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Abstract: In this paper, a folded spiral resonator with a double-layered structure for near-field wireless
power transfer is proposed. In near-field wireless power transfer, conjugate impedance matching is
important to achieve high transfer efficiency. To achieve maximum available efficiency, it is common
to connect a matching circuit to the antenna. However, the loss increases if a matching circuit is used.
A coupling inductor with a resonant capacitor has the capability to adjust an imaginary part of the
input impedance, whereas the folded spiral resonator has the capability to adjust both the imaginary
and real parts of the input impedance. This resonator can achieve the maximum available efficiency
without a matching circuit. This paper shows that the folded spiral resonator with a double-layered
structure realizes high transfer efficiency compared to conventional models.
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1. Introduction

Recently, research on near-field wireless power transfer (WPT) has been increasingly active [1].
WPT technology can transmit power with no wired connection, which provides security and
convenience for transmission. Due to these advantages, this technology is expected to be used
in various applications, such as electronic devices [2], electric cars [3–6], and implanted medical
devices [5–11].

The WPT system can be broadly classified into far-field systems, which transmit power via
microwaves [12], and near-field systems [13], which utilize the coupling of antennas or coils.
In the near-field system, the WPT systems are classified into two types: power-electronics-based
systems [14–17] and high-frequency-based systems [18–21]. To understand the mechanism of near-field
WPT, the coupled-mode-theory-based approach [22], the circuit-theory-based approach [23], and the
field theory approach [24,25] are used. As a device to transfer power, coils [26–29] or antennas [30–33]
are used. Therefore, there are various viewpoints from which to understand basic concepts of WPT [1].

To clarify the characteristics of our research, we categorize these near-field WPT systems. Firstly,
we designate “coupler” as a device exchanging power between circuit and air. In this definition,
the ”coupler” includes a coupling coil and antenna. However, a “resonator” is not always included
in a “coupler”; when the resonator comprises a coupling coil and a resonance capacitor, only the
coupling coil is included in the “coupler”. To maximize power transmission [34], simultaneous
conjugate matching both the transmitting (Tx) and receiving (Rx) side is necessary [35]. The real part
of the impedance and the imaginary part of the impedance should be optimized in the WPT system.
A ”coupler” can be classified into three types:

(a) Coupler with the capability of coupling:
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The most widely used coupling coil in power-electronics based WPT systems [14–17] is classified
into this type. For power factor compensation, a resonant capacitor is used, which plays the role of
impedance matching of only the imaginary part. Thus, an impedance transformer or inverter circuit is
required to adjust the real part of the impedance.

(b) Coupler with the capability of coupling and imaginary-part impedance matching

Some types of self-resonant resonators, such as open-end spiral coils [36–38], are classified into
this type. At the resonant frequency, the imaginary part of the impedance becomes zero. However, to
achieve maximum transmission efficiency, an impedance conversion circuit to adjust the real part of
the impedance is necessary.

(c) Coupler with the capability of coupling and conjugate impedance matching

The WPT system proposed by MIT [13] utilizes a self-resonant open-end spiral coil and a one-turn
loop coil. This structure has the capability of impedance matching of both the real and imaginary parts.
Therefore, no additional matching circuit is required. The so-called “four-coil WPT system” [39–42] is
also included in this type.

For wireless-communication systems, a folded dipole antenna [43] is commonly used because of
the impedance matching function. A folded dipole antenna is also used for far-field WPT or energy
harvesting systems [44,45]. However, this antenna is not appropriate for the use in near-field WPT
because far-field radiation becomes an undesired emission in near-field WPT. A folded spiral resonator
for near-field WPT with a single-layer structure has been proposed [46]. This resonator can adjust
the input impedance of the real part by varying the conductor radius. Thus, the maximum available
efficiency can be achieved without a matching circuit. However, the folded spiral antenna with a
single-layered structure has a disadvantage in that the range of tunable impedance is limited since the
pitch of the spiral structure limits the distance between the folded structure.

In this paper, a folded spiral resonator with a double-layered structure is proposed. Since two
wires of a folded structure are wound in different planes for the double-layered structure, the folded
distance can be determined independently of the spiral pitch. Furthermore, the double-layered
structure reduces the proximity effect because the wire pitch is extended when compared to the
single-layered structure. Furthermore, current distribution of the single-layered structure is not ideal
because the inner conductor is interrupted between the outer conductor. By using a double-layered
structure this problem is avoided. The effectiveness of the proposed resonator is compared with a
conventional resonator.

2. Principle of the Folded Structure

Figure 1 shows the working principle of a folded dipole antenna for far-field communication.
Compared to the dipole antenna, the folded dipole antenna has two wires: the radius of the outer wire,
ρ1, and the radius of the inner wire, ρ2. The distance between the two wires (folded distance) is w. Let
Z2 be the input impedance of the dipole antenna (i.e., without the inner wire). The input impedance of
the folded dipole antenna Z1 is obtained by:

vi =
ln w

ρ2

ln w
√
ρ1ρ2

(1)

Z1 =
Z2

v2
i

(2)

where vi is the current distribution ratio. The impedance amplification ratio 1/vi
2 can be adjusted by

changing the ratio of ρ1 and ρ2. Moreover, when the radius of the two conductors are different, 1/v2
i

can also be adjusted by changing w. Therefore, by changing ρ1, ρ2, and w, the real part of the input
impedance is adjustable.
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intended to radiate far-field emission, and a folded spiral resonator is used in the near-field region 
because of its low-emission property. The radii of the outer and inner wires are 𝜌ଵ . and 𝜌ଶ 
respectively. The distance of the folded structure (i.e., between the outer and the inner wire) is 𝑤. 
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Figure 2c shows a folded spiral resonator with a double-layered structure (bird’s-eye view). A 
folded structure is applied to the spiral antenna in the vertical direction, thereby the distance between 
the wire elements is wider than the single-layered folded spiral resonator. Therefore, it is considered 
that the proximity effect of the double-layered folded spiral resonator can be reduced. Additionally, 
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plane in turn. This causes a disturbance in current distribution. By using the double-layered structure, 
this problem can be avoided. The outer conductor is wound in the source layer, and the inner 
conductor is wound in the folded layer. Both ends of the spiral wire are connected by a shorting pin. 
Figure 2d shows a side view of the folded spiral resonator with a double-layered structure. The 
distance between the two layers (corresponding to the folded distance) is 𝑤. 
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Figure 1. Folded-dipole structure.

A conventional folded dipole antenna radiates far-field emission, whereas a folded resonator for
near-field WPT requires less far-field emission because it becomes an undesired emission. By adjusting
the conductor radius or folded distance, a folded spiral resonator can achieve impedance matching.

Figure 2a shows a conventional spiral resonator used for near-field WPT. The radius of the wire is
ρ1. The pitch of the spiral is p. This resonator is used as a self-resonant resonator.

Figure 2b shows a folded spiral resonator with a single-layered structure. The folded principle shown
in Figure 1 was applied to the conventional spiral resonator. The folded dipole antenna is intended to
radiate far-field emission, and a folded spiral resonator is used in the near-field region because of its
low-emission property. The radii of the outer and inner wires are ρ1. and ρ2 respectively. The distance of
the folded structure (i.e., between the outer and the inner wire) is w. The pitch of the spiral structure is p.
In the single-layered structure, the outer and inner wires are wound in the same plane.

Figure 2c shows a folded spiral resonator with a double-layered structure (bird’s-eye view).
A folded structure is applied to the spiral antenna in the vertical direction, thereby the distance between
the wire elements is wider than the single-layered folded spiral resonator. Therefore, it is considered
that the proximity effect of the double-layered folded spiral resonator can be reduced. Additionally,
the single-layered structure has a problem in that the outer and the inner conductor lays in the same
plane in turn. This causes a disturbance in current distribution. By using the double-layered structure,
this problem can be avoided. The outer conductor is wound in the source layer, and the inner conductor
is wound in the folded layer. Both ends of the spiral wire are connected by a shorting pin. Figure 2d
shows a side view of the folded spiral resonator with a double-layered structure. The distance between
the two layers (corresponding to the folded distance) is w.
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Figure 2. Structures: (a) spiral resonator; (b) folded spiral resonator with a single-layered structure;
(c) bird’s-eye view of the folded spiral resonator with a double-layered structure; (d) side view of the
folded spiral resonator with a double-layered structure.

3. Simulation Models

To demonstrate the validity of the proposed structure, a method of moment (MoM) simulation
using the commercial software FEKO was employed. Figure 3 shows the simulation model of the
conventional spiral resonator, the folded spiral resonator with a single-layered structure, and the
folded spiral resonator with a double-layered structure, respectively. The same structure was used for
both transmitting (Tx) and receiving (Rx) resonators. The Tx resonator had Port 1 for feeding. The Rx
resonator had Port 2 to connect the load. The source impedance and the load impedance were set to 50
Ω. The conductivity of copper (σ = 57.8× 106 S/m) was used.
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Figure 3. Simulation models: (a) Spiral resonator; (b) Single-layered folded spiral resonator;
(c) Double-layered folded spiral resonator.

The mechanical parameters of the resonators are described in Table 1. The inner radius Rin,
the number of turns N, the conductor radii ρ1, ρ2, the folded distance w, and the gap between spiral
conductors p were adjusted, thereby the transfer efficiency |S21|

2 reached a maximum at 6.78 MHz by
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using a genetic algorithm. The outer radius of all resonators were set to Rout = 150 mm. The transfer
distance was set to D = 0.4 m. The conductors were composed of wires.

Table 1. Design dimensions.

Parameter Spiral Single-Layered Folded Spiral Double-Layered Folded Spiral

Rout [mm] 150 150 150
Rin [mm] 8.878 55.25 57.37

N 33.22 23.31 21.68
ρ1 [mm] 0.5 0.3610 1.117
ρ2 [mm] - 0.3643 1.104
w [mm] - 1.236 6.776
p [mm] 3.552 2.492 2.641

4. Results

4.1. Impedance Matching by the Folded Structure

To confirm impedance matching by adjusting the conductor radius, the input impedance and
frequency characteristics are calculated when the inner conductor radius changes. The transfer distance
D is set to 0.4 m.

The input impedance of the spiral resonator is shown in Figure 4a. The wire radius ρ does not
affect the real part of the input impedance. The input impedance of the folded spiral resonator with
single-layered and double-layered structures is shown in Figure 4b,c, respectively. It is confirmed that
the real part of the impedance is adjustable by changing the wire radius.
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Figure 4. Wire diameter characteristic of input impedance: (a) spiral resonator, (b) folded spiral resonator
with a single-layered structure, and (c) folded spiral resonator with a double-layered structure.

The transfer efficiency is calculated as a function of the wire radius. Figure 5 shows the wire
radius characteristics |S21|

2 and maximum transfer efficiency ηmax at 6.78 MHz. |S21|
2 corresponds to a

transmission efficiency for 50 Ω load impedance. ηmax is obtained from the Z parameters through the
S parameters [34].

ηmax = 1 +
2

|Z21|
2

{
|R| −

√(
|R|+ |Z21|

2
)
|R|

}
(3)

where the matrix R is the real part of the Z parameter matrix, which is calculated from the S parameter
matrix. |R| shows the determinant of the matrix R. From these results, it is found that the folded spiral
resonator with a double-layered structure has the highest transmission efficiency.
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Figure 5. Wire diameter characteristic of efficiency: (a) spiral resonator; (b) folded spiral resonator with
the single-layered structure; (c) Folded spiral resonator with double-layered structure.

4.2. Comparison

In this section, the frequency characteristics of transmission efficiency are considered. Figure 6
shows the frequency characteristics of ηmax and |S21|

2. From the result, the folded spiral resonator with
a double-layered structure has the highest ηmax and |S21|

2 at 6.78 MHz.
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Figure 7 shows the transfer distance characteristic of ηmax and |S21|
2. For all distances, the frequency

of 6.78 MHz is used. Compared to the spiral resonator, transfer distance over 60% of ηmax

increased by 1.82 and 1.69 times for the folded spiral resonator with single- and double-layered
structures, respectively.
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To investigate the improvement mechanism of transmission efficiency, the Q factor is calculated
by using the following equation:

Q =
f0

f2 − f1
(4)

where f0 is the resonant frequency. f1 and f2 are the low-frequency and high-frequency at 1/
√

2 of
the peak reflection coefficient, respectively.

The coupling coefficient k is also calculated using the Q factor and kQ product. The kQ product is
obtained from the Z parameters [34]:

kQ =
|Z21|
√
|R|

(5)

where |R| is the determinant of the real part of the Z parameter matrix.
The transfer distance D is set to 0.3 m. The calculated Q factor and the coupling coefficient k are

shown in Figure 8. It is verified that the Q factor of the folded spiral resonator with a double-layered
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structure is increased by a factor of four compared to the others. The coupling coefficient k of the
folded spiral resonator with a double-layered structure is almost identical to that of the spiral resonator.
The coupling coefficient of the folded spiral resonator with a single-layered strucuture is small. This is
because the current distribution of the single-layered structure is disturbed because the inner and the
outer conductors are laid in an identical plane in turn.

To investigate undesired far-field emission, the radiation pattern is shown in Figure 9. In this
calculation, the Tx and Rx resonators are treated as a transmitting antenna (i.e., the Rx resonator can be
considered as a parasitic element of the Tx resonator) to evaluate the far-field radiation as an antenna
gain. In the near-field WPT system, far-field radiation becomes an undesired emission, and a lower
gain is desired. From this figure, it is confirmed that the far-field radiation of the folded spiral antenna
with a double-layered structure is 20 dB less than a conventional spiral resonator.
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5. Comparison with the Conventional Structure

To verify the effectiveness of the folded spiral resonator with a double-layered structure,
the transmission efficiency is compared with the conventional structure shown in Figure 10:

(a) Short-type single-layered spiral

A short-type single-layered spiral is shown in Figure 10a. This structure is a conventional inductor.
For resonance, a resonant capacitor is used.
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(b) Short-type double-layered spiral

A short-type double-layered spiral coupler is shown in Figure 10b. This structure consists of two
spirals in a series connection. This structure also acts as a conventional inductor. A resonant capacitor
is used.

(c) Open-type double-layered self-resonant spiral

An open-type double-layered spiral coupler is shown in Figure 10c. This structure consists of two
open-end spirals. This structure is a self-resonant type, so a resonant capacitor is not necessary.

(d) Folded spiral with a double-layered structure

The proposed structure is shown in Figure 10d.
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Consideration Model

The configuration of the numerical simulation is shown in Figure 11. The transfer distance D is
set to 300 mm. A voltage source with an output impedance of 50 Ω is connected to Port1. A 50 Ω load
is connected to Port2. The conductivity of copper σ = 5.813× 107 S/m is assumed.
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The couplers are optimally designed to compare the characteristics of the couplers with unified
external dimensions. The outer diameter Rout is fixed to 150 mm. The height h of the single couplers
is fixed to 5 mm. The inner diameter Rin and the number of turns N are designed to maximize ηmax.
The optimization frequency is set to 6.78 MHz. The optimized parameters are shown in Table 2.

Table 2. Designed parameter and characteristics.

Parameters
Short-Type

Single-Layered
Spiral

Short-Type
Double-Layered

Spiral

Open-Type
Double-Layered

Spiral

Double-Layered
Folded Spiral

Rout [mm] 150 150 150 150
Rin [mm] 32 144 142 95

N 36 5 7 16

ηmax [%] 96.26 94.11 95.55 96.97
kQ product 52.43 32.91 43.95 664.92

k 0.0407 0.0778 0.0312 0.0244
Q factor 1288.2 423.0 1407.3 2660.9

The frequency characteristics of the maximum transmission efficiency ηmax are shown in Figure 12a.
At the resonant frequency of 6.78 MHz, the double-layered folded spiral achieves its highest efficiency
ηmax : 96.97%.

The transfer distance characteristics of ηmax at 6.78 MHz are shown in Figure 12b. The transfer
distance of the double-layered folded spiral at which ηmax achieves 60% is 1.19 times larger than the
open-type double-layered spiral.
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Figure 12. Characteristics of η_max. (a) Frequency characteristics and (b) transfer distance characteristics.

To consider the difference between ηmax of these couplers, the kQ product, the coupling coefficient
k, and the Q factor are also shown in Table 2. The Q factor of the double-layered folded spiral resonator
presents the highest value. Therefore, it is found that the double-layered folded spiral presents the
highest efficiency because of its high Q factor.

6. Conclusions

A folded spiral resonator with a double-layered structure for near-field WPT is proposed. It is
verified that the transmission distance over 60% ηmax increased by 1.82 and 1.69 times compared
to the conventional spiral resonator and the folded spiral resonator with a single-layered structure,
respectively. Compared to the conventional spiral resonator, this is caused by the impedance matching
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effect of the real part of the folded structure. Compared to the folded spiral resonator with a
single-layered structure, this is caused by winding the outer conductor and the inner conductor in
different planes.

The experimental validation of this is future work.
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