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Abstract: Admixtures of mineral or waste filling materials are used to reduce slurry density. However,
the sheath made of lightweight cement slurry has low mechanical performance at the initial bonding
time. The required strength is achieved later. This is the main problem when evaluating the cement
bond logging. The waiting time for geophysical measurements after injecting and bonding of cement
is nowadays increasingly shortened. This is forced by economic factors. Too early geophysical
measurements may result in obtaining a false indication of the cement bond logging. The lack of
cement or partial bonding, despite the presence of slurry in the annular space is then found. The slurry
developed by the author achieves high compressive strength after a short bonding time. Reducing the
amount of water in the slurry resulted in a lowered filtration value. This is important in preventing
gas migration after the cementing. The designed slurry also reaches the value of 3.5 MPa in a short
time. This allows for an earlier commencement of a well drilling. The use of said slurry improves
the effectiveness of the well sealing and makes it possible to obtain a reliable knowledge of the
bond logging.
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1. Introduction

To isolate permeable levels saturated with reservoir fluids, cementing of casing string columns
is applied. The purpose of that procedure is to keep the string columns in the well and protect
them against corrosion caused by reservoir fluids and gases [1–4]. The annular space is filled with
cement slurry which displaces the drilling mud by being injected. Cement slurries are divided into the
ones with a ‘normal density’, around 1750–1850 kg/m3, lightweight slurries (below 1750 kg/m3) and
heavy slurries (above 1900 kg/m3). The slurry density is chosen based on the geological and technical
conditions resulting from the geological structure and well depth [5–10].

This publication refers to lightweight slurries. Such recipes are used when sealing casing string
columns in absorbent or weakly compacted rock profiles. They are occasionally used for sealing wells
drilled in productive levels with low reservoir pressure, or for reconstruction works. The occurrence of
low reservoir pressure is manifested by the disappearance of mud while drilling or the infiltration
of cement slurry into the absorbent geological structure. This leads to a decrease in the hydrostatic
pressure of the drilling mud in the well and a violation of the pressure balance condition [11–18].
A reduction or complete drop of the hydrostatic pressure of the drilling mud results in a collapse
of a well wall and in further complications. If a low reservoir pressure zone and the drilling mud
leak occur while drilling such condition can be controlled. To this end, the drilling mud density is
reduced and blockers (ground nut shells, sawdust, powdered rubber, cellophane film, or sealing paste)
are injected [19–27]. However, during the cementing procedure, it is not possible to intervene if the
cement slurry disappears while being injected. This is related to both the designed time of bonding
and thickening of the cement slurry, as well as to the properly selected time of the entire cementing
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procedure [28–33]. Therefore, a very important step in sealing the casing string columns embedded in
loose layers is the use of a reduced density recipe. Such slurry is obtained by adding light mineral
fillers into it. By reducing the density of cement slurry, the hydrostatic pressure during cementing is
lowered. By so doing, the escape of cement into the low-pressure zones can be prevented. However,
the sheath made of the lightweight cement slurry has a low early compressive strength and obtains the
required property at a later bonding time [34–42].

The waiting time for geophysical measurements after cement injection and bonding is nowadays
reduced, and so is the time required to carry out further works after cementing. This is driven by
economic aspects and striving to accelerate the completion of subsequent stages of well drilling.
However, too early measurements of the cement bond logging lead to unreliable cement bond logging
(CBL—an indication of the condition of the cement bond image). If this is the case, the cement sheath
bonding (despite the presence of cement in the annular space) is found to be incomplete or poor
(Figure 1). The measurement of the cement bond logging condition is made when the strength of
the cement sheath achieves 14 MPa. However, the cement sheath made of the lightweight slurry has
significantly lower compressive strength in the initial hydration period. Compressive strength of the
cement sheath made from the slurries used previously, after 24 h of hydration, reaches values ranging
from about 5 MPa to about 8 MPa (compressive strength values for slurries with a density of about 1500
kg/m3, deposited at a temperature of about 30 ◦C) [43–48]. The problem of interpretation of geophysical
measurements is raised when CBL confirms the absence of cement despite its being injected up to
the top. Furthermore, the microstructure of the cement sheath with low early compressive strength
is damaged during the post-cementation works. This results in reduced stabilization of the upper
part of the casing string columns [49–55]. This contributes to the occurrence of gas migration in the
annular space.
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Figure 1. Cement bond logging test at an interval of 0–350 m. Cement slurry with a density of
1550 kg/m3.

Figure 1 shows the cement bond logging of the casing string columns installed in the interval from
0–350 m, where the lightweight slurry with a density of 1550 kg/m3 has been used. The cement sheath



Energies 2020, 13, 1583 3 of 13

made of that slurry had a compressive strength of 4.2 MPa after 24 h and 7.6 MPa after 48 h. Analyzing
the results from the records of a cement bond logging tool, poor cement bonding in the 30–160 m
interval can be found. In the 160–350 m interval, however, the bonding was weak and only locally
incomplete. The unbound cement locations are marked blue. Such a picture of cement bond logging
gives an indication of the lack of cement in the annular space. However, the post-cementing report
states that the space is cemented. However, Figure 2 shows the cement bond logging for the interval
from 900 m to 1300 m, in which the slurry with a density of 1820 kg/m3 has been used. That cement
sheath had a compressive strength of 9.7 MPa after 24 h and 15.6 MPa after 48 h. Figure 2 shows good
and very good cement bonding (beige), according to the interpretation of geophysical measurements.
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1810 kg/m3.

The author found that the cement bond logging depends on the strength of the cement sheath.
The problem of interpretation of the cement bond logging occurs mainly when using lightweight
slurries. Therefore, a new type of lightweight slurry was designed with increased mechanical strength
at the initial bonding time. After application of such lightweight slurry, the measurement results are
reliable and reflect the real cement bond logging.

2. Materials and Methods

2.1. Materials

CEM I 42.5R Portland cement was used to make the slurries. The cement contained 2.66% SO3

and 0.065% Cl–. Slurry conditioning agents were added. IF755 cement plasticizer was delivered
by CemexPolska. It is a liquefying agent based on a polycarboxylic ether with a density of
1.07 g/cm3

± 0.02 g/cm3 and a pH of 6.0 ± 1.0. The content of Cl– is below 0.1%, while that of
Na2O does not exceed 1.5%. In order to eliminate aeration, a defoamer was used, which is a mixture
of unsaturated fatty acid esters and refined hydrocarbons. The product was supplied by Polski
Serwis Płynów Wiertniczych Sp. z o.o., Poland. The slurry contained also an antifiltrating agent and
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setting accelerator. The products were supplied by Polski Serwis Płynów Wiertniczych Sp. z o.o.,
Poland. To eliminate gas microflows, latex was used, which is a water dispersion of styrene butadiene
copolymer and latex stabilizer, which is a mixture water dispersion unsaturated ethoxylated alcohols.
The latex was supplied by Polski Serwis Płynów Wiertniczych Sp. z o.o., Poland. The inter-grain
space was sealed with a 10% addition of micro-cement supplied by Halliburton Micro Matrix. This
product contains grains of less than or equal to 10 m and a surface area of approximately 1400 m2/kg.
Furthermore, bentonite was used to increase the viscosity of the mixing water, so that the microspheres
used to reduce the slurry density did not fractionate. Bentonite was supplied by Certech, Poland.

Loose silica dust (amorphous silica) was used to improve the mechanical performance of the
cement sheath made of the slurry. Specific surface area: 18,000 m2/kg [BET], average grain size:
approximately 0.15 µm. The silica dust was supplied by HutaŁaziska, Poland. Sodium hydroxide
supplied by PCC Polska was added to the slurry recipe. An admixture of IKC 45, increasing concrete
strength, supplied by CemexPolska, was also used. That product was formulated based on calcium
nitrate. It is a colorless liquid with a pH of 5.5 ± 1.0 and a density of 1.43 g/cm3

± 0.03 g/cm3. The
content of Cl– is below 0.1%, while that of Na2O does not exceed 1%. The percentage of additives is
summarized in (Table 1).

Table 1. Selected compositions of cement slurries cured at a temperature of 40 ◦C and under the
pressure of 10 MPa.

Composition Action 1 2 3

Water–cement ratio - 0.85 0.60 0.55
Plasticizer Cement slurry liquefies 0.2 0.7 0.3

Latex Lowers filtration, prevents gas migration
through hardened cement slurry 5.0 5.0 5.0

Stabilizer Provides good, even and durable latex dispersion 0.5 0.5 0.5
Bentonite Is used to increase the viscosity of mixing water 1.5 1.5 1.5

Defoaming agent Prevents foam formation 0.5 0.5 0.5
Antifiltrating agent Reduces cement slurry filtration 0.3 0.3 0.3

Setting accelerator Accelerates the cement hydration process in
cement slurry 1.0 1.0 1.0

Microcement Seals the matrix of hardened cement slurry 10.0 10.0 10.0
Cenospheres Reduces cement slurry density 0.0 15.0 15.0

Nanosilica Supplements the pore microstructure of
hardened cement slurry 2.0 0.0 0.0

Microsilica Seals the matrix of hardened cement slurry and
has pozzolanic properties 13.0 15.0 0.0

Strengthening agent Increases mechanical strength 0.0 0.0 1.5

Sodium hydrooxide Accelerates cement hydration and increases the
value of mechanical parameters 0.0 0.0 1.5

Cement CEM I 42.5R It sets the cement slurry 100.0 100.0 100.0

All components in % by mass of cement. Bentonite in % by weight of water.

2.2. Slurry Preparation

Three recipes were prepared to develop the lightweight slurry with high early strength of the
cement sheath being formed. The first slurry is the test sample. Samples no. 2 and 3 are lightweight
slurries with the addition of microspheres. Compositions no. 2 and 3 were modified to obtain higher
mechanical strength values. When preparing the slurry, a certain amount of water is proportioned using
a measuring cylinder. The water is poured into the mixer. The mixing speed is then set to 1600 rpm.
Bentonite is added to the mixing water and mixed for 30 min. Then, the conditioning agents are added
to the slurry and mixed again for 10 min. After that time, loose additives (microcement, microspheres,
microsilica, cement) are poured into the mixture with water and mixed for another 20 min. Mixing at
low speeds corresponds to preparation of the slurry in well conditions.
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The slurry recipe designated with no. 1 in Table 1 was prepared first. The water–cement ratio
of the slurry was 0.85, and the amounts of agents are listed in Table 1. Modifications were made
to the following recipes which contributed to the increased mechanical strength of the resulting
cement sheath.

2.3. Experimental Procedures

The technological properties of fresh and solidified slurries were tested in accordance with the
following standards:

• PN–EN ISO 10426-2. Petroleum and natural gas industries. Cements and materials for well cementing.
Part 2: Testing of well cements. The tests include the following measurements: slurry density,
filtration, and thickening time.

• PN–EN 196-1: 2006 Methods of testing cement. Determination of Strength. Compressive strength was
tested according to this standard.

Slurries were prepared at ambient temperature. The increase in compressive strength and
thickening time was studied in conditions similar to those prevailing in the wells: temperature 45 ◦C,
pressure 10 MPa.

2.3.1. Slurry Density

Density was tested using a Baroid mud balance. The balance consists of an arm with a dish for
the slurry on one end, and a calibrated counterweight on the other. The balance arm is provided with a
sliding weight and is scaled in the range of 0.8–2.75 g/cm3. The weight is read from the position of
the sliding weight when the balance is levelled by appropriate positioning of a level on the balance
arm [56].

2.3.2. Slurry Filtration

The filtration test was performed in conditions similar to those present in the wells, namely at
high temperature and high pressure. The measurement was carried out using a dynamic filter press.
The device allows for testing in well-like conditions at temperatures up to 232 ◦C and pressures up to
14 MPa [56].

2.3.3. Rheological Properties

The rheological properties were tested based on the determination of shear curves in the velocity
range from 1.7 s−1 to 1022 s−1. The test was carried out at a temperature of 20 ◦C ± 2 ◦C. For testing the
rheological properties, an OFITE viscometer model 900 with coaxial cylinders was used. To determine
the rheological model of cement slurries, the Rheosolution 3.02 software was used, which is the
property of the AGH University of Science and Technology Faculty of Drilling, Oil and Gas [57–61].

2.3.4. Thickening Time

The slurry thickening time was determined using a pressure consistometer. The device enables
recording the progress of thickening (maturing) of cement slurry and determining the beginning of the
thickening time (30 Bc (Bearden unit) value—conventional value when determining the cement slurry
thickening time) and at its end, with a value of 100 Bc [56].

2.3.5. Non-Destructive Compressive Strength Test

The non-destructive testing of the increase in compressive strength of cement slurries was carried
out using a model 120–51 Twin Cell UCA (ultrasonic cement analyzer). During the measurement, the
ultrasonic wave passes from the transmitter to the receiver. The cement slurry, which is being bound
in HTHP conditions, is placed between the transmitter and receiver. A correlation exists between the
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ultrasonic wave passage time and the increasing compressive strength. The instruments measure
the compressive strength while the cement slurry is being bound in conditions similar to those of a
well [62]. The diagram of the device is shown in Figure 3.
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3. Results and Discussion

3.1. Slurry Density

The research focused on lightweight slurries, since it is in these slurries that the greatest issue is
the low mechanical strength of the stone. Such cement slurries are described in the literature [63]. As
shown in Table 2, the slurries have a density in a range from 1.54 g/cm3 (slurry no. 2) to 1.58 g/cm3

(slurry no. 1). The base slurry no. 1 has the highest density but contains the greatest amount of mixing
water (water/cement = 0.85). As shown in Table 1, the following slurries contain 15% addition of
aluminosilicate microspheres and smaller amounts of water. The result of reducing the water content
is an increase of the slurry rheological parameters. Therefore, slurries 2 and 3 contain more liquifying
agent. This effect makes the density of slurries no. 2 and 3 comparable to the slurry no. 1. In standard
slurries, the introduction of aluminosilicate microspheres reduces the mechanical strength of cement
stone being formed due to the increasing porosity [2,14]. For example, in [63], slurry no. 12 has a
compressive strength of only 2.9 MPa after 48 h. Therefore, slurry no. 2 contains 15% of microcement
which provides extra sealing to the cement matrix and the water/cement (w/c) ratio is reduced to 0.6.
Slurry no. 3, however, contains no microcement but less water; w/c = 0.55 (Table 1).

Table 2. Properties of cement slurries with additives and admixtures.

Composition
no.

w/c
Density
(g/cm3)

Filtration, (cm3)
After 30 min of
Measurement

Thickening Time
(h:min)

Time in which Strength
Was Achieved 3.5 MPa

(h:min)

Compressive Strength Tested
with the Ultrasonic Cement

Analyzer, (MPa)

6 h 12 h 24 h 48 h
30Bc * 100Bc *

1 0.85 1.58 733.0 5:55 7:10 10:04 1.04 4.35 7.29 9.18
2 0.60 1.54 85.0 6:30 7:20 4:54 4.24 6.93 9.45 11.32
3 0.55 1.57 174.0 5:10 6:00 6:13 3.07 13.04 20.98 25.36

* Bc—The Bearden unit is used when determining the change in consistency of cement slurry during setting.

The thickening time (consistency change) was tested in HTHP consistometer (temperature 40 ◦C
and pressure 10 MPa), dynamic conditions, time to reach temperature and pressure 20 min).
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3.2. Slurry Filtration

The filtration tests were performed at 40 ◦C under dynamic conditions. The slurry filtration tests
were carried out for 30 min. As shown in Table 2, the base slurry no. 1 has the greatest filtration of
733 cm3. Such a high filtration value is the result of the highest w/c ratio, which is 0.85 for that slurry.
Slurry no. 2 has a filtration rate of 85 cm3. In that slurry, the filtration rate is lower due to the presence
of 15% microcement and a lower water–cement ratio (0.6) (Table 1). In slurry no. 3, the filtration is
174 cm3, and it has the lowest water–cement ratio. The lack of microcement in said recipe results in an
increase of the filtration value compared to slurry no. 2.

3.3. Rheological Properties

In order to determine the rheological properties of the slurry, a measurement was made as for the
greatest shear rate range (up to 1022 s−1). Based on the results obtained, the rheological parameters
corresponding to a specific rheological model were calculated. Furthermore, the slurry flow curve was
drawn (Figure 4). As shown in Table 3, the slurries tested can be classified as non-Newtonian fluids
and are described by the Casson and Herschel–Bulkley models. Base slurry no. 1 has a flow limit
of Css 8.77 Pa. The HB consistency coefficient of that slurry is 0.086 Pa·sn, and the apparent viscosity
amounted to 40.50 mPa·s. As shown in Figure 4, the flow curve for that slurry has the lowest rise
profile. Correspondingly low values of the rheological parameters analyzed are caused by the large
amount of water in the slurry (Table 1). The addition of microspheres and microcement to slurry no. 2
(Table 1) and a reduction of the w/c ratio leads to an increase in rheological parameters despite the
content of 0.7% dispersant. Figure 4 shows the highest flow curve for slurry no. 2. The presence of
loose fractions in slurry no. 2 causes an 8-fold increase in the Css flow limit compared to the base
slurry [45]. The HB consistency coefficient of that slurry was 29.9 Pa·sn, while its apparent viscosity
amounts to 190 mPa·s (Table 3). To slurry no. 3, without the microcement, the strengthening agent
and NaOH were added. Such a modification leads to decreased values of the rheological parameters
compared to slurry no. 2. This is confirmed by the lower flow curve of slurry no. 2 compared to that
of the slurry no. 3, as shown in Figure 4. As can be seen in Table 3, the flow limit Css of slurry no. 3
was 19.80 Pa, and the consistency factor HB was 2.86 Pa·sn. The apparent viscosity of that slurry was
170 mPa·s. Increased values of rheological parameters are favorable in the lightweight slurry as the
microspheres do not fractionate. However, it is necessary to use higher injection pressures during the
cementing procedure.

Energies 2020, 13, x FOR PEER REVIEW 7 of 14 

The filtration tests were performed at 40 °C under dynamic conditions. The slurry filtration tests 

were carried out for 30 min. As shown in Table 2, the base slurry no. 1 has the greatest filtration of 

733 cm3. Such a high filtration value is the result of the highest w/c ratio, which is 0.85 for that slurry. 

Slurry no. 2 has a filtration rate of 85 cm3. In that slurry, the filtration rate is lower due to the presence 

of 15% microcement and a lower water–cement ratio (0.6) (Table 1). In slurry no. 3, the filtration is 

174 cm3, and it has the lowest water–cement ratio. The lack of microcement in said recipe results in 

an increase of the filtration value compared to slurry no. 2. 

3.3. Rheological Properties 

In order to determine the rheological properties of the slurry, a measurement was made as for 

the greatest shear rate range (up to 1022 s−1). Based on the results obtained, the rheological parameters 

corresponding to a specific rheological model were calculated. Furthermore, the slurry flow curve 

was drawn (Figure 4). As shown in Table 3, the slurries tested can be classified as non-Newtonian 

fluids and are described by the Casson and Herschel–Bulkley models. Base slurry no. 1 has a flow 

limit of Css 8.77 Pa. The HB consistency coefficient of that slurry is 0.086 Pa·sn, and the apparent viscosity 

amounted to 40.50 mPa·s. As shown in Figure 4, the flow curve for that slurry has the lowest rise 

profile. Correspondingly low values of the rheological parameters analyzed are caused by the large 

amount of water in the slurry (Table 1). The addition of microspheres and microcement to slurry no. 

2 (Table 1) and a reduction of the w/c ratio leads to an increase in rheological parameters despite the 

content of 0.7% dispersant. Figure 4 shows the highest flow curve for slurry no. 2. The presence of 

loose fractions in slurry no. 2 causes an 8-fold increase in the Css flow limit compared to the base slurry 

[45]. The HB consistency coefficient of that slurry was 29.9 Pa·sn, while its apparent viscosity amounts 

to 190 mPa·s (Table 3). To slurry no. 3, without the microcement, the strengthening agent and NaOH 

were added. Such a modification leads to decreased values of the rheological parameters compared 

to slurry no. 2. This is confirmed by the lower flow curve of slurry no. 2 compared to that of the slurry 

no. 3, as shown in Figure 4. As can be seen in Table 3, the flow limit Css of slurry no. 3 was 19.80 Pa, 

and the consistency factor HB was 2.86 Pa·sn. The apparent viscosity of that slurry was 170 mPa·s. 

Increased values of rheological parameters are favorable in the lightweight slurry as the microspheres 

do not fractionate. However, it is necessary to use higher injection pressures during the cementing 

procedure. 

 

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000 1100

Shear rate (s
-1

)

S
h

ea
r 

st
re

ss
 (

P
a

)

1

2

3

t = 20°C

Figure 4. Flow curves of cement slurries at the temperature of 20 ◦C.



Energies 2020, 13, 1583 8 of 13

Table 3. Rheological properties of cement slurries with additives and admixtures.

Rheological Properties Temperature of
Measurement (◦C)

Composition of Cement Slurry

1 2 3

Yield stress value Css (Pa) 22 8.7696 76.5356 19.7906
Consistency index HB (Pa·sn) 22 0.0861 29.8990 2.8613

Flow index HB [n](-) 22 0.8464 0.2484 0.5771
Apparent viscosity at 1022 s−1 (mPa·s) 22 4.4984 189.9930 170.9930

Css - value described by Casson’s rheological model. HB - value described by the Herschel–Bulkley rheological model.

3.4. Thickening Time

The slurry thickening time test is carried out with an HTHP consistometer. The measurements
were made at a temperature of 40 ◦C and a pressure of 10 MPa. The time to reach the indicated test
temperature and pressure is 20 min. It is the time required to inject the slurry during cementing. The
test was carried out in dynamic conditions and the slurry was in constant motion, which corresponds
to its being injected into the well [14,16]. According to the data in Table 2, the base slurry begins to
thicken (30 Bc) after 5:55 h and the thickening ends at (100 Bc) 7:10 h. As can be seen in Table 2, the
second slurry takes longer to thicken than the base slurry, despite having a 15% microcement content
in its composition. The value of 30 Bc was obtained 35 min later than of the test sample no. 1, and
the value of 100 Bc was recorded 10 min later than in the slurry no. 1. The longer thickening time
was caused by the presence of 0.7% liquefier. Slurry no. 3, in which a calcium nitrate-based agent
and NaOH were used, had the shortest thickening time. The thickening time reduction is due to the
presence of NaOH and Ca(NO3)2.

3.5. Compressive Strength (Ultrasonic Cement Analyzer—UCA)

As opposed to tests with a consistometer, UCA tests are conducted in static conditions. At this
stage, the slurry was not mixed, which corresponds to building up mechanical strength after being
placed in the well. The slurry was placed in an autoclave chamber and heated to 40 ◦C for 20 min. At
the same time (20 min), the pressure in the autoclave increased to 10 MPa. As the cement slurry set,
the damping force of acoustic wave that passes through the binding cement was measured. Based on
that, the development of mechanical strength during the slurry hydration was determined. The UCA
was also used to establish the time after which the cement sheath reaches the strength of 3.5 MPa. It
is the minimum value at which drilling can be continued in the well [45]. In the UCA test, the early
strength increases faster than the consistency measured with a pressure consistometer. This is due to
the fact that the slurry tested with the UCA was in static condition.

Table 2 demonstrates that the base slurry, which contains no microspheres, has the lowest
compressive strength. After 6 h, a strength of 1.04 MPa was obtained, which increased to 9.18 MPa
after 48 h, as shown in Figure 5. The time to reach the strength of 3.5 MPa was 10:04 h.

The following slurry no. 2 contains 15% microspheres which usually reduce mechanical strength.
To improve the strength of that slurry, 15% microsilica was used and the amount of water was reduced.
0.7% dispersant was added to increase pumpability of the slurry. Table 2 demonstrates that after 4:54 h,
the solidified slurry had a strength of 3.5 MPa. Sample no. 2 had a higher compressive strength than
the test sample no. 1. After 6 h, the strength was 6.24 MPa, and then it increased to 11.32 MPa after
48 h, as shown in Figure 6.

However, slurry no. 3 had the highest strength values. It is also a lightweight slurry, but without
the addition of microsilica. The presence of 1.5% Ca(NO3)2 and 1.5% NaOH caused a considerable
increase in strength after 12 h of hydration. As shown in Table 2, after 6:13 h, the slurry had a strength
of 3.5 MPa, and 13.04 MPa after 12 h. It is a higher value than that for slurry no. 2 after 48 h. As
shown in Figure 7, in the following hours, the strength of slurry no. 3 continued to increase. After
48 h of hydration, it had a strength of 25.36 MPa. The mixture of sodium hydroxide and a calcium
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nitrate-based agent caused a very significant increase in the mechanical strength at the initial hydration
time. This is due to the shortening of hydration time, which is proven by the shortest thickening time
(Table 2). Slurry 3 demonstrates application properties. The recipe no. 3 is simple and has very good
mechanical performance. That slurry constitutes a valuable solution for use in industrial conditions
and is suitable for sealing loose layers.
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4. Conclusions

1. A new recipe was designed to address the demand for high-strength and lightweight slurry,
striving to improve the cement bond logging. Recipe no. 3 is a lightweight slurry with high early
strength of the resultant cement sheath. When designing such slurry, more water is used or light filling
additives are added to its composition. Such solutions, however, reduce the mechanical strength. The
lightweight slurries used currently do not achieve such high strength. The new lightweight slurry
recipes presented herein contain less water. Lightweight slurries, the recipes of which are presented
here, have comparable thickening time, which is important during injection into a well.

2. The filtration of the designed lightweight slurries is four to eight times lower than that of
the test lightweight slurry sample. This was achieved by reducing the amount of water in the slurry
and by adding microspheres. Filling and strengthening agents are added to reduce the decrease of
compressive strength. Reduction of filtration is necessary to counteract gas migration after cementing.

3. The new formula of the lightweight slurry designed by the author reduced the hydration time
needed to achieve 3.5 MPa by half. This is very beneficial from an energetic and economic point of
view, as it makes it possible to continue the drilling works earlier.

4. An addition of microsilica and reduction of the amount of water in the slurry no. 2 leads to
the most considerable increase of strength in the first hours of hydration. The increase in strength
ranges from 407% (after 6 h) to 123% (after 48 h), compared to the test slurry no. 1, while for slurry no.
3, an addition of 1.5% sodium hydroxide and 1.5% calcium nitrate results in a comparable increase
in strength. The improvement in strength in the latter case ranges from 295% (after 6 h) to 276%
(after 48 h) compared to test slurry no. 1. The designed lightweight slurries with a high strength of
cement sheath can improve the cement bond logging reading. The use of those slurries (no. 2 and 3)
reduces the possibility of damage to the structure of the cement sheath during further drilling for the
next section of casing strings.

Funding: The work was financially supported by Ministry of Science and Higher Education Warsaw (Internal order
Oil and Gas Institute—National Research Institute Project No. 0044/KW/19).

Acknowledgments: The author thanks the anonymous reviewers for their constructive comments and the editor
for handling the paper.
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Nomenclature

CBL
the cement bond logging documents the evaluation of the integrity of cement work performed
on an oil well

pH in chemistry, it is a scale used to specify how acidic or basic a water-based solution is

BET

the specific surface area is a property of solids defined as the total surface area of a material per
unit of mass (with units of m2/kg or m2/g) or solid or bulk volume (units of m2/m3 or m−1). It is
determined by adsorption isotherm analysis. The test is carried out using a BET isotherm
(isothermal Brunauer–Emmett–Teller), which is a particular form of a linear equation

Bc
the pumpability or consistency of cement slurry, measured in Bearden units of consistency (Bc),
a dimensionless quantity with no direct conversion factor to more common units of viscosity

UCA Ultrasonic Cement Analyzer.
HTHP High Temperature High Pressure
w/c water–cement ratio—expresses the amount of water per cement unit
Css the liquid is described by Casson’s rheological model
HB the liquid is described by the Herschel–Bulkley rheological model
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