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Abstract: La1-xCexNi5 alloys (x = 0, 0.09, 0.25 and 0.5) were investigated in terms of their structures,
phase contents, hydrogen storage properties and microhardness. It was confirmed that a cerium
addition to the reference (LaNi5) alloy caused structural changes such as lattice shrinkage and, as
a result, changed both the absorption and desorption pressures and the enthalpies of formation
and decomposition. The alloy with the highest cerium content was found to possess a two-phase
structure, probably as a result of nonequilibrium cooling conditions during its manufacturing process.
The microhardness was found to increase to some extent with the cerium content and decrease for
samples with the highest cerium content.
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1. Introduction

The development of efficient hydrogen storage methods is crucial for the widespread use of
hydrogen as a fuel [1,2]. Various studies on the possible storage of this gas in the form of solid-state
hydrides has been conducted for the last decades after noticing that some metals and intermetallic alloys
can reversibly store significant amounts of hydrogen gas [3–7]. AB5-type materials, characterized by
the ability to conduct reversible storage at temperatures and pressures close to an ambient environment,
are still one of the best groups of candidates. They usually store from 1% to 1.4% of hydrogen by
weight and usually more than 100 kg/m3, which is much more than even liquefied hydrogen at 20K
(70kg/m3). The first reports on the ability to store hydrogen by AB5-type intermetallic compounds
were published in 1969-70 [8,9]; since then, after tuning the composition of the primarily used alloys,
they have become one the most commonly used intermetallic alloys in hydride applications.

The typical representative of this group of materials is LaNi5, which is easy to activate, possesses
very good absorption and desorption kinetics [10] and is relatively safe (for a metallic powder) when
used. The activation procedure may vary but is usually given in the literature as a long-term exposure
under high hydrogen pressure (approximately 50 bar) at a room or elevated temperature [11–13],
which is also connected with sample evacuations. The described alloy possesses a capacity of ~1.4 wt%.
and has a plateau pressure just above 1 bar at room temperature [10,11] depending on the purity
and stoichiometry. The storage properties of LaNi5 can be tuned by replacing La or Ni atoms with
other elements. This has already been extensively studied and presented in the literature. As the
most significant examples, lanthanum or nickel can be substituted with Ce [14,15], Pr [16], Fe [17],
Zn [18], Ga [19], Al [20,21], Nd [22], Co [23], Sn [24] and many others, which influences the kinetics of
the reaction, cycling stability, equilibrium pressures and susceptibility to surface contamination [25].
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Different attempts to modify the properties were also made, including mechanical alloying and plastic
deformation [26,27].

Despite the fact that the material has been so extensively studied, there are still some gaps in the
literature and sometimes significant inconsistencies. In this work, we try to shed more light on the
properties of La-Ce-Ni alloys. This group is very attractive, since cerium replaces the lanthanum in the
unit cell, causing the lattice to shrink, and significant changes in the plateau pressures can be obtained.
One of the first studies of the La1-xCexNi5 system was carried out by J. H. van Vucht et al. [8]. They
focused on the study of this system, because they assumed that LaNi5 and CeNi5 compounds behaved
differently in relation to hydrogen. LaNi5 is already able to absorb hydrogen at room temperature and
at relatively low pressure; in contrast, 150 bar was not enough to activate the absorption of CeNi5. They
stated that, by substituting La with Ce atoms, it is possible to increase the hydrogen density in the alloy
and directly tune its properties. Following that discovery, several attempts to investigate cerium-doped
alloys were made, including studies of the atypical hysteresis effects in these alloys [14], as well as the
role of the cerium valence state [15]. Most recently, Cheng et al. focused on the influence of Ce-doping
on the microstructure, microwave absorbing properties and magnetic parameters of those alloys. It was
found that the saturation magnetization increases with the Ce content. The minimum absorption peak
frequency shifts towards the lower frequency region with increasing Ce concentrations [28].

Despite the given examples, other results can be found in recent literature showing atypical
values obtained for the enthalpies of formation and decomposition of the above hydrides [29], and
the atypical enthalpy trend changes with changes in the cerium content. Additionally, it is usually
stated that cerium substitutes lanthanum in a manner in which a single phase is formed, which is true
if the sample is cooled in conditions resulting in an equilibrium crystallization or a heat treatment
afterwards [14] but might not be the case knowing the metallurgical process and mass production of
the alloys which are offered on the market. In this paper, we have investigated three commercially
available cerium-doped LaNi5-based alloys. Their phase composition, lattice parameters and PCT
(pressure composition temperature) characteristics were investigated and discussed in relation to the
chemical segregation and microhardness measured for the chosen alloys.

2. Materials and Methods

LaNi5, La0.91Ce0.09Ni5, La0.75Ce0.25Ni5 and La0.5Ce0.5Ni5 were purchased from Whole Win (Beijing,
China) and were produced by vacuum-induction melting. The received powder with a very broad
particle size range (from micrometers to >1 mm) was not heat-treated at our laboratory; rather, it was
crushed manually and sieved prior to an XRD analysis to separate and investigate the fine (<40 µm)
fraction and obtain a quasi-isotropic sample for proper measurement statistics. The material was
subjected to an XRD phase and structural analysis using a Rigaku Ultima IV diffractometer (Co-Ka λ

=1,79003 Å) (Rigaku, Tokyo, Japan) with operating parameters of 40 mA and 40 kV in a continuous
mode, with a speed of 1 deg/min. Parallel beam geometry was used together with a fast linear detector
(DeteX Ultra) and a standard borosilicate glass sample holder. The slit sizes were kept constant during
the investigation (fixed slit mode). The phase identification of the base structure was performed
with PDXL (Rigaku) software and the PDF4 database. Furthermore, the obtained data and unit cell
prototypes of LaNi5 were used to calculate the lattice parameters of cerium-substituted alloys by
Rietveld refinement using Match! software with the incorporated Fullproof suite, which was also used
for estimation of the amount of the phases based on the XRD spectra.

Absorption and desorption isotherms were measured using an automated Sievert’s apparatus
(HTP1-S, Hiden Isochema, Warrington, UK). All samples were tested at three different temperatures:
35◦C, 40◦C and 45◦C, with the use of hydrogen gas in the highest available purity (BIP, Air Products,
<100 ppb H2O and O2). Samples, with masses of approximately 200 mg were activated prior to
measurement by five absorption and desorption cycles at the pressure regime characteristic for
each sample.
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For the SEM observations and microhardness tests, samples were put into a conductive thermoset
resin and then ground and polished. An FEI Quanta 3d SEM (Hillsboro, OR, USA) was used for sample
observation. Linear chemical composition scans and chemical composition maps were performed by
using an EDS technique and Hitachi Su-70 FE SEM (Hitachi, Tokyo, Japan).

The microhardness measurements were obtained using a Shimadzu microhardness tester HMV-G
(Shimadzu Corporation, Kyoto, Japan) with a 50-g load for each sample; moreover, the measurements
were repeated 15 times. In the case of the sample with the highest cerium content, the indentations were
performed separately for each visible phase, and the results were treated as a separate result. Since the
microhardness was measured on (relatively large but still) powder particles, a proper indentation was
defined as having no crack observed at the edge of the indentation.

3. Results and Discussion

3.1. Structural and Phase Analysis by X-ray Diffraction

Figure 1 shows the XRD patterns obtained for the investigated powders. The LaNi5 sample was
used as a reference sample. The obtained diffraction pattern shows a full match with the pattern in
the PDF4 database, showing that the investigated sample is a single-phase material, with a CaCu5

hexagonal-type structure with unit cell parameters equal to a = 5.017 Å and c = 3.977 Å, which results
in a unit cell volume of 86.724 Å3. The obtained parameters are in agreement with the values provided
by Van Vucht et al. [8] and slightly larger in all dimensions than those recently provided by Odysseos
et al. [29]. The investigation of La0.91Ce0.09Ni5 (with the smallest cerium addition; see Figure 1) results
in a very similar pattern, with peaks slightly shifting to higher angles of 2-theta values.
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Figure 1. X-ray diffraction (XRD) patterns of the investigated alloys.

The refined lattice parameters obtained from the spectra are found to be as follows: a = 5.005 Å
and c = 3.982 Å, which results in a unit cell volume of 86.424 Å3. It is easy to conclude in such cases
that cerium easily substitutes the lanthanum in the intermetallic phase due to being very similar in size
and properties, which is in agreement with previous findings [16,30,31]. The single-phase structure is
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preserved in this case, and only the unit cell is slightly deformed. The deformation, however, seems
to be not as intuitive, since the a parameters of the lattice shrink significantly while the c parameter
increases. This also seems to be in agreement with most of the literature data [8,32]; however, some
of the recent data [29] suggests that the c parameter remains almost unchanged (even the inverse
relationship of shrinkage was observed for some of the Ce-substituted alloys).

The described trend was observed for the rest of the alloys. The obtained values for both the lattice
parameters and the unit cell volume, as well as the graphical representation of the unit cell volume
dependence on the Ce content in the sample, are shown in Table 1 and Figure 2. It is easy to conclude
that the unit cell volume is almost linearly dependent on the cerium content in the sample. The small
deviation with the highest content of Ce might be related to segregation, which will be discussed
shortly. In other words, the real content of cerium in the refined phase is different from the theoretical
content, which is described based on the total chemical composition of the sample. The suspected
composition of the investigated phase is shown in the figure with a different marker. This issue will be
described in more detail in the section related to the chemical composition of the sample. The obtained
XRD data show one more important issue. For the sample with the highest cerium content, three
phases are found in the XRD pattern. Four Bragg peaks are found in positions that can be evidently
matched with the La2NiO4 phase. The presence of this compound might be related to oxygen uptake
during the metallurgical process or, less likely, to corrosion of the alloy. Usually, this compound was
observed after long-time cyclic absorption and desorption tests due to the presence of residual oxygen
in hydrogen gas [33] or after long-time annealing or uptake during casting [34]. The amount of the
phase is at a low detection limit (0.8% ± 0.2% estimated by the Rietveld refinement) of the method
and should not influence the overall behavior of the alloy; however, since oxygen selectively binds
nickel and lanthanum, it may cause the deficit of those elements in the alloy. The dominating phase
was identified by PDLX software as a hexagonal CaCu5 type, while the third phase present in the
spectrum remained unrecognized. The small number of peaks and their low intensities, as well as low
intensity-to-noise ratio, caused that we were not able to determine the exact structure of the remaining
phase. The data quality for dominating phase was good enough to perform Rietveld refinement and
for obtaining lattice parameters. The amount of the dominating phase was estimated using both the
the RIR method (using La0.5Ce0.5Ni5 as a candidate phase and its RIR coefficient from the database)
and Rietveld refinement. Several attempts were made with different processing of the patterns. The
obtained results were found to be surprisingly consistent, and the average amount of the phase was
calculated to be 90.3% ± 1.5% based on 10 different attempts with the use of both methods. Having in
mind the estimated amount of the oxide phase, mentioned above, one can conclude that the unknown
phase amount can reach up to 8%–9% of the sample.

Table 1. Determined unit cell parameters of the LaNi5, La0.91Ce0.09Ni5, La0.75Ce0.25Ni5 and
La0.5Ce0.5Ni5 phases.

Sample
La1-xCexNi5

Parameter a
(Å)

Parameter c
(Å)

Volume (Å3) Relative Phase
Content (%)

Other Phases
Present

LaNi5 5.017 3.977 86.724 100 none
La0.91Ce0.09Ni5 5.005 3.982 86.424 100 none
La0.75Ce0.25Ni5 4.988 3.988 85.944 100 none

La0.5Ce0.5Ni5 4.954 3.992 84.869 90.3 ± 1.5
La2NiO4,

X-unidentified
phase
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3.2. Hydrogen Absorption and Desorption PCT Isotherms

The structural changes in the alloys and phase composition of each of them directly influence the
hydrogen storage properties of the alloys. The composition itself is found to be very important for
LaNix alloys, even without cerium content. It is found that, by changing the x value (where x is an
atomic proportion of nickel to lanthanum), one can change the equilibrium pressure at 40 ◦C from
2.5 bar (for x = 4.9) to more than 9 bar (for x = 5.5) [11]. Figure 3a–d show the hydrogen absorption
and desorption isotherms obtained at temperatures of 35, 40 and 45 ◦C for the investigated alloys.
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The character of each set of curves is quite similar and can be described as follows. Each alloy
absorbs a relatively small amount of hydrogen proportionally with increasing pressure; then, most
of the hydrogen is absorbed in the plateau region with a small change in pressure, and only a very
small residual quantity is absorbed above the plateau pressure. This mechanism is well-known and
has already been described in the literature many years ago on the example of both AB and AB5

alloys [6,7,10–13], so it will not be described here. The most important observations regarding the
obtained results may be summarized as follows. The cerium content increased results in an equilibrium
pressure rise. The exact values measured in the middle of the plateau region are shown in Table 2. It is
easy to notice that the absorption pressures are very strongly influenced by composition, while the
desorption pressures’ increases seem to be not so drastic. Additionally, with increasing cerium content,
the plateau becomes steeper, and the hysteresis increases between the absorption and desorption. This
phenomenon has also been observed and extensively explained years ago [14]. The presence of cerium
in the alloys is crucial but not enough to cause the untypical hysteresis effect. It can be suppressed
by the addition of different elements such as cobalt or aluminum and is very likely connected with
the appearance of two hydride phases and different valent states of cerium in alloys. In general,
despite many years of investigations, the hysteresis effect (not talking about abnormal hysteresis
effect) was not fully understood [2] but is likely to be connected with both the elastic and the plastic
accommodation energies in both hydride formation and decomposition [35,36]. Based on the measured
equilibrium pressures, with the use of van ’t Hoff plots, the enthalpies of decomposition and formation
are calculated (Table 3). The values of the enthalpies of formation and decomposition are found
to follow expected tendencies and suggest that the alloy stability decreases with increasing cerium
content, as has been already shown by Dayan [14] and Uchida [30]; however, recently, different values
were shown by Odysseos et al. [29]. The last mentioned result, however, is very likely caused by a
mistake in calculations. The values of equilibrium pressures in their experiment follow the typical
trend; however, the enthalpies are totally different from what one may expect. The only deviation
from the expected tendency is the desorption enthalpy value for the sample with the highest cerium
content. This phenomenon will be discussed later in the section related to the chemical composition
of the samples. Here, it should be however underlined that the obtained value for enthalpy (higher
enthalpy for higher equilibrium pressure) proves that, for this sample, the van ’t Hoff’s plot-based
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method seems to be unreliable, as there is no physical explanation for such tendency. By that reason,
the enthalpy in case of such samples should be rather measured directly by high-pressure DSC.

Table 2. Determined equilibrium pressures of the LaNi5, La0.91Ce0.09Ni5, La0.75Ce0.25Ni5 and
La0.5Ce0.5Ni5 samples.

Sample
La1-xCexNi5

Peq_abs
35 ◦C
(bar)

Peq_abs
40 ◦C
(bar)

Peq_abs
45 ◦C
(bar)

Peq_des
35 ◦C
(bar)

Peq_des
40 ◦C
(bar)

Peq_des
45 ◦C
(bar)

LaNi5 3.35 4.09 4.79 2.36 2.91 3.59
La0.91Ce0.09Ni5 5.56 6.70 7.92 3.29 3.83 4.85
La0.75Ce0.25Ni5 12.44 14.66 17.30 5.01 5.87 7.22
La0.5Ce0.5Ni5 43.21 48.74 56.88 11.52 14.26 17.54

Table 3. Absorption and desorption enthalpies and entropies estimated based on van ’t Hoff’s plots for
the LaNi5, La0.91Ce0.09Ni5, La0.75Ce0.25Ni5 and La0.5Ce0.5Ni5 samples.

Sample
La1-xCexNi5

∆Habs
(kJ·mol−1·H2)

∆Hdes
(kJ·mol−1·H2)

∆Sabs
(J·mol−1·K−1·H2)

∆Sdes
(J·mol−1·K−1·H2)

LaNi5 −29.08 34.09 −104.47 117.78
La0.91Ce0.09Ni5 −28.79 31.69 −107.73 112.65
La0.75Ce0.25Ni5 −26.84 29.74 −108.08 109.84
La0.5Ce0.5Ni5 −22.37 34.29 −103.87 131.60

3.3. Microstructure and Chemical Compositions

To support the results presented above, microstructural observations and chemical composition
measurements were obtained. Figure 4 shows the microphotographs (SEM; BSE mode) of the
metallographic cross-sections of the investigated samples. Samples (a) LaNi5, (b) La0.91Ce0.09Ni5 and
(c) La0.75Ce0.25Ni5 show very good homogeneity with very few visible areas demonstrating slightly
different compositions (segregation). Both the amount of the areas, as well as the degree of segregation,
are not sufficient to be visible as a second phase in the XRD pattern.
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Figure 4. SEM images (BSE mode) of the cross-sections for the powder particles of: (a) LaNi5,
(b) La0.91Ce0.09Ni5, (c) La0.75Ce0.25Ni5 and (d) La0.5Ce0.5Ni5.

In fact, the areas are very rare in the sample, and the photographs presented are made to show
their occurrence rather than to show the real amount that can be found in the sample (i.e., strong
overrepresentation in the photos compared to the actual sample volume). The sample described as
La0.5Ce0.5Ni5 (Figure 4d) shows a slightly different appearance. What was observed in the XRD spectra
can be directly observed in the micrographs. The presence of at least two distinct phases is evident.
The characteristic shapes and occurrences within the volumes of the particles suggest that those phases
are formed during the crystallization of the alloy. The phase that can be seen as light gray is likely
to be a phase with a lower melting point (this can be judged by the morphology) and knowing the
composition of the alloy must contain a lower amount of nickel compared to the dark-gray phase.
To shed more light on this, chemical composition maps were obtained, showing the distribution of
La, Ce and Ni (Figure 5). As suspected, the light-gray areas are nickel-deficient while having more
lanthanum. The cerium distribution is very similar in the whole investigated region.

To show this even more directly, a chemical composition line scan was obtained and is presented
in Figure 6. The error bars presented in the graph are the bars presenting the uncertainty of the
measurements; however, they only consider the statistical error due to the number of counts obtained
for each point. It must be strongly emphasized that the uncertainty of the EDS method itself is likely to
be much larger than only the uncertainty caused by statistical error. For this reason, in our opinion,
all the EDS results should be treated more qualitatively than quantitatively, although we provide the
values of the content on the Y-axis. The reason for the above is a lack of proper quality standards
for alloys with compositions similar to the ones investigated; thus, the settings used during the EDS
investigation are settings that are more accurate for materials with classical structures rather than these
kinds of alloys.
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To date, one question remains unsolved. The desorption enthalpy of the sample with the highest
cerium content is found to be definitely higher (in negative values) than the values for all other
samples. A careful check of the obtained data and repeated results did not show any evidence for any
experimental error causing this behavior. In such a case, the only explanation for this phenomenon is
that (as shown above) the chemical segregation (not only cerium but also nickel) causes this unexpected
behavior in the sample. Keeping in mind the results obtained by Buschow et al. [11], where they
show the differences in the alloy behavior just by changing the nickel content, one must admit that
nickel deficiency and a two-phase character of the sample may cause the problem when estimating the
decomposition enthalpy by the van ’t Hoff plot method. The differences in the nickel content in those
two phases (to be more precise, nickel deficit in the unknown phase) is evident (Figure 6) and even
more obvious than the slight change of the lanthanum to cerium ratio.
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Figure 6. Chemical composition line scan for the La0.5Ce0.5Ni5 sample: (a) BSE image of the investigated
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From a practical point of view (to obtain pressure data for the design of a hydrogen storage
container), however, the equilibrium pressures at specified temperatures are more practical/direct
information that can be directly used by the constructor than the enthalpy value itself. On the other
hand, even in practical applications, the enthalpy of formation is important to be able to predict the total
amount of heat that needs to be removed from the container effectively to perform the hydrogenation
(not even mentioning the thermal conductivity of the powder [37] and hydrogenation kinetics). It is also
worthy to note that properly measured values of the enthalpy of formation can be used to extrapolate
the equilibrium pressure values in the chosen temperature, which can be further used for the modeling
of the heat exchange and design of the storage tanks but, also, more importantly, to compare the results
with other researchers.

3.4. Microhardness

Microhardness tests were performed as a supplementary result to the previously presented data.
Since alloys are usually used as functional materials, microhardness is usually not of great importance
and, to the best of our knowledge, has not been presented in the literature before. In some cases,
however, they can serve as supplementary data to other observations. In this case, the idea is to
check this in order to be able to predict the wear behavior of the material and, thus, its possible
use as a hydrogen storage vessel with improved heat exchange efficiency (by powder movement
within the vessel–patent nr PL (11) 231933). The results obtained with a Vickers indenter and a 50-g
load are presented in Table 4 and Figure 7. A statistically significant increase in hardness is observed
with increasing cerium content in the samples. Again, the trend is changed for the sample with the
highest cerium content. The measurements are obtained from indentations made in obviously different
regions that correspond to the two phases. The low microhardness values obtained for both phases in
comparison to the sample with 25% cerium, despite the evident cerium content in the whole sample,
prove two things. First, it is very likely that the hardness of CeNi5 is lower than that of any of the
LaCeNi samples, and the maximum hardness value is observed somewhere between a cerium content
of 25% and 50%. Second, the second phase, which is very similar structurally and compositionally to
the dominant phase, is significantly different (perhaps due to the nickel deficiency), which is more
than obvious when observing such great differences in its hardness compared to any other phase in the
investigated spectrum of samples. The values obtained for the chosen alloys are not very high and
remain in a range typical for most intermetallic alloys.
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Table 4. Average of the measured microhardness values for the LaNi5, La0.91Ce0.09Ni5, La0.75Ce0.25Ni5
and La0.5Ce0.5Ni5 samples.

SampleLa1-xCexNi5 HV 0.05(Vickers Hardness)

LaNi5 631 ± 23
La0.91Ce0.09Ni5 661 ± 18
La0.75Ce0.25Ni5 703 ± 19

La0.5Ce0.5Ni5 681 ± 44; 582 ± 10
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4. Conclusions

Investigations of La-Ce-Ni alloys are presented. A cerium addition causes an increase in the
equilibrium pressures of hydrogen absorption and desorption. Cerium substitutes lanthanum in a
LaNi5 lattice, causing the lattice to shrink. The single-phase structure of the alloys remains for low
cerium concentrations; however, for high cerium contents, a two-phase structure is observed. The
enthalpy of hydride formation for the chosen alloys are calculated based on their equilibrium pressures,
and they decrease with increasing cerium contents (hydride becomes less stable). The two-phase
structure obtained with the highest cerium content influences the indirect measurement of the enthalpy
of decomposition (by van ’t Hoff plot); thus, the obtained value does not correspond well with the
obtained properties (low stability and high equilibrium pressures). A chemical composition analysis
and phase analysis confirm that, for the highest cerium content, the commercially available alloy is
characterized by chemical composition segregation (which can probably be removed by a proper
heat treatment), resulting in a change in properties and a slight lowering of the maximum amount of
hydrogen that can be stored in the sample.
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