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Abstract: In the last three decades the vast majority of electricity price forecasting (EPF) research has
concerned day-ahead markets. However, the rapid expansion of renewable generation—mostly wind
and solar—have shifted the focus to intraday markets, which can be used to balance the deviations
between positions taken in the day-ahead market and the actual demand and renewable generation.
A recent EPF study claims that the German intraday, continuous-time market for hourly products is
weak-form efficient, that is, that the best predictor for the so-called ID3-Price index is the most recent
transaction price. Here, we undermine this claim and show that we can beat the naïve forecast by
combining it with a prediction of a parameter-rich model estimated using the least absolute shrinkage
and selection operator (LASSO). We further argue, that that if augmented with timely predictions
of fundamental variables for the coming hours, the LASSO-estimated model itself can significantly
outperform the naïve forecast.

Keywords: intraday electricity market; ID3-Price index; price forecasting; variable selection;
fundamental variables; LASSO; averaging forecasts

1. Introduction

After performing a comprehensive empirical study on intraday electricity price forecasting and
considering models with tens of thousands of regressors, Narajewski and Ziel [1] concludes that
the German continuous-time market for hourly products is weak-form efficient, that is, that the
best predictor is the most recent transaction price. Their result is surprising and at the same time
disappointing from a research perspective. Here, we undermine their claim and show that it is possible
to build models that significantly outperform the naïve benchmark. Consequently, we invalidate the
conjecture that the German intraday market for hourly products is weak-form efficient.

This paper belongs to a new strand of literature on forecasting prices in intraday electricity markets.
To date, the workhorse of power trading in Europe has been the uniform price auction, and a vast
majority of research and applications have concerned day-ahead (DA) electricity prices [2]. However,
the rapid expansion and integration of renewable energy sources (most notably wind and solar), active
demand side management (smart meters, smart appliances, etc.) and the introduction of the XBID
pan-European trading platform have shifted the focus to intraday markets [3–5]. One of the more
liquid—and hence more studied—marketplaces, is the German intraday market for quarter-hourly
and hourly products [6–12]. In this continuous-time market, the majority of trading takes place in the
last couple of hours before gate closure [13] and on the hourly products [1]; the latter are traded from
15:00 on day d− 1 until 5 min before the delivery starts on day d, or 30 min before if the trade is made
between the delivery zones. The leading reference price is the so-called ID3-Price index (or simply ID3),
which is also an underlying instrument of exchange-traded derivative products (see www.eex.com).
The index is computed as the volume-weighted average price of all trades on the quarter-hourly and
hourly products in the three hour window directly preceding the delivery (see www.epexspot.com).
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In this article, we focus on predicting the ID3-Price index a few hours-ahead and develop
regression type models that outperform the naïve benchmark. To this end, we consider a large
set of past ID3 values, past DA prices and forward-looking fundamental variables, and utilize the least
absolute shrinkage and selection operator (LASSO) [14] to eliminate regressors with low explanatory
power, as well as apply forecast averaging [15]. By comparing performance of different model
structures, we draw important conclusions regarding variable selection and provide recommendations
for very short-term electricity price forecasting.

The remainder of the paper is structured as follows. In Section 2, we introduce the dataset and
discuss the use of variance stabilizing transformations (VSTs). Next, in Section 3 we describe the naïve
approach proposed in Narajewski and Ziel [1] and introduce the model structures used in our study.
In Section 4, we compare the predictive performance in terms of two commonly used error measures
and the Giacomini and White [16] test for conditional predictive ability. Finally, in Section 5, we wrap
up the results and conclude.

2. The Dataset

2.1. The ID3-Price Index and DA Prices

The ID3-Price index takes into account only the most recent trades, that is, transactions that took
place no earlier than 3 h before delivery. EPEX SPOT SE publishes the index, however, the currently
covered period is too short for a comprehensive evaluation of the forecasts. Therefore, following
Narajewski and Ziel [1] and Uniejewski et al. [11], we use an ID3-like time-series reconstructed from
the individual transactions and denote it by ID3d,h, where d is the day and h is the hour of delivery,
see the top panel in Figure 1. In addition to past ID3 values, we also use prices from the German
day-ahead (DA) market, see the middle panel in Figure 1; to better see the differences between the two
price series, both are plotted during a sample 4-week period in the bottom panel. Recall, that the DA
prices are set around noon on day d− 1 for all 24 h of day d; we denote them by DAd,h.

Both time series are of hourly resolution and span 1216 days ranging from 1 January 2015 to
30 April 2018. We consider a rolling estimation scheme with a 364-day window. Initially, we fit our
models to data from hour 1 on 1 January 2015 to hour 20 on 30 December 2015 and compute the price
forecasts for the first hour of 31 December 2015; note, that there is a 4 h lag between the last known
ID3-Price index and the predicted hour. Next, the window is rolled forward by one hour and the
predictions for hour 2 of 31 December 2015 are generated. This procedure is repeated until forecasts for
hour 24 of 30 April 2018 are made, that is, the last hour in the 852-day long out-of-sample test period.

2.2. Exogenous Variables

The set of exogenous variables considered in this study includes three pairs of time-series that
describe the demand-supply relationship in Germany:

• the system-wide load Xd,h
1 and its day-ahead forecast X̂d,h

1 ,

• the total wind power generation (WPG; off- and on-shore) Xd,h
2 and its day-ahead forecast X̂d,h

2 ,
• and the total photovoltaic generation (PVG) Xd,h

3 and its day-ahead forecast X̂d,h
3 ,

where d is the target day and h is the hour. The day-ahead forecasts X̂d,h
i are plotted in Figure 2;

the corresponding actual values Xd,h
i of the fundamental variables are indistinguishable from them at

this resolution. Naturally, the latter are known ex-post, hence only their lagged values can be used
for forecasting. As discussed in Section 3, we utilize them by constructing a series of forecast errors,
that is, X̂d,h

i − Xd,h
i , for the time moments for which the actual values are available; we assume that

Xd,h
i is known immediately after its hourly period ends, that is, at (d, h + 1). Although an assumption,

advances in on-line data collection significantly reduce the latency from the data source to the data
provider, to the extent that in the near future this may become reality.
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Figure 1. The ID3-Price index ID3d,h (top) and the day-ahead prices DAd,h (middle) from 1 January
2015 to 30 April 2018, and a zoom in on a 4-week period of both price series (bottom). The vertical
dashed lines mark the beginning of the 852-day long out-of-sample test period and the boxes show the
zoom in area.
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Figure 2. Three forward-looking fundamental time-series: system-wide load forecasts (top), wind
generation forecasts (middle) and solar generation forecasts (bottom) for the period from 1 January 2015
to 30 April 2018. All three are published on day d− 1 and concern the 24 h of day d. As in Figure 1,
the vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.
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As Goodarzi et al. [3] argue, wind and photovoltaic generation forecasting errors increase the
absolute levels of system imbalance in Germany and these in turn influence electricity prices. Hence,
we additionally use a set of balancing volumes Bd,h−5

i for the three (i = 1, 2, 3) quarter-hourly periods
directly preceding the time at which the forecast is made, that is, the period spans the first 45 min
of the hour preceding the moment of computing the forecast. As in Narajewski and Ziel [1], Bd,h

i is
defined as the sum of imbalances of all German Transmission System Operators for day d and hour h;
this data is published every quarter-hour, 15 min after the end of the delivery.

2.3. Variance Stabilizing Transformation

Following the recommendations put forward by Uniejewski et al. [17], we use the so-called
variance stabilizing transformation (VST) to reduce the impact of extreme observations present in
demand, generation and particularly in electricity price data. Before applying the VST, each variable is
standardized by subtracting the sample median and dividing by the sample median absolute deviation
(MAD) or by the sample standard deviation if MAD = 0, corrected by the 75th percentile of the
standard normal distribution z0.75:

ξ = z0.75
ψ−Median(ψ)

MAD(ψ)
, (1)

where ψ is the in-sample vector of a given variable, ψ is a single element of ψ and ξ its standardized
value. However, unlike earlier studies, we apply the standardization to each variable separately due
to a large number of zero-valued observations in the PVG series. Then, we use a well performing
VST—the area hyperbolic sine (asinh)—on ξ:

φ = asinh(ξ) = log
(

ξ +
√

ξ2 + 1
)

, (2)

where φ is the VST-transformed value of ψ.
The back-transformation is more tricky. Uniejewski et al. Uniejewski et al. [17] simply set:

ψ =
MAD(ψ)

z0.75
sinh(φ) + Median(ψ). (3)

However, Narajewski and Ziel [1] argue that the latter is not correct since in most cases E sinh(X) 6=
sinh(EX). As a remedy, they propose using the following, mathematically correct back-transformation:

ψ =
MAD(ψ)

z0.75D

D

∑
i=1

sinh(φ + εi) + Median(ψ), (4)

where εi are in-sample residuals of the model and D is the size of the calibration window. In this study
we compare model performance for both back-transformations to assess the loss in predictive power
across models of different complexity when using the more popular [4,9,11,17,18], simpler and faster
to compute, but generally incorrect transformation (3), instead of (4).

3. The Models

3.1. The Naïve Benchmark

Recall that Narajewski and Ziel [1] conclude their empirical study of intraday hourly products
by stating that the market is weak-form efficient, that is, that the best predictor is the most recent
transaction price. Since we want to challenge this conjecture, as our benchmark we define:

naïved,h ≡ 4IDd,h
0.25, (5)
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where xIDd,h
y denotes the volume-weighted price of transactions that took place in the intraday

(ID) market in a y-hour window that ended x hours before delivery on day d and hour h, see
Equation (2) in [1]. Using this notation the ID3-Price index can be defined as ID3d,h ≡ 0IDd,h

3 , that is,
the volume-weighted price of transactions that took place in the last three hours of trading (excluding
the last 5 or 30 min, see Section 2).

Note, that our naïve benchmark is not identical to the one used in [1], that is, Naive.MR1 ≡
3.25IDd,h

0.25. Instead of assuming that the trader makes the decision and places orders in a 15-min
window ending 3 h before delivery, we allow for a one hour window for making the trading decisions
(between 4 and 3 h before delivery). This is illustrated in Figure 3, where the red step function
represents the time the forecasts are made (4 h before delivery) and the black step function the time the
delivery starts.

Figure 3. Illustration of the forecasting framework using actual transaction data from the German
intraday, continuous-time market for hourly products from 26 April 2018 16:00 to 27 April 2018 24:00.
The black step function represents the moment the delivery starts (every hour of Friday, 27 April 2018),
the circles refer to actual trades, with circle size indicating the traded volume (from 0.1 to 300 MWh)
and color the price (see the colorbar on the right), and the red step function represents the moment the
forecasts are made. For instance, at 12:00 on 27 April 2018 when forecasting the price for 16:00 (−→),
the most recent ID3 value is for 12:00 (∗). The grey-shaded area indicates the data used for computing
the seven partial ID3 indices utilized when forecasting the price for hour 16, see Section 3.2.3 for details.

3.2. LASSO-Estimated Models

An advantage of using automated variable selection is an almost unlimited number of
initially considered explanatory variables [19]. In this study, we define a baseline model with 76
potential regressors and its three extensions; the largest one takes into account 200+ explanatory
variables. All considered models are estimated in a multivariate modeling framework in the
sense of Ziel and Weron [20], that is, an explicit ‘day × hour’ matrix-like structure is used for the
24-dimensional price vectors. However, unlike when forecasting in day-ahead auction markets, where
the prices are set once a day, in a continuous-time intraday market we are able to use information
updated in the course of the day, for example, more recent weather forecasts.
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3.2.1. The Baseline Model

The baseline model is a slightly modified LASSO-estimated model of Uniejewski et al. [11].
The only difference is the omission of some of the less important variables. Namely, we exclude the
information about inputs distant in time and only use the latest information about past ID3 and DA
prices. As a result, we obtain a model with 76 potential regressors—21 last known ID3-Price index
values from the intraday market (that is, nearly the whole day), 24 DA prices for the target day and
seven dummy variables (to account for the weekly seasonality). Given the 4-hour forecast to delivery
lag and the time the DA prices are published, we can additionally include next day’s DA prices when
forecasting hours 16 to 24:

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i

︸ ︷︷ ︸
past intraday prices

+
24

∑
i=1

β21+iDAd,i

︸ ︷︷ ︸
DA prices for day d

+
7

∑
i=1

β45+iDi︸ ︷︷ ︸
weekday dummies

+1h≥16

24

∑
i=1

β52+iDAd+1,i

︸ ︷︷ ︸
DA prices for day d + 1

+ εd,h, (6)

where εd,h is the noise term. To simplify the notation when referring to an hourly product with delivery
i hours after (i > 0) or before (i < 0) the product with delivery on day d and hour h (more precisely:
with delivery between hour h− 1 and h) we define:

(d, h + i) ≡
(

d +

⌊
h + i− 1

24

⌋
, h + i− 24

⌊
h + i− 1

24

⌋)
. (7)

For instance, for h = 2 and i = −5 we have (d,−3) ≡ (d− 1, 21), while for h = 2 and i = −2 we have
(d, 0) ≡ (d− 1, 24). Note, that the price for each hour is predicted 4 h in advance, hence the first sum
in the above formula starts with i = 4, and using the most recent information available, see Figure 3.
Later in the text we denote model (6) by baseline.

3.2.2. The Model with Exogenous Variables

The first extension of model (6) is motivated by the results of Uniejewski et al. [21], who showed
that fundamental variables play an important role when forecasting DA prices. On the other hand,
Monteiro et al. [22] and Andrade et al. [23] argued that fundamentals (historical and predicted demand,
generation and weather) did not have much explanatory power when forecasting Spanish intraday
prices, since DA prices already included this information. To check whether fundamentals can help
in forecasting the ID3-Price index in the German intraday market, we extend the baseline model to
include load, wind power generation (WPG) and photovoltaic generation (PVG) forecasts and the
corresponding errors, as well as the balancing volumes (Section 2.2 for details):

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
24

∑
i=1

β76+iX̂
d,i
1︸ ︷︷ ︸

load forecasts

+
24

∑
i=1

β100+iX̂
d,i
2︸ ︷︷ ︸

WPG forecasts

+
24

∑
i=1

β124+iX̂
d,i
3︸ ︷︷ ︸

PVG forecasts

+
24

∑
i=4

β148+i

(
X̂d,h−i

1 − Xd,h−i
1

)
︸ ︷︷ ︸

errors of load forecasts

+

+
24

∑
i=4

β169+i

(
X̂d,h−i

2 − Xd,h−i
2

)
︸ ︷︷ ︸

errors of WPG forecasts

+
24

∑
i=4

β190+i

(
X̂d,h−i

3 − Xd,h−i
3

)
︸ ︷︷ ︸

errors of PVG forecasts

+
3

∑
i=1

β211+iB
d,h−5
i︸ ︷︷ ︸

balancing volumes

+εd,h. (8)

Later in the text we denote this model by w/exogenous.
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3.2.3. The Model with Partial ID Prices

The second extension of model (6) is motivated by the results of Narajewski and Ziel [1].
The authors emphasize that the most important information for forecasting ID3 can be derived
from recent transaction data for a given product. Hence, we extend the baseline model to include 8
additional predictors. Firstly, we add the naïve benchmark (5) as one of the explanatory variables.
Secondly, we add variables that link the intraday to day-ahead markets and reflect changes in the
expectations about price levels over time. More precisely, we construct artificial series that utilize the
information from recent transaction data on the neighboring products. For i = −4, ..., 2, we define
seven partial ID indexes:

pIDd,h
i ≡

1

∑τ∈[(d,h−5),(d,h−4)] Vd,h+i
τ

∑
τ∈[(d,h−5),(d,h−4)]

Vd,h+i
τ Pd,h+i

τ , (9)

where Vd,h
τ and Pd,h

τ are respectively the volume and price of a transaction made at time τ on a product
with delivery on day d and hour h. Hence, pIDd,h

i is a volume-weighted price of all transactions on
product (d, h + i) in the last hour before the forecast is computed, that is, between 5 and 4 h before the
delivery. For example, to compute pIDd,16

i , we use seven hourly windows corresponding to i = −4, ..., 2,

see the gray-shaded rectangle spanning 7 hourly products in Figure 3. Note, that using the xIDd,h
y

notation we can write:
pIDd,h

i ≡ 4+iID
d,h+i
1 . (10)

Finally, we can define the model with partial ID prices as follows (later in the text we denote it by
w/partial ID):

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
2

∑
i=−4

β81+i

(
DAd,h+i − pIDd,h

i

)
︸ ︷︷ ︸

difference between DA and partial ID prices

+ β84 naïved,h︸ ︷︷ ︸
naïve benchmark

+ εd,h. (11)

3.2.4. The Full Model

Now, we are ready to write the full model (denoted later in the text by full), which includes all
elements of models (8) and (11). We end up with a maximum of 222 potential regressors, depending
on whether we already know the day-ahead prices for day d + 1:

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
24

∑
i=1

β76+iX̂
d,i
1 +

24

∑
i=1

β100+iX̂
d,i
2 +

24

∑
i=1

β124+iX̂
d,i
3 +

24

∑
i=4

β148+i

(
X̂d,h−i

1 − Xd,h−i
1

)
+

+
24

∑
i=4

β169+i

(
X̂d,h−i

2 − Xd,h−i
2

)
+

24

∑
i=4

β190+i

(
X̂d,h−i

3 − Xd,h−i
3

)
+

3

∑
i=1

β211+iB
d,h−5
i +

+
2

∑
i=−4

β219+i

(
DAd,h+i − pIDd,h

i

)
+ β222 naïved,h + εd,h. (12)

The final modification of the benchmark model is obtained by fixing β222 ≡ 1, as considered in [1].
Later in the text we denote such a model by full-diff, because it corresponds to setting the dependent
variable to the difference between ID3 and the naïve benchmark, instead of the ID3-Price index itself.
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3.3. LASSO Estimation

In order to explain the estimation scheme, let us use a more compact form of the regression model:

Xd,h =
n

∑
i=1

βiV
d,h
i , (13)

where Vd,h
i ’s are the predictors and βi’s are the corresponding coefficients. The least absolute

shrinkage and selection operator (LASSO) shrinks the coefficients of the less important explanatory
variables towards zero and hence performs variable selection [14,24]. The LASSO can be treated as
a generalization of linear regression, where instead of minimizing only the residual sum of squares
(RSS), the sum of RSS and a linear penalty function of the β’s is minimized:

β̂L = min
β
{RSS + λ ‖β‖1} = min

β

{
RSS + λ

n

∑
i=1
|βi|
}

, (14)

where λ ≥ 0 is a tuning (or regularization) parameter. Note that setting λ to zero yields the standard
least squares estimator, for λ→ ∞ all βi’s tend to zero, while 0 < λ� ∞ admits a balance between
minimizing the RSS and shrinking the coefficients.

Selecting a ‘good’ value for λ is critical. It is, however, a complex problem [9,12,19]. Because of a
relatively short dataset, we are not able to reselect λ based on model performance in a validation period.
Instead, we have decided to use cross-validation. It can be effectively applied to select the tuning
parameter ex-ante, unfortunately at a cost of increased computational complexity. The procedure is
discussed in more detail in Section 5.2.

3.4. Forecast Averaging

Combining forecasts in order to obtain more precise and robust predictions is a technique known
both in the electricity price forecasting literature [15] and in forecasting in general [25]. Here, we use
an ensemble of two predictions—a simple arithmetic average of a LASSO-estimated model (labeled Z)
and the naïve forecast:

ens(Z) =
1
2

ÎD3
d,h
Z +

1
2

naïved,h. (15)

The motivation for using the arithmetic mean is twofold. Firstly, it is the simplest averaging scheme,
requiring no additional calibration. Secondly, it is hard to beat by ‘more sophisticated’ approaches [26].

4. Results

4.1. Forecast Evaluation

The forecasting accuracy is assessed in terms of two error measures: the mean absolute error
(MAE) and the root mean squared error (RMSE). The scores are reported for the full out-of-sample test
period of D = 852 days, that is, 31 December 2015 to 30 April 2018, see Figure 1, jointly for all hours of
the day:

MAE =
1

24D

D

∑
d=1

24

∑
h=1

∣∣∣E d,h
Z

∣∣∣ and RMSE =

√√√√ 1
24D

D

∑
d=1

24

∑
h=1

∣∣∣E d,h
Z

∣∣∣2, (16)

where E d,h
Z = ID3d,h − ÎD3

d,h
is the prediction error for model Z, for day d and hour h. Recall, that

the RMSE is the optimal measure for least square problems, whereas the MAE is more robust to
outliers [24]. The resulting aggregate MAE and RMSE scores can be used for a direct comparison
of the forecasts, but do not allow to draw statistically significant conclusions. Therefore, we use
the Giacomini and White [16] test for conditional predictive ability (CPA), which can be treated as
a generalization of the more popular Diebold-Mariano test for unconditional predictive ability [2].
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First, for each pair of models, following Uniejewski et al. [17] and Ziel and Weron [20], we compute
the so-called multivariate loss differential series:

∆d
A,B = ‖Ê d

A‖p − ‖Ê d
B‖p, (17)

where ‖Ed
Z‖p = (∑24

h=1 |Ed,h
Z |p)1/p is the p-th norm of the 24-dimensional vector of out-of-sample errors

for model Z. Then, we calculate the p-values of the CPA test with null H0 : α = 0 in the regression:
∆d

A,B = α′Xd−1 + εd, where Xd−1 contains information for day d− 1, that is, a constant and lags of
∆d

A,B. Note that we use the more parsimonious, multivariate version of the test, as introduced by Ziel
and Weron [20]. Due to the strong intraday seasonality we cannot use the standard approach, where
forecasts for all hours are treated as one univariate time series and tested jointly. On the other hand,
reporting test results for 24 hourly time series independently would require much more space.

4.2. MAE and RMSE Errors

In Table 1 we report the MAE and RMSE metrics for all considered models and their ensembles
with the naïve benchmark, as defined in Equation (15). In Figure 4 we additionally visualize the
set of results corresponding to back-transformation (4), reflecting the upper part of Table 1. Several
important conclusions can be drawn:

• In terms of the MAE, three models outperform the naïve benchmark even without averaging
forecasts. However, only the full-diff approach manages to beat the benchmark in terms of the
RMSE, see the values emphasized in bold in Table 1 in columns labeled ‘model’.

• All baseline model extensions yield lower errors than the baseline model itself, both in terms of
the MAE and RMSE.

• The full model outperforms the model with partial ID prices, which suggests that using the
exogenous variables discussed in Section 2.2 improves forecast accuracy.

• On average, back-transformation (4) proposed by Narajewski and Ziel [1] (the upper part of
Table 1) performs slightly better than the originally introduced one (the lower part of Table 1).
For this reason, in what follows we only discuss the results of back-transformation (4).

• Interestingly, for the full-diff model we observe that back-transformation (3) performs better
than the mathematically correct VST defined in Equation (4). The difference vanishes when
the forecasts are averaged, which is probably caused by the fact that the correction improves
performance mainly in the tails, and in the full-diff model the less heavy-tailed price differences
are predicted.

• Apart from the full-diff model, every other model performs better when its forecasts are averaged
using Equation (15). Compare the columns labeled ‘model’ and ‘ens(model)’ in Table 1.

• The improvements from averaging forecasts are much higher (ca. 12–14%) for models that do not
use the naïve benchmark as a regressor. However, what is surprising, the gains are noticeable
(ca. 2–4%) even for models which include this explanatory variable. Apparently, the LASSO
scheme does not put enough weight to this variable. Setting β222 = 0 in the full-diff model helps,
but does not solve the problem completely. We return to this issue in Section 4.4.
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Table 1. MAE and RMSE errors for all 852 days of the out-of-sample test period, see Figure 1. The upper
part of the table reports on the results obtained for models which use back-transformation (4), while
the lower that use back-transformation (3). Columns labeled ‘model’ refer to the models themselves,
while those labeled ‘ens(model)’ to ensembles with the naïve benchmark, as defined in Equation (15).
Errors smaller than those of the naïve benchmark are emphasized in bold.

Back- Model MAE RMSE
Transformation Class Model ens(model) Model ens(model)

naïve 3.774 — 5.999 —

With correction
proposed in [1],
see Equation (4)

baseline 4.427 3.868 7.178 6.246
w/exogenous 4.200 3.700 6.882 6.001
w/partial ID 3.771 3.702 6.052 5.903
full 3.704 3.622 6.050 5.826
full-diff 3.716 3.693 5.894 5.900

As originally
introduced in [17],
see Equation (3)

baseline 4.433 3.866 7.294 6.285
w/exogenous 4.208 3.703 6.990 6.046
w/partial ID 3.807 3.708 6.182 5.942
full 3.725 3.627 6.154 5.862
full-diff 3.691 3.703 5.887 5.918

baseline w/exogenous w/partial ID full full-diff
3.50

3.75

4.00

4.25

4.50

M
A
E

model

ens(model)

baseline w/exogenous w/partial ID full full-diff
5.5

6.0

6.5

7.0

7.5

R
M
S
E

Figure 4. Bar plots illustrating the MAE (top) and RMSE (bottom) errors reported in the upper part of
Table 1, that is, for the naïve benchmark and models that utilize back-transformation (4). The black
dashed lines correspond to the benchmark, the solid bars represent the individual models and the
dotted bars the corresponding ensembles.

4.3. Conditional Predictive Ability

We perform the Giacomini and White [16] test of conditional predictive ability (CPA) to check
whether the differences in forecasting accuracy are statistically significant. We conduct the test only for
the naïve benchmark and models that utilize back-transformation (4). The p-values of the pairwise
comparisons are visualized in Figure 5. We can see that:
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• The naïve forecasts can be significantly outperformed by predictions of models that include
partial ID information and exogenous variables (full and full-diff models) without averaging,
and by most of models after ensembling.

• Forecasts of the baseline model are significantly outperformed by those of any other
LASSO-estimated model.

• For all considered models, ensembling significantly improves the accuracy in terms of the
linear errors.

• Forecasts of the ens(full) model significantly outperform those of any other model, both in terms
of the linear and quadratic errors.

Figure 5. Results of the conditional predictive ability (CPA) test of Giacomini and White [16] for the
linear (left) and quadratic (right) errors. We use a heat map to indicate the range of the p-values—the
closer they are to zero (→ dark green) the more significant is the difference between the forecasts of a
model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

4.4. Why Does Ensembling Improve the Results?

As the above reported results indicate, the ensemble is in most cases able to outperform both
individual forecasts. However, the simple averaging scheme proposed in Equation (15) might not be
the optimal for this task. Hence, in this Section we consider a more general formula:

ens(Z) = (1− w) · ÎD3
d,h
Z + w · naïved,h, (18)

where w is the weight assigned to the naïve forecast. In Figure 6 we depict the MAE of ensemble (18)
as a function of w for the full model with back-transformation (4). The MAE curve is convex with a
minimum at ca. w = 45%. However, the value for w = 50%, that is, the simple mean used in the study,
is very close to the optimum.

The reason behind this shape is the characteristic of LASSO forecasts, estimated on long calibration
windows. Specifically, the model is trained to generalize well, and such a behavior is reinforced by the
fact that there are only a few spikes in the calibration window. As such, the model is able to better
predict prices at the typically observed levels at the cost of underestimating spikes, especially negative
ones, see Table 2. Note that an ensemble model is either the best performing one, or its performance is
very close to the better of the full model and the naïve benchmark.
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This behavior can be also observed in Figure 7, which illustrates differences in mean absolute
errors—MAEnaïve −MAEmodel for model = ens(full) or full, across a range of price regimes. Overall
40 price regimes are considered—percentiles 0 to 2.5, percentiles 2.5 to 5, ..., and percentiles 97.5 to
100—with each point placed in the middle of the corresponding 2.5-percentile interval. Note, that for
all except the very extreme intervals the ens(full) and full models consistently outperform the naïve
benchmark. On the other hand, in the tails of the price distribution the benchmark excels, likely due
to the ability to quickly adapt to unexpected market situations. Therefore the ensemble (regardless
of the weights) balances the generalization of the LASSO forecasts with the ability to quickly adapt
to non-recurring phenomena of the naïve benchmark, with both ensemble components playing an
important role in achieving this effect.

0 20 40 60 80 100

Näıve forecast weight [%]

3.600

3.625

3.650

3.675

3.700

3.725

3.750

3.775

3.800

M
A
E

Figure 6. The MAE errors of ensembles created using Equation (18) that utilize the full model with
back-transformation (4), as a function of the weight assigned to the naïve benchmark.
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Figure 7. Differences in mean absolute errors across a range of price regimes: MAEnaïve −MAEmodel

for model = ens(full) or full; both with back-transformation (4). The x-axis represents percentiles of
the marginal distribution of prices observed in the out-of-sample test period, with each point placed
in the middle of the corresponding 2.5-percentile interval. The first point of the blue curve, that is,
for observations between percentiles 0 and 2.5, is out of bounds since MAEnaïve −MAEfull = −1.7 for
the extremely low prices.
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Table 2. The MAE and RMSE errors across five regimes defined by percentiles of the marginal
distribution of prices observed in the out-of-sample test period: 0 to 2.5, 2.5 to 25, 25 to 75, 75 to 97.5,
and 97.5 to 100. The LASSO model used is the full model with back-transformation (4). The lowest
score for each error measure and regime is emphasized in bold.

Model Percentiles

0 to 2.5 2.5 to 25 25 to 75 75 to 97.5 97.5 to 100

MAE
naïve 12.35 3.882 2.795 3.982 11.94
full 14.04 3.757 2.668 3.836 12.42
ens(full) 12.43 3.672 2.663 3.815 11.81

RMSE
naïve 17.03 5.452 3.781 5.296 18.54
full 19.46 5.206 3.555 5.111 18.82
ens(full) 17.26 5.118 3.576 5.086 18.33

5. Discussion and Conclusions

The motivation for this study was a claim made by Narajewski and Ziel [1], that the German
intraday, continuous-time market for hourly products was weak-form efficient, that is, that the best
predictor for the ID3-Price index was the most recent transaction price. Performing a comprehensive
forecasting exercise involving parameter-rich regression-type models with four types of fundamental
variables as inputs, we have been able to challenge their claim and show that we can significantly
outperform the naïve forecast by combining it with a prediction of a LASSO-estimated model. To keep
the empirical part of the paper concise, we have opted for omitting some of the considerations. Let us
now briefly discuss them.

5.1. The Moment of Forecasting the ID3-Price Index

After consulting with practitioners, we have decided to focus on a forecasting scheme used by
Uniejewski et al. [11], where the predictions are made four hours before delivery. This means, that a
trader has an hour to make the decisions and build a long or short position before the ID3 transaction
window opens three hours before delivery. However, to check whether also the Naive.MR1 ≡ 3.25IDd,h

0.25
benchmark of Narajewski and Ziel [1] can be outperformed, we have recalculated our models in their
setting. Naturally, the Naive.MR1 is harder to beat than our naïve model, because it uses more recent
transaction data. Yet, the relative performance vs. the benchmark was qualitatively the same as
reported in Section 4.

5.2. Selecting the LASSO Regularization Parameter

For the choice of the regularization parameter, we have resorted to using an automated cross
validation (CV) technique. More precisely, the applied CV procedure consisted of three folds with a
dense logarithmic grid of 50 λ values spanning six orders of magnitude. Two thirds of the calibration
sample was used for training the models estimated with different λ’s, the remaining one third for
testing them. This resulted in a significantly increased computational burden, due to the need of testing
multiple models for multiple λ’s, but also allowed for an ex-ante choice of the regularization parameter.
We have also performed a limited numerical experiment to compare with the results obtained for
the best ex-post selected λ. As it turned out, the difference in the MAE and RMSE errors was less
than 0.5%.

5.3. The Impact of Intraday Updates of the Fundamentals

We have also tried to assess the impact of using more recent forecasts of the system-wide load,
wind power generation, photovoltaic generation and balancing volumes. We have measured the
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predictive performance of our models under the assumption that we know future values of the
exogenous variables until the end of the target day. With such ‘perfect forecasts’ we have been
able to additionally reduce the forecasting error by more than 2%. This result emphasizes how
important in short-term forecasting is the availability of more frequently updated forecasts of the
exogenous variables.

5.4. Model Size

As mentioned above, the LASSO procedure allows for an efficient estimation of parameter-rich
models. However, the quality of the obtained estimates can differ for different sizes of the regression
model. Having only ca. 360 observations in the calibration window, we may obtain worse forecasts
if we consider dozens or hundreds of redundant variables in the model. The full model defined by
Equation (12) includes only ca. 200 potential predictors. Interestingly it outperforms by ca. 0.6% a
richer model with more than 800 variables (the same information sources, but more past observations).
Therefore we advise to use expert knowledge and/or back-testing to eliminate non-informative
predictors before running the LASSO.

5.5. Directions for Future Research

Given that the literature on forecasting prices in European intraday power markets is still very
scarce, our study is a step forward towards understanding the impact of using recent transaction
data and exogenous variables on the predictive performance. Our study can be further expanded
in several directions. In particular, we report the results for only one VST (for more suggestions
see Reference [17]) and without decomposing the data into a long-term seasonal component and
the remaining stochastic part (for the importance of doing this see, for example, References [27,28]).
Furthermore, we have focused on point forecasting, ignoring the full predictive distribution [8,29]
or—what may be even more important in continuous-time intraday markets—the trajectories [13,30].
We have restricted ourselves to using regression-based models, however, machine learning techniques
could be used in this context as well [12,22,23,31], naturally at the cost of an increased computational
burden. Finally, recall from Section 4.4, that the ensemble we use balances the generalization of the
LASSO forecasts with the ability to quickly adapt to non-recurring phenomena of the naïve benchmark.
A potentially viable alternative would be to use the approach introduced by Hubicka et al. [32], which
averages forecasts of a given model across calibration windows of different length.
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