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Abstract: Rural areas of developing countries often have poor energy infrastructure and so rely on a
very local supply. A local energy supply in rural Uganda frequently has problems such as limited
accessibility, unreliability, a high expense, harmful to health and deforestation. By carbonizing waste
biomass streams, available to those in rural areas of developing countries through a solar resource, it
would be possible to create stable, reliable fuels with more consistent calorific values. An energy
demand calculator is reported to assess the different energy demands of various thermochemical
processes that can be used to create biofuel. The energy demand calculator then relates the energy
required to the area of solar collector required for an integrated system. Pyrolysis was shown to
require the least amount of energy to process 1 kg of biomass when compared to steam treatment and
hydrothermal carbonization (HTC). This was due to the large amount of water required for steam
treatment and HTC. A resource assessment of Uganda is reported, to which the energy demand
calculator has been applied. Quantitative data are presented for agricultural residues, forestry
residues, animal manure and aquatic weeds found within Uganda. In application to rural areas of
Uganda, a linear Fresnel HTC integration shows to be the most practical fit. Integration with a low
temperature steam treatment would require more solar input for less carbonization due to the energy
required to vaporize liquid water.

Keywords: biomass; energy resource assessment; developing countries; concentrated solar;
thermochemical

1. Introduction

Those living in rural areas of developing nations face many daily problems, including but not
limited to, having access to a clean cook fuel with an appropriate energy content. Women and children
are often forced to spend multiple hours a day trekking for firewood and other materials to burn for
cooking. Inefficient burning of inappropriate material leads to health issues, time spent collecting these
materials is time away from education and earning a living. By carbonizing biomass to create a solid
fuel that can be used for cooking, it would be possible to help in solving the above problems faced
daily for those living in rural areas of developing nations. To aid the integration of concentrated solar
technology with the thermochemical techniques used to create a biofuel, an energy demand calculator
has been made and applied to Uganda. Uganda was selected as the case study nation due to the strong
links between the University of Leeds and the Centre for Research in Energy and Energy Conservation
(CREEC) based at the Makerere University, Kampala, Uganda.

The integration of biomass and concentrated solar technology (CST) has been proven successful
multiple times shown within literature. With enough solar radiation to power the earth 4200 times,
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and multiple ways to thermochemically treat biomass into a fuel, integration of the two is only logical.
Solar pyrolysis is not a new nor a novel technology and is described many times within literature.
It has been present in academia since the 1980s, using solar simulators (furnace images) and elliptic
mirrors as a source of radiation [1]. Solar pyrolysis is defined as an endothermic process of converting
biomass into an inert atmosphere in which the required heat for the reaction to occur is provided
by concentrated solar energy [2]. Solar pyrolysis thus allows for solar energy to be stored within a
chemical compound. Throughout literature, it has become apparent that solar pyrolysis can occur via
two techniques, that being through either direct or indirect radiation. Either biomass is directly heated
by concentrated solar radiation through either a borosilicate or quartz glass, or is indirectly heated via
convection or a heat transferring fluid as shown by R. Adinberg et al. (2014) [1,3]. Indirect reactors
have external walls heated by concentrated solar radiation. Conduction through the walls heats the
reactants. Most indirect reactors are catalytic tubular reformers, whereby a gas flows across a heated
catalyst [4,5]. Double cavity reactors have recently been developed for thermochemical purposes. In
the double cavity reactor, the reaction chamber is physically separated from the reactor that receives
the solar radiation [4,6].

There has been work shown in literature assessing various solar pyrolysis techniques, temperatures,
hold times, and other variables, allowing a compilation of the key research challenges that lie ahead
with the technology. Morales et al. (2014) studied the effect of solar pyrolysis on orange peel [2]. The
study was conducted with the feedstock directly heated within a borosilicate glass tube with helium
as the gas carrier as part of a parabolic trough array. The irradiance profile of the parabolic trough
was plotted using the SolTrace software provided by the [US] National Renewable Energy Laboratory
(NREL). The parabolic trough had an aperture width of 1.3 m and a reflectivity of 0.94. The borosilicate
glass receiver had an external diameter of 2 inches. Peak solar irradiance during the experiment was
25,084 W/m?, with the average being 12,553 W/m?. During pyrolysis of the orange peel, temperatures
averaged 290 °C with a peak temperature of 495 °C. Under these conditions the orange peel lost 79.08%
of its mass producing mainly a liquid bio-oil. Of the product, 77.64% was liquid, 1.43% was gas and the
remainder was char. The results for the solar pyrolysis of the orange peel compared well to literature
results of an electric furnace based pyrolysis of orange peel [2]. S. Morales went on to after reviewing
his work to note that with an increase in aperture width, the maximum temperature and efficiency of
his process would increase [2].

Zeng et al. (2014) investigated the solar pyrolysis of wood in a lab-scale solar reactor, assessing
the influence of temperature and gas flow. The pyrolysis temperature ranged from 600 to 2000 °C
with a hold time of 12 min, and argon flow rates between 3 Nl/min and 12 Nl/min. The heating rate
was constant at 50 °C/s across all experiments conducted [7]. Zeng et al. reported on how the use
of arc image furnaces in literature are pronounced for providing a higher liquid yield compared to
conventional furnaces. Liquid yield unlike gas and char yield are not significantly dependent on the
heat flux density [7]. K. Zeng et al. however were studying solar pyrolysis conditions in order to gain
a high gas yield from Beechwood samples. The results showed that for the highest possible gas yield,
the temperature needs to be as high as possible. Gas yield constantly increased across the experiments,
with a final yield of 51%, but the biggest increase occurred between 600 °C-1000 °C (15-37%). Liquid
yield and char yield both decreased with increasing temperature. At 600 °C the liquid yield was 71%
dropping to 52% at 1000 °C and further to 41% at 2000 °C. The char remained low throughout the
experiment dropping from 14%—-8% [7]. Gas flow rate had the opposite effect. At 1200 °C increasing
the argon flow rate within the reaction chamber leads to a slight decrease in gas yield and an increase
in liquid and char yield. This result would be due to the removal rate of products from the hot zone of
the reactor. Zeng et al. has helped show that the main products to be produced form solar pyrolysis
are either a liquid or a gas [7]. Char yield never passed 15% within the experiments and so this would
need to be taken into consideration if taking this technology forward.

Li et al. conducted experiments similar to K. Zeng et al. as outlined above. Li et al. attempted to
produce a pyrolysis gas from pine sawdust, peach pit, grape stalk and grape marc within a temperature
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range of 800 °C-2000 °C with the use of a solar dish. As expected, gas yield increased with increasing
temperature and temperature rate, with liquid yield and char yield reacting oppositely. Li et al. did
note that the feedstocks with a higher lignin content provided a higher char yield [8]. In a review
conducted by Chintala (2018), the process variables of solar biomass were investigated. Chintala
confirmed through citing literature that by increasing the reaction temperature the gas yield increased.
Chintala also investigated the effects of biomass particle size and claimed that a larger particle size will
increase char yield [9].

Two examples of a high solid yield produced by solar pyrolysis, which are perhaps of a higher
relevancy to this study, include work conducted by Ramos et al. and Hans et al. Ramos was
able to produce 70 g of biochar from 180 g of wood implying a char yield of 38%. His parabolic
solar concentrator had a surface area of 1.37 m? and its receiver hit temperatures of above 270 °C.
For the conversion to efficiently take place, the process occurred over 5 h during peak day time
hours [10]. Hans et al. also managed to produce a solid fuel. Hans et al. took agricultural wastes
such as wheat straw and pyrolyzed them in a solar driven reactor for 90 min at 500 °C. The solid fuel
produced gained energy density, increasing it from 16.9 M]/kg to 24-28 MJ/kg. Details of his design are
based in the reference Hans et al. [11].

There are limited reports of modelling solar pyrolysis in the literature, however Sanchez et al.
(2018) has published a useful system for modelling and evaluation the thermochemical technique [12].
Sanchez et al. breaks the model down into two scenarios (i) heating of the biomass from an ambient
to an operating temperature and (ii) the pyrolysis reactions at the operating temperature, details
of which can be found in the reference Sanchez et al. [12]. The model aims to predict the length
needed for the pyrolysis reactor for a set feed rate. By varying the operating temperature and hold
times, the optimum reactor size can be predicted. The equations for the model are outlined in the
reference and the simulation software used was MatLAB. Sanchez et al. ran the model based off of
data from Seville, Spain. During optimum conditions the model predicted a maximum char yield
from a woody biomass feedstock to be 40.8 wt%. However the system would not constantly be able
to run at optimum conditions, leaving the average annual yield to be a meek 10.1 wt% [12]. The
model and the predictions made by Sanchez et al. are observed to be accurate and could be applied
to the future work of this thesis. The design of the system that Sanchez is basing the model off from
however does not seem optimum. The use of better materials and a parabolic dish or trough instead of
linear Fresnel would hopefully improve the efficiency during non-optimum conditions. Improving
the efficiency for optimum conditions would also increase the overall operating temperature and
therefore decrease the char yield—which for the production of a solid fuel would be detrimental. Work
conducted by Zeng et al., Li et al. and Soria et al. provided a useful solution for this. By creating
effectively a shutter system from a carbon composite, they were able to have a larger control of the
operating temperature [7].

Developing solar pyrolysis may not the technology of choice for this work, but some of its
principles can be carried on. For a high char yield it would seem that a slow pyrolysis under cooler
conditions would be optimal. This would be beneficial as it would help with the simplicity of the
design. Building a solar collector to reach temperatures between 200-600 °C would be easier and
more economically viable compared to one that needed to reach 2000 °C. Little research has been
conducted in the field of integrating solar with lower temperature hydrothermal treatments, but will
be investigated in this work.

As can be seen through the review of literature the design of the pyrolysis system is key to what
operating conditions can be achieved, and thus what pyrolysis products can be produced. Chintala
summarized the key research challenges in their review. These challenges are as follow [9]:

e  Uniform distribution of the heat flux

e  Heat losses from the surface of the reactor/high wind speeds

e  High capital costs

e  Reactor design for effective thermochemical conversion, including reactor material
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e  Variation in solar flux (time of day/season)

However, by modeling a variety of options before setting on a design choice the challenges may
be overcome. By selecting the correct solar reactor type, either direct or indirect with respect to the
product required and building the system from the correct materials, the system should be as efficient
as possible. An efficient system will reduce the overall capital costs (though they may still be high)
as there will be no wasted materials [13]. For a small scale system, the solar reactor may only be
required to run during peak hours and so the variation in solar flux may be a non-issue. In a large scale
reactor, molten salt technology and solar thermal storage may play a role to account for the varying
solar conditions.

This report provides a method for calculating the energy demand required for a thermochemical
process, and relating that to the area of a solar collector required to produce the needed energy
input. The energy demand assessment will report on the energy requirements for the thermochemical
technologies that are possible for integration with a solar resource. A theoretical thermodynamic
approach following the principals of the first law of thermodynamics forms the basis of the calculator.
The energy demand calculator is then applied to Uganda. A quantitative and qualitative review of
the waste biomass in Uganda is also reported. It is essential that the feedstock selected must be a
waste stream and not disrupt current practice. The qualitative biomass review of Uganda will form
the basis on to which the quantitative review of the biomass will be formed. The quantitative review
will normalize the biomass by reporting the higher heating values (HHVs), showing which biomass
sources will make for a feasible feedstock within Uganda.

2. Energy Demands of the Integrated Approach to a Concentrated Solar Powered
Thermochemical Process for the Production of a Biofuel

2.1. Methodology of the Energy Demand Calculator

The energy demand calculator created has the ability to estimate either the area of the solar
collector required to process a set mass of biomass in a given time, the mass of biomass that can be
processed in a set time with set solar collector area or the time required to process a given mass of
biomass with a set collector area. The energy demand calculator is based on Equations (1)—(4):
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The symbols and units for the expressions can be shown in Table 1.

Table 1. Symbol, definitions and units for Equations (1)—(4).

Symbol Definition Unit
A Area of mirror m?
P Power W
n Efficiency %
G Solar Irradiance W/m?2
t Time min
Q Heat ]
m mass Kg
T Temperature K
C Specific heat capacity J/kg/K
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The model is able to deal with various thermochemical techniques such as steam treatment, HTC
and pyrolysis. When steam treatment is required the heat of vaporization for water must be included.
Heat of vaporization is not included for HTC or pyrolysis as water is never vaporized. During steam
treatment only water is included in the mixture as the solar collector is only required to boil the water
to produce steam, vice versa for pyrolysis, only biomass is included in the mixture. HTC requires
the heating of biomass plus water at a ratio that is able to be input into the calculator. The calculator
requires the specific heat capacity of water, the biomass (if it is steam treatment, specific heat of the
biomass is 0) and the operating temperature. The other variables are able to be entered depending
on the data acquired and the data required. Heat of HTC and pyrolysis are too be included for their
respective calculations. The ‘Enthalpy Value’ calculator estimates the value to be included within the
model. Current enthalpy data have been included within the model, however this can be varied.

2.2. Assumptions of the Calculator

There are a number of assumptions that have been made to allow this calculator to work, and to
allow for a comparison of technologies. The system the work is based on is a small-scale system to be
used in rural communities in developing countries i.e., rural Uganda. The technology will be simple
and relatively low tech. Thermal efficiencies/heat transfer/heat losses and other detailed formulas
and data have not been included within the calculator, instead an overall efficiency % is to be input
into the calculator. The assumption is that the losses will be similar whether the system be for steam
treatment, HTC or pyrolysis. We are assuming for a constant solar irradiance, whereas in reality as
proven by monitoring the solar irradiance in Uganda, it does fluctuate. The solar irradiance input
should be set as the minimum solar irradiance required for the system to work. The system is only
accounting for the energy required for the thermochemical process, it is not taking into account pre or
post processing. Whether a dry or wet feedstock is required, drying pre or post processing is assumed
to be done in air using the sun’s natural light to do so. During the qualitative review of Ugandan
biomass, coffee beans were observed to be drying on a black material during the day time. The biomass
or biofuel is assumed to be dried under these conditions and so no extra energy input is required. The
final assumption would be that the mixture is completely heterogeneous, fully mixed, and heating is
uniform and complete. All of the mixture is to be processed.

2.3. Example Scenarios of the Energy Demand Calculator

An example scenario has been put together to show example results for the energy demand model.
The example is based off of processing 1 kg of biomass with a specific heat capacity of 2000 J/K/kg (an
example specific heat capacity value). Table 2 shows the variables that have been kept the same for
the example model. Assuming a biomass to water ratio of 1:10 for steam treatment and HTC, as well
as a solar irradiance of 900 W/m? for 6 h. These values are all able to be changed within the model.
Table 3 shows the variables that have been altered subject to which thermochemical technology is
being modelled. The heat of reaction values have been taken from literature and are able to be altered
within the model [14,15].

Table 2. Constant variables for the energy demand example simulation.

Variable Value
Mass of biomass (kg) 1
Biomass to water ratio (1:x) 10
Mass of water (kg) 10
Cp of example biomass (J/kg/K) 2000
Cp of water (J/kg/K) 4186
Temperature Start (K) 293
Time (mins) 360
SI (W/m2) 900
Efficiency (%) 25

Width (m) 1
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Table 3. Dependent variables of the energy demand example simulation.

Variable Value
Steam Temperature End (K) 373
HTC Temperature End (K) 573
Pyrolysis Temperature End (K) 773
Steam Additional Heat Value (M]/K/kg) 2.256
HTC Additional Heat Value (MJ/K/kg) -24
Pyrolysis Additional Heat Value (MJ/K/kg) 3.0

Results to this example of how the model operates are shown in Table 4.

Table 4. Results of the example energy demand simulation.

Symbol Steam HTC Pyrolysis
QM]) 25.9 9.88 3.96
E (kWh) 7.197 2.745 1.100
P (kW) 1.199 0.457 0.183
A 100 (m2) 1.333 0.508 0.204
A eff (m?) 5.331 2.033 0.815
L (m) 5.331 2.033 0.815

From the results shown in Table 4 it is clear that the energy required to vaporize the 10 kg of
water to produce steam is significantly higher than the energy required for HTC and pyrolysis. The
higher energy demand of the process leads to a larger collector area required, and with a given width
of 1 m for a parabolic trough collector, a longer trough is required. One of the main factors effecting the
results are the additional heat values. The heat of vaporization for 10 kg of water is approximately a
factor of 10 larger than the given heat of pyrolysis for 1 kg of biomass. Pyrolysis has been shown to
require the smallest area of collector. The main factor attributing to this is the mass of water required
for HTC and steam treatment of biomass.

Example 2 shows the process in reverse. Finding how much biomass can be produced with a
fixed collector size. Constant variables are shown in Table 5 and the dependent variables are kept
constant with Table 3.

Table 5. Constant variables for the energy demand in the second example simulation.

Variable Value
Biomass to water ratio (1:x) 10
Cp of example biomass (J/kg/K) 2000
Cp of water (J/kg/K) 4186
Temperature Start (K) 293
Time (mins) 360
SI (W/m?) 900
Efficiency (%) 25
Width (m) 1
Length (m) 5.33

Table 6 shows the results produced by the calculator with a set collector size which are applicable
for all thermochemical process. A value of 5.33 m? has been selected to show that this will result in 1 kg
of biomass being able to be treated via a steam treatment. The results show that under the conditions
shown in Table 5, 25.9 M] of energy are able to be produced.
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Table 6. Group results from the second example simulation.

Variable Value
A eff (m?2) 5.33
A 100 (m?) 1.33

P (kW) 1.20

E (KWh) 7.20

QM) 25.90

Table 7 shows the amount of biomass than can be processed depending on which thermochemical
treatment is used. The specific heat capacity value varies between processes. Steam treatment only
requires the heating of water, so the heat capacity of water is used. Equally pyrolysis is the heating of
dry biomass, so the specific heat value of biomass is used (same example value). HTC is a mixture of
water and biomass as defined by the user, in this case 10:1.

Table 7. Independent results from the second example energy demand simulation.

Variable Steam HTC Pyrolysis
AT (K) 80 280 480
Cp mixture (J/kg/K) 4186 3987 2000
AH (MJ/kg) 2.256 -24 3.0
Mass of biomass total (kg) 1 2.62 6.54

From Table 7, itis clear that under the set conditions of the example, the 25.9 M] will be able to steam
treat 1 kg of biomass, hydrothermally carbonize 2.62 kg of biomass or pyrolyse 6.54 kg of biomass.

3. Overview of the Qualitative Assessment of Biomass in Uganda

The biomass assessment of Uganda reports on what source and use of energy is most needed by
those in rural areas, what biomass is readily available, how it is used, and what goes to waste. The aim
of the assessment was to discover if there was a readily available biomass waste stream that could be
used to produce a useful fuel.

In order to achieve an overall and fair assessment of the country, the maximum distance was
covered within the time available. Homesteads, schools, farms, plantations and factories were all
visited, as well as general observations made. From interviews and observations with the local people,
especially those in schools, a cook fuel/solid fuel for heat would ultimately be the best source of fuel to
provide Uganda and other developing countries. Currently the main source of fuel used is untreated
forest wood which has a number of disadvantages; deforestation, poor efficiency and high emissions.
The potential feedstocks that were identified from the assessment of Uganda include: agricultural and
forestry residue (including water hyacinth), sewage sludge and municipal solid waste (MSW). These
feedstocks were shown to be largely going to waste, suggesting that if incorporated into the system
they would not currently disrupt the lifestyles of the local people.

Literature assessment of the thermochemical technology available and comparing that with
concentrated solar technology showed that the possible and practical integration options included a
hydrothermal/steam treatment or pyrolysis with either a linear Fresnel or parabolic trough.

4. Quantitative Analysis of the Energy Stored within Waste Biomass Available in Uganda

4.1. Agriculture Residue

Agricultural data have been sourced from the Ugandan Bureau of Statistics and are reported in
metric tonnes X 10°. Table 8 reports the five highest agriculture crops grown. Waste from the various
crops has then been calculated by subtracting the edible part of the crops [16].
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Table 8. Top five reported crops grown in Uganda with their waste % and resulting waste from crop
available for energy use.

Biomass National Production Waste % Solid Waste
(Metric Tons X 10°) (Metric Tons x 10°)
Plantain 4.297 40 1.719
Cassava 2.894 30 0.868
Maize 2.362 40 0.945
Sweet potato 1.819 7 0.127
Beans 0.929 10 0.093

Table 8 shows plantain to be significantly higher than the other four crops, almost double the
second largest waste producer maize. Sweet potato and beans, though largely produced actually
produce very little waste. The 7% waste production from sweet potato is attributed to the skin and
other fibers produced during the flour production process. It has the potential to be eaten whole and
therefore produce even less waste.

4.2. Forestry Residue

It is unfeasible to produce an accurate and precise amount of forestry residue available in Uganda.
However, the amount of forest in Uganda is known. In 2005 the UN reported on the amount of forest
in Uganda. The total land cover of all forest in Uganda in 2005 was 18% (3.6 million hectares), down
from 24% in 1990 [17,18]. The results of the report are currently 14 years out of date and therefore
are likely to have decreased by a significant amount due to constant deforestation within the country.
From the report, private land owners with large plantations may benefit from a concentrated solar
driven thermochemical production of biofuel with forestry residue as a feedstock. This would include
private owners such as schools and manufactures whom rely on firewood.

The global forest watch reports that in 2010 Uganda had a tree cover of 5.61 million hectares,
equivalent to 23% of land cover. In 2015 the global forest watch reports Uganda to have 4.87 million
hectares of forest land. Their data were taken from ESA Climate Change Initiative—Land Cover led
by U. C. Louvain (2017) and can be taken as more reliable. The data are collected through the use of
google maps and NASA imaging [19]. Figure 1 may however show a better representation of how the
forest is split within Uganda.

2.5

=
"

[uny

Hectares x108

0.5

Local Forest Reserves  Central Forest Wildlife National Forest Private Land
Reserves Conservation Areas Authority + Uganda
Wildlife Authority

Figure 1. Forest area in Uganda.
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4.3. Animal Waste

As with the forestry residue in Uganda, the precise number of cattle and other farmed animals
cannot be accurately reported [20]. However, the amount of waste produced per animal can be reported
and is so. The data shown in Figure 2 report the average waste per 1000 kg of live animal mass [21].
The waste produced can vary greatly depending on a number of factors such as animal breed, diet,
animal age, animal environment and animal productivity [20-22]. The Ankole-Watusi is the most
prevalent cattle type in Uganda and is on the larger side of cattle breeds weighing over 600 kg on
average fully grown and would produce similar manure to the dairy cattle. Two of the Ankole-Watusi
would be able to produce the manure shown in Figure 2. The large black pig is most prevalent in
Uganda. Weighing over 300 kg fully grown, four large black pigs should produce a similar amount of
manure to two Ankole-Watusi.
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M Total Manure (kg) Urine (kg) Density (kg/m3) Total Solids (kg) x1072 W Volatile Solids (kg)

Figure 2. Fresh manure production and characteristics per 1000 kg of live animal mass per day.

4.4. Water Hyacinth

Water hyacinth (Eichhornia crassipes (Mart.) Solms) is a free floating herb that resides in fresh water
ecosystems. The herb generally grows to 40 cm in length, but it can reach heights of 1 m. The ideal
conditions for water hyacinth growth include a pH of 7, temperatures between 15-30 °C, low salinity
(fresh water), plenty of sun light availability, high availability of nitrogen/phosphorous/potassium
within the water and low disturbance. Under these ideal conditions, water hyacinth is able to double
in water coverage in between 615 days. Water hyacinth’s impressive reproduction rate leads it to be
easily farmed. In China farmed fertilized irrigation channels were able to yield up to 750 tonnes/ha/year
(extrapolated data). A rate of 200 tonnes/ha/year is much more likely in the tropics i.e., Uganda [23,24].

The quantity of water hyacinth available in Uganda is uncertain. Uganda has 4,152,000 hectares
of open water/swamp area, more than enough for water hyacinth farming or for natural growth.
Closed ponds however would make the most ideal farms to prevent the spread of water hyacinth to
unwanted areas. Uganda has experienced problems with water hyacinth in the past, with some areas
of Lake Victoria becoming very over run with the herb. An uncontrolled spread of the herb has many
detrimental effects to the ecosystem and the people who rely on it such as; obstruction of water ways
for boats and irrigation, prevention of fishing through the formation of a thick mat and through being
lethal to fish by preventing light and oxygen reaching them and being a breeding ground for disease
by hosting disease carrying insects. Water hyacinth can be controlled using mechanical, chemical and
biological methods. Mechanical, though slow and expensive is the preferred method as the herb is
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then able to be collected and used. Chemical control with the use of herbicides is an effective method
but has many detrimental effects for the environment. Biological control with insects and fungi is
available, but only in use with other control methods [23,24].

4.5. Energy Content Available within Common Types of Biomass Found within Uganda

Calorific value represents the energy content of biomass and is measured by determining the heat
produced during complete combustion. Figure 3 represents a comparison of HHV literature values for
common biomass found within Uganda, that are the focus of this report [25,26].
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Figure 3. Characteristics of common Ugandan biomass [dry basis].

The HHYV values of biomass shown in Figure 3 range from approximately 12-20 MJ/kg. Agricultural
waste will average an approximate 15-20 MJ/kg with forestry biomass being towards 20 MJ/kg on a
dry basis. HHV values for manure have been reported between 13-20 MJ/kg [25-27].

Upgrading biomass through thermochemical treatments such as HTC and pyrolysis increase
the HHV. Uzun et al. (2017) reports a corn cob has a HHV of 18.77 MJ/kg as shown in Figure 3.
Machado et al. (2018) reports that after HTC treatment with subcritical water at 250 °C the HHV
of corn stover rose to 24.57 M]/kg [28]. 24.74 M]/kg was reported by S. Hoekman et al. (2013) [29].
Raveendran et al. (1996) pyrolysed corn cob at 500 °C within a packed bed pyrolyser producing a HHV
of 28.6 M]/kg or 26.4 M]/kg from de-ashed corn cob [30]. These values compare with the IEA definition
of sub-bituminous coal which reports to have a HHV of between 17.4-23.9 MJ/kg [31].

5. Calculator Utilisation

The energy demand calculator is a tool which theoretically determines the amount of energy
required or produced from the solar/biomass processes. It does not take into account the practicality of
solutions. For example, wanting to produce a solar pyrolysis system requiring high temperatures of
500 °C in a rural location of a developing country would require huge amounts of mirrors. Solar energy
is dilute, whilst chemical energy is concentrated, thus you need a vast amount of solar energy to make
a significant amount of chemical energy. This being the primary reason as to why high temperature
thermochemical treatments such as pyrolysis (or gasification) not being a practical solution. A large
central receiver (power tower) solar system would be required to generate the heat needed for the
process. This would increase the cost and the complexity of the system drastically. With that stated
a low temperature steam treatment (with a low biomass to water ratio) or low temperature HTC
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(ideally a low water to biomass ratio) are ideal thermochemical treatments. With temperatures between
100-250 °C a simple linear Fresnel concentrating method will be able to meet the temperatures required
by a low temperature technique.

Uganda has been selected as the case study for this report, the model can be made applicable to
all biomass types. Shown below are five practical examples based on common waste biomass streams
from Uganda. Each example aims to hydrothermally carbonise 10/15/20 kg of biomass sample at
200 °C in a location with 750 W/m? of direct irradiance. Table 9 shows the constant input variables and
Table 10 shows the specific heat capacity of the different biomasses used for comparison. However, it
should be noted that heat capacities do vary within biomasses and will be dependent on how much
moisture is in the biomass. Reported heat capacities are approximations for an example and lab tested
heat capacities should be used for live projects.

Table 9. Constant variables for biomass comparison.

Variable Value
Mass of biomass (kg) 10/15/20
Biomass to water ratio (1:x) 10
Mass of water (kg) 100
Cp of water (J/kg K) 4186
Temperature start (K) 293
Temperature of HTC (K) 493
Time (mins) 360
SI (W/m?2) 750
Efficiency (%) 25
Mirror collector width (m) 3

Table 10. Specific heat capacities of common biomasses in their representative countries.

Country Biomass Specific Heat Capacity (J/kg/K)
Uganda Rice husk 1377 [32]
Uganda Sugar cane (bagasse) 1500 [33]
Uganda Dairy manure 1993 [34]
Uganda Wood 1700 [35]
Uganda Water hyacinth 1455 [36]

Figure 4 shows the length of mirror required for the process. As HTC requires a large body of
water in the system, a ratio of 1:10, the specific heat capacity and therefore biomass type has a very
small effect on the length of mirror required. The mass has a much greater effect on the amount of
energy required as shown in Figure 4 Keeping the constant variables, the same, but increasing the mass
of biomass to 15 kg, it is clear that mass has a much larger affect than biomass type. As with every
extra 1 kg of biomass added to the system, 10 kg of water is required under current HTC practices.

The results shown in Figure 4 show that for a solar driven HTC process, the mass of biomass
being processed has a significantly greater effect on the area of mirror collector required, than the type
of biomass being processed.
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Water hyacinth
Wood

Dairy manure
Bagasse

Rice husks

Mirror collector length (m) [width set at 3m]

B 20kg of Biomass M 15kg of Biomass B 10kg of Biomass

Figure 4. Effect of biomass and biomass mass on the length of mirror required.

6. Conclusions

A calculator has been produced to predict the area of the solar collector required to process a given
mass of biomass in a given time, the amount of biomass that can be processed in a set time with set
solar collector area or the time required to process a given mass of biomass with a set collector area. The
basis of the model is formed from Equations (1)-(3) shown in Section 2.1. A thermodynamic approach
with an efficiency factor was deemed as the most practical method for the model. Comparing steam
treatment, HTC and pyrolysis in two examples, pyrolysis was shown to be the least energy demanding
process. The main factor contributing to this was the amount of water that required heating during
steam treatment and HTC. Though pyrolysis is the least energy demanding process, the feedstock
selected and practicality should be considered before which thermochemical process is selected for an
integrated system.

Uganda is a country rich in biomass waste. From the quantitative review accessing the amount of
biomass waste available, it is shown that from the top five most produced crops in Uganda, there is
approximately 3.75 x 10° metric tons of waste available. The majority of this waste is left to rot or to go
back into the soil if the waste is produced at the farm. Agricultural waste will average an approximate
15-20 MJ/kg as shown in Figure 2. There are 2.3 million hectares of private forest land in Uganda.
Forestry residue has been reported to have a HHV of approximately 20 MJ/kg. Within the private
forest available, there will be a significant amount of forestry residue available that may be utilized for
biofuel. From the qualitative review of biomass, it was stated that the majority of small communities
owned their own livestock (individuals, collection of families, schools). Cattle, swine and chicken
manure are shown in Table 4 to have the greatest potential as a feedstock. Though this will vary greatly
depending on the conditions the animals are kept in. Conditions of the animals will alter the HHV of
their waste as literature reports did vary between 13-20 M]J/kg. Water hyacinth has the potential to be
a source of feedstock that will not affect the current supply chain. The quantity in Uganda is unknown,
but it has the potential to be farmed and to be used as a feedstock for biofuel for those living near areas
of contained water. The biomasses reported all have the potential for upgrading into a solid fuel for
use within Uganda and other developing countries to replace firewood or other damaging fuels.

A low temperature steam treatment or low temperature HTC are ideal thermochemical treatments
for combining with concentrated solar. With temperatures between 100-250 °C a simple linear Fresnel
concentrating method will be able to meet the temperatures required by a low temperature biomass
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upgrading technique. As seen in Figure 4, the amount of biomass needed be processed has a much
larger effect on the size of the system than the type of feedstock used.
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