [1] indicates a
complete set of fully symmetric points, of which the set of points is obtained through the complete
permutation of elements of the n-dimensional unit vector e = [1, 0 · · · 0]T and the alteration of the
element symbol. [1]g represents that the point is centered at the gth point of [1]. x̂k and ẑk are the
predicted state and measurement, respectively. SQ,k−1 and SR,k denote the square-roots of the process
noise covariance matrix Qk−1 and the measurement noise covariance matrix Rk, respectively.

Table 2. The process of SOC estimation based on the square root cubature Kalman filter (SRCKF)
algorithm.

(a) Initialization: {
x̂0|0 = E[x0]

P0|0 = E
[
(x0 − x̂0|0)(x0 − x̂0|0)

T
] (16)

Determine the initial value S0|0 of the square roots of the error covariance matrix by the Cholesky
decomposition:

S0|0 =
[
chol(P0|0)

]T
(17)

(b) Calculate the basic cubature points and weight:

ξg =

√
m
2
[1]g, (g = 1, 2, · · · , m) (18)

(c) Iteration:
for k = 1, 2, · · · , N

Time update:

Step 1: calculate the cubature points:

Xg,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (19)

Step 2: calculate the propagated cubature points:

X∗g,k|k−1 = f (Xg,k−1|k−1, uk) (20)

Step 3: calculate the predicted state:

x̂k|k−1 =
1
m

m∑
g=1

X∗g,k|k−1 (21)

Step 4: calculate the state-weighted center matrix:

χ∗k|k−1 =
1
√

m

[
X∗1,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]
(22)

Step 5: calculate the square-root of the prediction error covariance matrix:

Sk|k−1 = Tria
([
χ∗k|k−1, SQ,k−1

])
(23)

Measurement update:
Step 1: recalculate the cubature points:

Xg,k|k−1 = Sk|k−1ξg + x̂k|k−1 (24)

Step 2: update the propagated measurement cubature points:

Zg,k|k−1 = h(Xg,k|k−1, uk) (25)



Energies 2020, 13, 1410 10 of 15

Table 2. Cont.

Step 3: estimate the predicted measurement:

ẑk|k−1 =
1
m

m∑
g=1

Zg,k|k−1 (26)

Step 4: evaluate the measurement-weighted center matrix:

ζk|k−1 =
1
√

m

[
Z1,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]
(27)

Step 5: estimate the square root of the innovation covariance matrix:

Szz,k|k−1 = Tria
([
ζk|k−1, SR,k

])
(28)

Step 6: update the state-weighted center matrix:

χk|k−1 =
1
√

m

[
X1,k|k−1 − x̂k|k−1 · · · Xm,k|k−1 − x̂k|k−1

]
(29)

Step 7: estimate the cross-covariance matrix:

Pxz,k|k−1 = χk|k−1ζ
T
k|k−1

(30)

Moreover, update the Kalman gain, state and square root of the error covariance
Step 1: estimate the Kalman gain matrix:

Wk =
Pxz,k|k−1/ST

zz,k|k−1

Szz,k|k−1
(31)

Step 2: estimate the final updated state:

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (32)

Step 3: update the corresponding square-root of the error covariance matrix:

Sk|k = Tria
([
χk|k−1 −Wkζk|k−1, WkSR,k

])
(33)

End

4. Verification and Discussion

4.1. Verification Study on Different Data Lengths

In this section, different data lengths are selected to investigate the effectiveness of the proposed
co-estimation algorithm. Actually, the experimental data at different aging stages can be chosen to
verify the SOC estimation of different data lengths. Nonetheless, based on the estimated capacity,
the estimation error of battery capacity is maximum at cyc30. Hence, to better verify the performance
of the proposed estimation algorithm, the battery after being cycled 30 times is chosen as the test target,
and the current schedules acquired based on the UDDS experiment are repetitively operated until
the terminal voltage reaches the cut-off voltage designated by the manufacturer. Note that when the
data length is less than the pre-set threshold value, the SOC module still uses the previously identified
capacity and parameters to conduct the estimation.

Figure 6 shows the current profiles under the UDDS experiment. It can be clearly found that
the entire discharging process takes around 554 min. To evaluate the influence incurred by different
data lengths when identifying the model parameters, the data with the duration of 65, 84, 130 and
200 min (defined as 65 min, 84 min, 130 min and 200 min, respectively) are randomly selected as the
test target, and the remaining data are applied for SOC estimation. Note that when the data length is
554 min (total loading profile process), the SOC is estimated without the update of the capacity value
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and parameters. Table 3 compares the battery capacity estimation results with respect to different
data lengths.
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Table 3. The estimation results and errors of the battery capacity corresponding to various data lengths.

Data Length Estimated Capacity/Ah Absolute Error/Ah Relative Error/%

65 min 2.4366 0.0955 3.7716
84 min 2.4710 0.0611 2.4130

130 min 2.4854 0.0467 1.8443
200 min 2.5065 0.0256 1.0110

The actual capacity 2.5321 Ah is measured through the calibration test, and the estimated capacity
ranges from 2.4366 Ah to 2.5065 Ah. It can be observed that data duration shows certain influence
on the estimation results, and the estimated error of the battery capacity decreases by 2.7606%, from
3.7716% to 1.011%, after increasing the data length.

Based on the obtained capacity, the detailed results of the SOC and estimation error with different
identification data lengths are presented in Figure 7, and the statistic results are provided in Figure 8.
As demonstrated in Figure 7, when the date length increases from 54 min to 200 min, the estimated
SOC can quickly converge to the reference value according to the updated parameters and capacity,
and the maximum absolute error decreases from 3.643% to 0.989%. When the data length reaches
200 min, the estimation errors are restricted within a small range, less than 1%. Besides, Figure 7
also shows the SOC estimation results without considering the capacity’s update. The maximum
absolute error, the mean absolute error and the RMSE are 2.538%, 1.661% and 1.737%, respectively.
It is apparent that the estimated SOC looks more divergent without the capacity update, thereby
manifesting the advance of the joint estimation algorithm. From Figure 8, we can find that when
the data length increases from 65 min to 200 min, the maximum absolute error, mean absolute error
and RMSE decrease from 3.643%, 2.331%, 2.498% to 0.989%, 0.234%, 0.319%, respectively. The results
demonstrate that as the calculated data length increases, the estimated SOC becomes closer to the
reference value, and this is mainly because the GA shows a global optimization ability, and when more
input data samples are referred, the prediction results will be more accurate. Hence, appropriately
increasing the duration of data is beneficial for improving the accuracy of capacity identification and
SOC estimation. Nonetheless, it is appreciably time-consuming when increasing the amount of data to
estimate the battery capacity. To balance the relationship between error and calculation time, the data
duration of 200 min is considered as the preferred length. In the following, the estimated results with
the data length of 200 min are all adopted for SOC estimation and comparison.
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4.2. SOC Estimation under Various Degradation Stages

To verify the feasibility of the proposed co-estimation scheme, the battery cells are experimentally
and circularly tested with the UDDS current at different aging levels. According to the estimation
algorithm of capacity addressed previously, the pre-set data length is 200 min. Table 4 and Figure 9
compare the estimated results of battery capacity at different aging stages (fresh, nearly fresh, slightly
cycled, severely cycled and lifespan exceeded), of which the number of cycles ranges from 0 to 120,
with 30 as the interval. As illustrated in Table 4, the battery capacity declines with the cycling operation.
The proposed algorithm enables that the maximum relative and absolute errors are less than 1.011%
and 0.026 Ah when the battery is cycled for 30 times, thereby indicating its preferable capability of
estimating the battery capacity at different aging statuses. Furthermore, the estimated results can also
commendably reflect the decay trend of battery capacity.

Table 4. The estimated results and errors of the battery during the entire lifespan.

Cycle Number Actual Capacity/Ah Estimated Capacity/Ah Absolute Error/Ah Relative Error/%

cyc0 2.5478 2.5344 0.0134 0.5259
cyc30 2.5321 2.5065 0.0256 1.0110
cyc60 2.3788 2.3655 0.0133 0.5591
cyc90 2.1779 2.1758 0.0021 0.0964

cyc120 1.9655 1.9551 0.0104 0.5291

After finding the model parameters including the capacity value, the estimated SOC results
at different aging status are demonstrated in Figure 10, and the statistic results are summarized in
Figure 11. As Figure 10 suggests, it is obvious that when the battery ages, the total discharging time
gradually decreases under the same operating conditions. The initial SOC is 20%, with the error of 80%,
and the estimated SOC at various aged status can all converge to the reference values. Figure 10 also
reveals that the maximum absolute error of SOC is restricted within 1% after the correction of the initial
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SOC error, even when the battery is aged, and the convergence time is less than 120 s. As discussed
previously, the accuracy of SOC estimation is heavily influenced by the battery degradation. Without
considering the update of battery capacity, the SOC estimation error increases towards higher numbers
of cycles. In this study, the updated battery capacity is exploited to assist in improving the SOC
estimation in the entire lifespan. As can be found in Figure 11, the maximum value of absolute error,
mean absolute error and the RMSE are 0.987%, 0.484% and 0.566%, respectively, occurring in cyc30.
The reason is that when the cycle number is 30, the estimation error of capacity reaches 1.011%, thus
leading to the worst SOC estimation. Even so, the maximum absolute error of SOC is still restricted
within 1.1% after the correction of initial SOC. As the number of battery cycles increases, the estimated
SOC error does not increase obviously, manifesting that the updated capacity value contributes to the
SOC estimation. From this point of view, regular updates of battery capacity in the aging process are
imperative to improve the accuracy of SOC estimation.
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5. Conclusions

In this study, a model-based adaptive joint estimation algorithm of SOC and capacity is proposed
for lithium–ion batteries. The SOC estimation is implemented based on a second-order ECM, with
the SRCKF algorithm considering the capacity degradation and parameters variation. The battery
capacity is imported into the model parameter group, and it is jointly identified by the GA and the
constructed TDRS. After obtaining the parameters and the capacity, the SOC is accurately estimated by
the SRCKF. Through the experimental validations in terms of different degradation status, varying
duration of recorded data and various dynamic operating conditions, the preferable performance of the
proposed method is satisfactorily verified. The experimental results elucidate that the co-estimation
approach can improve the SOC estimation accuracy in the entire battery lifespan cycle with the update
of capacity, even in the cases of aged batteries and under complicated operating conditions.

In addition, this paper only investigates the SOC and capacity estimation for battery cells.
However, the capacity and SOC of battery packs are also particularly critical in practical applications,
and they will certainly be our research focus in the future.
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