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Abstract: The effects of particle shape differences on binary mixture shear flows are investigated
using the Discrete Element Method (DEM). The binary mixtures consist of frictionless rods and
disks, which have the same volume but significantly different shapes. In the shear flows, stacking
structures of rods and disks are formed. The effects of the composition of the mixture on the stacking
are examined. It is found that the number fraction of stacking particles is smaller for the mixtures
than for the monodisperse rods and disks. For binary mixtures with small particle shape differences,
the mixture stresses are bounded by the stresses of the two corresponding monodisperse systems.
However, for binary mixtures with large particle shape differences, the stresses of the mixtures can
be larger than the stresses of the monodisperse systems at large solid volume fractions because
larger differences in particle shape cause geometrical interference in packing, leading to stronger
particle–particle interactions in the flow. The stresses in dense binary mixtures are found to be
exponential functions of the order parameter, which is a measure of particle alignment. Based on the
simulation results, an empirical expression for the bulk friction coefficient (ratio of the shear stress to
normal stress) for dense binary flows is proposed by accounting for the effects of particle alignment
and solid volume fraction.

Keywords: granular shear flow; binary mixture of different particle shapes; particle-phase stress;
particle stacking and ordering; discrete element method

1. Introduction

Granular shear flows are prevalent in natural and industrial processes, such as snow avalanches,
landslides, sand storms, mineral transport, chemical and pharmaceutical processing, coal combustion,
and food production. Studies on the mechanics and physics of granular flows have been carried out
because a good understanding of the granular flow properties is useful to control damage caused
by natural disasters and to optimize industrial processes. Theories of granular flow rheology have
been developed. By treating particles as gas molecules, the kinetic theory of gases was introduced
to statistically describe mechanical and thermal properties of dilute, dry granular flows [1], and the
theory was thereafter extended to the dense flow regime [2,3]. Jop et al. [4] found that the ratio of
shear to normal stress, µ, was a function of the inertial number, I = γdp/

√
p/ρp, in which γ is local

shear rate, p is local pressure, and dp and ρp are particle diameter and density, respectively. Thus, the
constitutive relation for dense flows is described by the correlation µ = µ(I), which is well known
as the µ(I)-theory. Non-local effects have been considered in subsequent work [5,6]. Recently, Pähtz
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et al. [7] observed that the ratio of shear to normal stress, µ, scaled with the square root of the local
Péclet number,

√
Pe, for dry, wet, dilute, and dense granular flows, provided that the particle diameter

exceeds the particle mean free path.
Most granular materials are mixtures containing particles of different sizes, densities, shapes,

and elastic moduli. The flow behavior of mixtures can be distinct from that of monodisperse systems.
Shen [8] derived a set of constitutive equations for the stresses in a rapid flow of spherical particles with
two sizes based on the assumptions: (i) binary collisions are the major stress-generating mechanism;
(ii) stresses are caused by momentum exchange between surface particles and exterior particles; (iii)
the work done by shear stresses on the boundaries is balanced by the energy dissipation through
particle–particle collisions; and (iv) a larger particle and a smaller particle have the same random
fluctuation energy, i.e., equipartition of energy. The predictions by Shen’s theory was good for a
diameter ratio close to unity and deteriorated for large particle size differences, as pointed out in [9].
Jenkins and Mancini [9] and Farrell et al. [10] extended the kinetic theory, which was developed for
monodisperse systems [1], to describe granular flows of binary mixtures. In the work of Farrell et al. [10],
equipartition of energy between different particle species was also assumed and a radial distribution
function at contact was defined as a function of the sizes and solid concentrations of the two particle
species. Compared with experimental results, the prediction of Farrell et al. [10] was in good agreement
at small solid volume fractions, but significant discrepancies at large solid volume fractions were
observed due to the dominance of enduring contacts, which violated the binary collision assumption.
In the kinetic theory of Jenkins and Mancini [9], it was assumed that the pair distribution function for
two 2D disks is the product of Maxwellian velocity distributions and a factor that accounts for the effects
of excluded area and collisional shielding, and non-equipartition of energy is considered. Compared
to Shen’s work [8], the theory of Jenkins and Mancini can correctly predict that the stresses decrease
with an increase in small particle concentration over a much wider range of particle diameter ratios.
By incorporating the Revised Enskog Theory [11] and using non-Maxwellian velocity distributions,
Willits and Arnarson [12] developed another version of kinetic theory, which showed better agreement
with the discrete particle simulation results than the Jenkins-Mancini theory [9]. Shear flow simulations
of binary mixtures [13] showed that equipartition of energy between large and small particles rapidly
deteriorated as the coefficient of restitution decreased and the particle size difference increased. Galvin
et al. [14] evaluated the effect of non-equipartition of energy on rapid flows of granular mixtures. It was
found that for simple shear flows without segregation, the prediction from kinetic theory was insensitive
to the equipartition versus non-equipartition treatment, while for segregating flows the presence of
non-equipartition gave rise to additional components of the driving forces for the size segregation,
resulting in better predictions. Thus, non-equipartition of energy should be considered in kinetic theory
for describing a wide range of polydisperse granular flows. Iddir and Arastoopour [15] considered
non-Maxwellian velocity distributions and non-equipartition in their kinetic theory. By comparing four
different kinetic theories of granular mixtures, Benyahia [16] demonstrated that the Iddir–Arastoopour
theory gave the best prediction of the discrete particle simulations.

Dense flows of granular mixtures were computationally investigated using the Discrete Element
Method (DEM) by Tripathi and Khakhar [17] and Gu et al. [18]. It was found that like monodisperse
dense flows, polydisperse dense flows also followed a µ(I)-like rheological correlation, in which the
shear to normal stress ratio µ is a function of the inertial number I. However, the yielding stress ratio
in the µ(I) model depended on the polydispersity and skewness of the particle size distribution [18].
Dahl et al. [19,20] explored the effects of continuous size distributions on rapid granular flows using
numerical simulations of simple shear flows. It was observed that the stresses with Gaussian and
lognormal size distributions were consistent with the stresses of monodisperse systems when the
root-mean-square (2D) or root-mean-cubed (3D) particle diameter of the mixture was equal to the
diameter of the monodisperse system. A similar conclusion was also obtained from the kinetic theory
of Farrell et al. [10].
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Previous work of granular mixtures mainly focused on differences in particle size and density,
and the effects of particle shape differences in a mixture were much less studied. Yang et al. [21]
performed DEM simulations of shear flows of binary mixtures with large oval and rod-like particles
and small spheres. They found that the particle projected area in the plane perpendicular to the
flow direction played an important role. The stress–solid volume fraction curves of binary mixtures
with different volume ratios of small-to-large particle species collapsed on a single master curve by
normalizing the stresses using the effective particle projected area and root-mean-cubed diameter.
Shear flows of mixtures of cylindrical particles were studied using DEM by Hao et al. [22]. In these
mixtures, the cylindrical particles had the same diameter but different lengths. It was observed that the
interaction between different particle species increased the alignment of shorter particles and reduced
the alignment of longer particles. The total stress tensor of a mixture could be expressed as a sum of the
stress tensors of the monodispersed particle species, which were linearly scaled by the concentrations
of the corresponding species.

For an improved understanding of the effects of particle shape differences, shear flows of binary
mixtures of elongated rods and flat disks are simulated using DEM in the present work. In these binary
mixtures, a rod has the same volume as a disk, and thus all the particles have the same equivalent
volume diameter dv. Therefore, the effects of particle size differences are eliminated and only particle
shape differences exist in the mixtures. In the shear flows, the rods and disks exhibit significant stacking
and alignment. The effects of the composition in a mixture on the stacking and alignment behaviors
and the particle-phase stresses are then explored. Lastly, a correlation between the microstructure and
the stresses is investigated.

2. Methodology

2.1. Cylindrical Particle Discrete Element Method

The Discrete Element Method (DEM), which was first proposed by Cundall and Strack [23],
is a popular numerical tool for studying particulate systems. In DEM, the motion of each particle
is incrementally solved by time integration, and the contact forces between the particles need to be
determined in each time step. Based on the algorithms of contact detection for cylindrical objects
presented by Kodam et al. [24] and Guo et al. [25], an in-house DEM code is developed and utilized in
this work for the modeling of cylindrical particles. In this method, the translational and rotational
motion of an individual particle i is described based on Newton’s law of motion,

mi
dvi

dt
= Fci (1)

Ii
dωi

dt
− (Ii·ωi) ×ωi = Ti (2)

where vi and ωi are the translational and angular velocities of the particle i, respectively.
The translational movement of the particle of the mass mi is driven by the contact force Fci, and
the rotation is induced by the torque Ti generated from the contact forces (including both normal
and tangential forces for a cylindrical particle). For 3D non-spherical particles, the parameter Ii is the
moment of inertia tensor. The velocities and positions of the particles can be updated by the time
integration of Equations (1) and (2) with a fixed time step. The orientation of a cylindrical particle is
described by a rotation matrix and updated by the current angular velocity at each time step [26].

The geometries of cylindrical particles in the DEM simulations are illustrated in Figure 1. The aspect
ratio (AR) of a cylinder is defined as the ratio of particle length to diameter, i.e., AR = l/d. Thus, a rod
and a disk correspond to AR > 1 and AR < 1, respectively. Six typical contact types exist for the contact
between two cylindrical particles [24]: face–face, face–band, face–edge, band–band (parallel and
skewed), band–edge, and edge–edge. In addition, several special contact types were recognized [25].
The algorithms to determine overlap size, contact normal direction, and contact point position for
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each contact type, which are provided in [24,25], are summarized for convenience in Appendix A.
The overlap size δn is used to calculate the normal contact force Fn based on the Hertz model [27],

Fn =
4
3

E∗r∗
1
2 δ

3
2
n (3)

where
1
E∗

=
1− ζ2

1

E1
+

1− ζ2
2

E2
(4)

1
r∗

=
1
r1

+
1
r2

(5)

Energies 2020, 13, x FOR PEER REVIEW 4 of 26 

 

in Appendix A. The overlap size �� is used to calculate the normal contact force �� based on the 

Hertz model [27], 

�� =
4

3
�∗�∗

�
���

�
� (3) 

where  

1

�∗
=

1 − ��
�

��

+
1 − ��

�

��

 (4) 

1

�∗
=

1

��

+
1

��

 (5) 

 

 

 

(a) (b) 

Figure 1. Geometries of (a) a rod and (b) a disk modeled in the present DEM simulations. 

In Equation (4), E1, E2 and ζ1, ζ2 are the Young’s moduli and Poisson’s ratios of the two particles 

in contact, respectively. In Equation (5), �� and �� represent the radii of the two cylindrical particles 

in contact. To consider the dissipation of kinetic energy in the particle–particle contact process, a 

damping force ��� is added to the normal contact force, which has the expression,  

��� = 2�
5

6
�����∗ ��

� (6) 

where  

�� =
���

���

= 2�∗�∗
�
�δ�

�
�  (7) 

�∗ =
����

�� + ��

 (8) 

and ��
� is the normal component of the relative velocity at the contact point between two particles. In 

Equation (8), ��  and ��  are the masses of two contacting particles. The damping coefficient β in 

Equation (6) is a function of coefficient of normal restitution � (i.e., the ratio of post-collisional to pre-

collisional the relative normal velocity at the contact point).  

� = −
�� �

√π� + ��� �
 (9) 

In this study, the cylindrical particles are frictionless without tangential contact forces. It should 

be noted that the same contact force models of Equations (3) and (6) are used for each contact type 

without considering the difference in contact geometry. This simplification works well for a number 

of packing and flow processes as discussed in the following section. 

2.2. DEM Code Validation 

To validate the present DEM code, particle packing, hopper discharge, and granular shear flow 

with the cylindrical particles were simulated in our previous studies. In the particle packing [28], 

cylindrical particles were dropped into a cylindrical container one-by-one, and the packing density 

was evaluated after all the particles settled with nearly zero velocities. The packing densities of AR = 

Figure 1. Geometries of (a) a rod and (b) a disk modeled in the present DEM simulations.

In Equation (4), E1, E2 and ζ1, ζ2 are the Young’s moduli and Poisson’s ratios of the two particles
in contact, respectively. In Equation (5), r1 and r2 represent the radii of the two cylindrical particles in
contact. To consider the dissipation of kinetic energy in the particle–particle contact process, a damping
force Fnd is added to the normal contact force, which has the expression,

Fnd = 2

√
5
6
β
√

Knm∗ vr
n (6)

where
Kn =

dFn

dδn
= 2E∗R∗

1
2 δ

1
2
n (7)

m∗ =
m1m2

m1 + m2
(8)

and vr
n is the normal component of the relative velocity at the contact point between two particles.

In Equation (8), m1 and m2 are the masses of two contacting particles. The damping coefficient β
in Equation (6) is a function of coefficient of normal restitution e (i.e., the ratio of post-collisional to
pre-collisional the relative normal velocity at the contact point).

β = −
ln e√

π2 + ln2 e
(9)

In this study, the cylindrical particles are frictionless without tangential contact forces. It should
be noted that the same contact force models of Equations (3) and (6) are used for each contact type
without considering the difference in contact geometry. This simplification works well for a number of
packing and flow processes as discussed in the following section.

2.2. DEM Code Validation

To validate the present DEM code, particle packing, hopper discharge, and granular shear flow
with the cylindrical particles were simulated in our previous studies. In the particle packing [28],
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cylindrical particles were dropped into a cylindrical container one-by-one, and the packing density
was evaluated after all the particles settled with nearly zero velocities. The packing densities of
AR = 6 cylinders obtained from the DEM simulations were consistent with experimental results for two
different dropping heights. In the hopper discharge of cylindrical particles with different particle aspect
ratios [29], similar particle discharge rates were obtained for the DEM simulations and experiments.
Simple shear flows of monodispersed cylinders were also simulated using the present code [30]. It was
observed that the stresses of the cylindrical particles with AR = 1 were close to the prediction of
kinetic theory [1], which usually predicts the stresses of spheres. This consistency is reasonable as
the difference in sphericity is small between the spheres and the cylinders with AR = 1. It was also
observed that the stress discrepancy between the spheres and the cylinders increased as the sphericity
of the cylinders decreased (i.e., as AR increased). This dependence of stresses on particle sphericity
was qualitatively consistent with previous findings [31]. As a result, the algorithms used in the present
cylindrical particle DEM code are verified as the agreement is achieved between the simulation and
experimental results.

2.3. Computational Set-up of Shear Flow

Shear flows of binary mixtures of rods and disks in the absence of an interstitial fluid are simulated
using the DEM code. The gravitational force is switched off in order to achieve a uniform field of
stress and particle distribution in the shear domain. As shown in Figure 2, a well-mixed binary
mixture of rods and disks is uniformly generated in a rectangular domain of dimensions Lx = 0.0072 m,
Ly = 0.0072 m, and Lz = 0.0036 m (i.e., Lx/dv = 30.25, Ly/dv = 30.25, and Lz/dv = 15.13). The properties
of the rods (AR = 6) and disks (AR = 0.1, 0.15, 0.2, and 0.3) are presented in Table 1. All of the particles
have the same volume and thus the same equivalent volume diameter dv. An approach to generate a
uniform, densely packed bed of cylindrical particles in a specified domain was proposed in [25].
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Figure 2. Numerical model of shear flow of a binary mixture of rods and disks.

Table 1. Particle properties and simulation parameters.

AR dv (m) ρ (kg/m3) E (Pa) ζ e γ (s−1)

0.1, 0.15, 0.2, 0.3, and 6 2.38 × 10−4 2500 8.7 × 109 0.3 0.9 100

In the simulations, shear flow is initiated by applying a linear x-velocity profile of particles in
the y-direction,

Vix = γ·(yi −Yc) (10)

where Vix is the x-component of the velocity of particle i, γ is the assigned shear rate, yi and
Yc are the y-coordinate of the mass center of particle i and the y-coordinate of the center of the
shear domain, respectively. Periodic boundary conditions are used in the x and z directions, and a
Lees–Edwards boundary condition [32] is specified in the y-direction. According to the Lees–Edwards
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boundary condition, when the mass center of a particle moves out of the upper (or lower) boundary,
it is reintroduced into the shear domain from the lower (or upper) boundary with the particle
x-velocity minus (or plus) γLy, by which a constant average shear rate is maintained in the domain.
Meanwhile, the x-coordinate of the reintroduced particle is modified to account for the cumulative
shear deformation [32], the y-coordinate is minus (or plus) Ly, and the z-coordinate remains unchanged.
Thus, a granular shear flow occurs in the x-y plane. It is noted that during the shear flow process, the
particle x-velocity profile always maintains approximately linear as described by Equation (10).

In the shear flow simulations, the average stress tensor of the particle phase within the shear
domain can be measured. The total stress tensor σtot consists of a kinetic component σkin and a
collisional component σcol, i.e., σtot = σkin + σcol. The kinetic component σkin arises from the particle
velocity fluctuation and is written as,

σkin =
N∑

i=1

(miVi ⊗Vi)/Vdomain (11)

in which Vi = vi − 〈v〉 is the fluctuating velocity of particle i, and 〈v〉 represents average particle
velocity in a local steady state, which can be determined using Equation (10) because the average
velocity profile follows such a profile at the steady state. The parameter N is the total number of
particles in the domain of total volume Vdomain and ⊗ represents the dyadic product operator.

The collisional stress tensor, which arises from the particle–particle contact forces, is given by

σcol =

Nc∑
j=1

(
Fcj ⊗ lcj

)
/Vdomain (12)

in which Fcj is the contact force, lcj is a vector connecting the centers of mass of two contacting particles,
and Nc is the number of contacts. A steady state of shear flow occurs when a balance is reached between
shear production (from the upper and lower boundaries) and energy dissipation (via particle–particle
collisions). At the steady state, the physical quantities, such as stresses and number of contacts,
fluctuate slightly around constant values.

2.4. Sensitivity to Time Step and Domain Size

In previous DEM simulations with spherical particles, a critical time step was determined based
on the Rayleigh wave propagation on a particle [33]. In this work, a critical time step for DEM modeling
of cylindrical particles is proposed by a simple modification to the expression of critical time step for
spherical particles,

∆tc =
πlc

0.3262 + 1.7532

√
ρ

G
(13)

where the characteristic particle size lc is the minimum value between the cylindrical particle diameter
d and length l, and G is the shear modulus (G = 0.5 · E/(1 + ζ)). The real time step ∆t used in the
simulations is usually a small fraction of the critical time step, i.e., ∆t = f rac·∆tc, in which f rac is
between 0 and 1. Different time steps of f rac = 0.025, 0.05, 0.075, 0.1, 0.3, and 0.6 are used to check
the sensitivity in the shear flow simulations of the binary mixture of AR = 0.3, AR = 6 and C = 0.5 at
the solid volume fraction ν = 0.4. The rods fraction C is defined as the number fraction of rods, i.e.,
C = Nrod/(Nrod + Ndisk), in which Nrod and Ndisk are the numbers of rods and disks, respectively, in a
binary mixture. As shown in Figure 3a, the total shear stresses σtot

xy , normalized by ρd2
vγ

2, are nearly
unaffected by the four different time steps, indicating that numerical convergence has been achieved.
Thus, a relatively larger time step with f rac = 0.1 is chosen for the rest of simulations in order to reduce
the computational cost.
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Figure 3. Evolution of normalized shear stress for (a) the binary mixture of AR = 0.3 and AR = 6 at
the solid volume fraction ν = 0.4 with different time steps and (b) the binary mixture of AR = 0.3 and
AR = 6 at ν = 0.05 with different shear domain sizes. Rods fraction is C = 0.5 for the two mixtures.

The base shear flow domain has the dimensions [Lx = 30.25 dv, Ly = 30.25 dv, Lz = 15.13 dv].
To examine the effect of domain size, two larger domains are considered: [1.5Lx, 1.5Ly, 1.5Lz] and [2Lx,
2Ly, 2Lz]. A comparison of simulation results with the three different domains is made in Figure 3b.
It can be seen that a similar evolution of normalized shear stress is obtained and the average stresses at
steady state are nearly the same with the three different domains. Therefore, the base flow domain is
sufficiently large to produce domain size-independent results. The stress results of a dilute flow at ν =

0.05 are shown in Figure 3b. Nevertheless, the domain of [Lx = 30.25 dv, Ly = 30.25 dv, Lz = 15.13 dv]
can also produce the domain size-independent results for the dense flows, due to the fact that a larger
number of particles (in a dense flow than in a dilute flow) leads to a better statistical evaluation. As a
result, the base domain of dimensions [Lx = 30.25 dv, Ly = 30.25 dv, Lz = 15.13 dv] has been used for all
the shear flow simulations reported in the following sections. In the shear flow process, the volume of
the shear domain is kept constant.

3. Particle Stacking and Alignment

In dense shear flows, rods and disks exhibit significant stacking and ordering behavior.
By introducing parameters to quantify the stacking and ordering, the effect of microstructure on bulk
stresses is explored in this section.

Stacking occurs to the particles of the same shape in binary flows. A stacking structure can be
defined as an assembly of rods or disks in which two neighboring particles are close to each other and
have similar orientation. As shown in Figure 4a, a mathematical criterion is proposed to determine
whether two neighboring rods or disks are within a stacking structure,(

xi − xj
)2
+

(
yi − yj

)2
+

(
zi − zj

)2
≤ D2 (14)

arccos |m1 · n1 + m2 · n2 + m3 · n3| ≤ φ (15)

where (xi, yi, zi) and (xj, yj, zj) are coordinates of the mass centers of two neighboring particles, and
(m1, m2, m3) and (n1, n2, n3) are the unit vectors of the major axes of the two particles. According to
Equations (14) and (15), two rods or disks are within a stacking when the distance between their centers
is smaller than or equal to D and the angle between their major axes is smaller than or equal to φ.
In the present study, the threshold values are chosen as D = 1.25d for rods or 1.5l for disks and φ = 10◦

for both rods and disks. Based on the above criterion, stacking structures are determined and shown in
Figure 4b for a shear flow of a binary mixture of rods (AR = 6) and disks (AR = 0.3) at the solid volume
fraction of ν = 0.4. The particles that are not in the stackings are omitted in the image of Figure 4b.
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Figure 4. (a) An illustration of the criterion to determine a stacking structure, and (b) formation of
stackings in a shear flow of a binary mixture of rods (AR = 6) and disks (AR = 0.3). The non-stacking
particles are removed from the image (b).

To quantify and compare the degree of particle stacking, average stack size Rave and fraction of
stacking particles P are introduced. The average stack size Rave is written as,

Rave =

∑Ntot
st

i=1 Ri

Ntot
st

(16)

in which Ri is the number of particles in the stack i and Ntot
st is the total number of stacks. The fraction

of stacking particles P is defined as,

P =
Nst

p

Ntot
p

(17)

where Nst
p is the number of particles that are included in the stacks and Ntot

p is the total number of
particles in the flow domain.

In dense flows of rods or disks, particles exhibit strong orientational preference with all the particle
major axes aligned in a similar direction. An order parameter, S, was used by Börzsönyi [34] and
Wegner [35] to quantify the degree of this orientational preference or particle alignment. The components
of a second-order particle orientation tensor are written as,

Qi j =
3

2N

N∑
k=1

(
λk

iλ
k
j −

1
3
δi j

)
(18)

in which λk
i and λk

j are the i and j components of the unit vector of the major axis of particle k, δi j is the
Kronecker delta, and N is the total number of particles of interest. The order parameter S is obtained
as the largest eigenvalue of the 3 × 3 matrix represented by the tensor Qi j. The rods or disks in the
domain are randomly oriented with the order parameter S = 0 and completely aligned in the same
direction with S = 1. The parameter S usually runs between 0 and 1, and a larger value of S indicates a
larger degree of particle alignment.

3.1. Monodisperse flows

Particle stacking and ordering are first discussed for monodisperse flows. Shear flows of
monodisperse disks and rods at the solid volume fraction of ν = 0.5 are simulated. At steady state,
stacking structures of disks and rods are generated as shown in Figure 5. The disks tend to stack
face-to-face in the direction perpendicular to the flow direction, and the rods tend to stack band-by-band
into bundles oriented in the flow direction.



Energies 2020, 13, 1841 9 of 25

Energies 2020, 13, x FOR PEER REVIEW 9 of 26 

 

  

(a) (b) 

Figure 5. Stacking of (a) disks (AR = 0.3) and (b) rods (AR = 6) in monodisperse flows at solid volume 

fraction = 0.5. Particles that are not part of stacks are omitted in the figures. 

The evolution of normalized shear stress and average stack size ���� with cumulative shear 

strain for monodisperse shear flows is shown in Figures 6a and 6b. For disks with AR = 0.3, both the 

stress and average stack size fluctuate slightly around constant values in the flow process. For rods 

with AR = 6, the stress initially decreases and then remains nearly unchanged after a cumulative shear 

strain of 20, and the average stack size ���� initially increases and then fluctuates slightly around a 

constant value after a strain of 20. Thus, it shows that the stress decreases as the average stack size 

increases. Similar trends are observed for the fraction of stacking particles P, as shown in Figures 6c 

and 6d. The stress and P remain constant for AR = 0.3 disks, and the stress decreases as P increases 

before they reach the steady-state values for AR = 6 rods. Consistent with the variation of shear stress 

with the stack size and fraction of stacking particles, the shear stress decreases as the order parameter 

S increases, as shown in Figures 6e and 6f. 

It is noted that the normal stress shows a similar dependence on the stack size, fraction of 

stacking particles, and order parameter as the shear stress. Thus, the formation of stacking structures 

and increased particle alignment tends to reduce the stresses. 

  

(a)  (b) 

  

(c) (d) 

Figure 5. Stacking of (a) disks (AR = 0.3) and (b) rods (AR = 6) in monodisperse flows at solid volume
fraction ν = 0.5. Particles that are not part of stacks are omitted in the figures.

The evolution of normalized shear stress and average stack size Rave with cumulative shear strain
for monodisperse shear flows is shown in Figure 6a,b. For disks with AR = 0.3, both the stress and
average stack size fluctuate slightly around constant values in the flow process. For rods with AR = 6,
the stress initially decreases and then remains nearly unchanged after a cumulative shear strain of
20, and the average stack size Rave initially increases and then fluctuates slightly around a constant
value after a strain of 20. Thus, it shows that the stress decreases as the average stack size increases.
Similar trends are observed for the fraction of stacking particles P, as shown in Figure 6c,d. The stress
and P remain constant for AR = 0.3 disks, and the stress decreases as P increases before they reach
the steady-state values for AR = 6 rods. Consistent with the variation of shear stress with the stack
size and fraction of stacking particles, the shear stress decreases as the order parameter S increases,
as shown in Figure 6e,f.
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Figure 6. Evolution of normalized shear stress, average stack size Rave (first row), fraction of stacking
particles P (second row), and order parameter S (third row) with cumulative shear strain for the
monodisperse shear flows with disks of AR = 0.3 (first column) and rods of AR = 6 (second column): (a)
Rave versus cumulative shear strain for AR = 0.3, (b) Rave versus cumulative shear strain for AR = 6, (c)
P versus cumulative shear strain for AR = 0.3, (d) P versus cumulative shear strain for AR = 6, (e) S
versus cumulative shear strain for AR = 0.3, (f) S versus cumulative shear strain for AR = 6. The solid
volume fraction is ν = 0.5.

It is noted that the normal stress shows a similar dependence on the stack size, fraction of stacking
particles, and order parameter as the shear stress. Thus, the formation of stacking structures and
increased particle alignment tends to reduce the stresses.

3.2. Binary Mixture Flows

Shear flows of binary mixtures of rods and disks, which have the same particle volume, are
simulated to examine the effect of particle shape difference on the stacking and ordering behavior.
Figure 7 shows the evolution of normalized shear stress and average stack size Rave with cumulative
shear strain for binary mixture flows with various rods fractions C. In the binary mixtures, rods and
disks have aspect ratios of AR = 6 and AR = 0.3, respectively, and the solid volume fraction is set
to ν = 0.5. A stack is formed by particles of the same shape, as shown in Figure 4b. Thus, the stack
sizes are measured for the rods and disks separately. As shown in Figure 7a, for a binary mixture
with C = 0.25, the average shear stress initially decreases and then approaches a steady-state value.
The average stack sizes, which are the same for the rods and disks, remain constant in the flow process.
As the rods fraction C increases (Figure 7b,c), an initial decrease in the shear stress is also obtained;
however, a larger magnitude of the stress decrease is observed. The average stack size of the disks with
AR = 0.3 still remains constant, while the average stack size of the rods with AR = 6 shows a slight
increase with the cumulative shear strain.

The variation of normalized shear stress and fraction of stacking particles P with cumulative shear
strain is plotted in Figure 8 for the binary mixture flows with various rods fractions C. The fraction of
stacking particles is calculated for each particle species

Pi =
Nst

pi

Ntot
pi

(19)

where Nst
pi is the number of particles of species i that are included in the stacks and Ntot

pi is the total
number of particles of species i in the mixture. It can be seen from Figure 8 that as the rods fraction C
increases, the fraction of stacking rods with AR = 6 increases and the fraction of stacking disks with AR
= 0.3 decreases. Thus, the concentration of a particle species can promote stacking of that species.
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Figure 7. Evolution of normalized shear stress and average stack size Rave with cumulative shear strain
for binary mixture flows of AR = 0.3 (disks) and AR = 6 (rods) with a rods fraction (a) C = 0.25, (b) C =

0.5, and (c) C = 0.75. The solid volume fraction is ν = 0.5.
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Figure 8. Evolution of normalized shear stress and fraction of stacking particles P with cumulative
shear strain for binary mixture flows of AR = 0.3 (disks) and AR = 6 (rods) with (a) C = 0.25, (b) C = 0.5,
and (c) C = 0.75. The solid volume fraction is ν = 0.5.
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For a binary mixture, Equation (17) can be used to calculate the overall fraction of stacking particles
Ptot = Nst

p /Ntot
p , in which Nst

p is the total number of particles (including rods and disks) in the stacks
and Ntot

p is the total number of all the particles in the mixture. The average normalized shear stress and
the average value of Ptot at the flow’s steady state are plotted as a function of rods fraction C in Figure 9.
The rods fraction C = 0 corresponds to monodisperse disk flow and C = 1 corresponds to monodisperse
rod flow. Figure 9 shows that the shear stress decreases monotonically with an increase of C, while the
overall fraction of stacking particles Ptot shows a U-shape dependence on C. A stack of particles is a
structure with geometric tessellation and mechanical stability. The face-on-face stacking of disks and
band-on-band stacking of rods can achieve such compacted tessellation with good mechanical stability.
In binary mixtures, due to the interaction between the particles of different shapes (i.e., disks and rods),
stacking is interrupted. As a result, the overall fractions of stacking particles Ptot for binary mixtures
are smaller than those of monodisperse rods and disks. The worst stacking occurs in the well-mixed
binary mixture with 50% rods and 50% disks (i.e., C = 0.5).
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Figure 9. Variation of the average normalized shear stress and the overall fraction of stacking particles
Ptot with the rods fraction C for binary mixtures of AR = 0.3 and AR = 6. The solid volume fraction is
ν = 0.5.

Evolution of the normalized shear stress and order parameter S with cumulative shear strain
is plotted in Figure 10 for binary mixture flows with various rods fractions. In Figure 10, the order
parameter S is calculated for each particle species in the mixture. At the early stage of the flow process,
as the stress declines, the order parameter S for the rods increases. The stress and order parameter
reach steady state at the same cumulative shear strain. This observation is consistent with that of the
monodisperse rod flow (see Figure 6f). The order parameter S for the disks fluctuates between 0.5 and
0.6 in the flow process, which is similar to the observation of monodisperse disk flow (see Figure 6e).
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Figure 10. Evolution of normalized shear stress and order parameter S with cumulative shear strain for
binary mixture flows of AR = 0.3 (disks) and AR = 6 (rods) with rods fractions (a) C = 0.25, (b) C = 0.5,
and (c) C = 0.75. The solid volume fraction is ν = 0.5.

In a binary mixture, given the order parameter of rods Srod and order parameter of disks Sdisk,
a volume-averaged order parameter Save can be defined to quantify the degree of particle alignment
for the whole mixture

Save = C · Srod + (1−C) · Sdisk (20)

The average normalized shear stress and the average order parameter Save are plotted in Figure 11
as a function of rods fraction C for the binary mixtures. The stress declines monotonically with
increasing C and the order parameter Save increases monotonically with increasing C. This indicates
that the stress decreases as the order parameter Save increases. The correlation between the system
stresses and order parameter is further discussed in the following sections.
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Figure 11. The average normalized shear stress and the average order parameter Save as a function of
rods fraction C for binary mixtures of AR = 0.3 and AR = 6, solid volume fraction ν = 0.5.
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4. Effect of Particle Shape Polydispersity on Stresses

Different binary mixtures with the same rods (AR = 6) but different disks have been modeled.
Disks of AR = 0.3, 0.2, 0.15 and 0.1 (the smaller AR corresponds to the flatter disks) have been considered
in this work. Average normalized shear stress at steady state is plotted as a function of solid volume
fraction ν for various binary mixtures in Figure 12. In general, the stress curves of binary mixtures
exhibit a W-shape, similar to those of monodisperse cylindrical particle flows [30]. For binary mixtures
of AR = 0.3 and AR = 6 (Figure 12a), the stresses of the mixtures (with 0 < C < 1) are bounded by those
of the two monodisperse flows (with C = 0 and C = 1). When the disks become flatter by reducing the
AR, as shown in Figure 12b–d, the stresses of the mixtures are sandwiched between those of the two
monodisperse systems at low solid volume fractions (ν < 0.4). Nevertheless, it is interesting to observe
that the stresses of the mixtures can be larger than the stresses of both corresponding monodisperse
systems at large solid volume fractions (ν > 0.4).
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Figure 12. Average normalized shear stresses at the steady state for various binary mixtures with (a)
AR = 0.3 and AR = 6, (b) AR = 0.2 and AR = 6, (c) AR = 0.15 and AR = 6, and (d) AR = 0.1 and AR = 6.
An error bar represents the standard deviation of the stress from the average value at steady state.

For a clearer comparison between the stresses of binary and monodisperse systems, the average
normalized shear stresses are plotted as a function of rods fraction C in Figure 13. The stresses show
a monotonic change with rods fraction at each solid volume fraction considered for the mixtures of
AR = 0.3 and AR = 6 (Figure 13a). For the mixtures of AR = 0.2 and AR = 6 (Figure 13b), the stress
decreases monotonically with increasing C when ν ≤ 0.4 and the stress curve exhibits a hump shape
when ν = 0.5, demonstrating that the stresses of the mixtures can be greater than those of the
monodisperse systems. For the mixtures of AR = 0.15 and AR = 6 (Figure 13c), the stress is independent
of rods fraction C at solid volume fractions of ν ≤ 0.4, due to the fact that two monodisperse flows
(C = 0 and 1) have the same stress. The humped stress curves are observed when the solid volume
fraction is ν > 0.4, and the stress difference between the mixtures and monodisperse systems increases
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as ν increases. For the mixtures of AR = 0.1 and AR = 6 (Figure 13d), the stress increases monotonically
with increasing C when ν ≤ 0.4, because the stress of monodisperse rods (C = 1) is larger than that of
the monodisperse disks (C = 0). The humped stress curve occurs when ν = 0.5.
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Figure 13. Variation of average normalized shear stress with rods fraction C for moderate and dense
flows of the binary mixtures with (a) AR = 0.3 and AR = 6, (b) AR = 0.2 and AR = 6, (c) AR = 0.15 and
AR = 6, and (d) AR = 0.1 and AR = 6. An error bar represents the standard deviation of the stresses
from the average value at steady state.

As discussed previously, the results of Figure 13 show that increased particle shape difference and
increased solid volume fraction lead to larger stresses for the binary mixtures when compared to the
monodisperse systems. It is presumed that the large particle shape difference makes the particles more
difficultly tessellate in a confined space for the dense flows, thus promoting particle–particle interaction.
As a result, larger stresses are obtained for the mixtures than for the monodisperse systems. Evidence
for the enhanced particle–particle interaction is provided by considering the particle rotational kinetic
energies. As shown in Figure 14a, the average rotational kinetic energy of particles generally decreases
with increasing rods fraction C for the binary mixtures of AR = 0.3 and 6 at the solid volume fraction ν
= 0.5. This trend is consistent with the variation of the stress with C, as shown in Figure 13a. For the
binary mixtures of AR = 0.15 and 6 at ν = 0.55, larger average rotational kinetic energies of particles
are obtained for the mixtures (Figure 14b), and consistently larger stresses are obtained for these
mixtures (Figure 13c). Thus, larger stresses of the mixtures are caused by the enhanced particle–particle
interaction, resulting in larger particle rotational kinetic energies. The present simulation results
also show that the average translational particle kinetic energy is independent of the rods fraction
C (not shown here) and therefore, the translational motion of particles is mainly determined by the
assigned mean flow field. In addition, for the binary mixtures of AR = 0.15 and 6 at ν = 0.55, smaller
average order parameters Save are observed compared to those of the monodisperse flows, as shown
in Figure 15. The reduction in the order parameters Save, i.e., the degree of particle alignment, is
consistent with the enhanced particle rotation (Figure 14b).
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Figure 14. Average rotational kinetic energy of particles as a function of rods fraction C for the binary
mixtures of (a) AR = 0.3 and 6, ν = 0.5 and (b) AR = 0.15 and 6, ν = 0.55. An error bar represents the
standard deviation of particle rotational kinetic energies from the average value at the steady flow state.
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5. Correlation between Stresses and Order Parameter

As discussed in the previous sections, the particle-phase stresses exhibit a strong dependence on
the order parameter S in dense granular flows (ν ≥ 0.4). In the shear flow simulations of monodispersed
cylindrical particle flows by Berzi et al. [36], they found that the viscosity, i.e., the ratio of shear stress to
shear rate, was strongly dependent on the order parameter at large solid volume fractions, for which
particle alignment was significant. In this section, the correlation between the particle-phase stresses
and the order parameter for binary mixtures is discussed.

Different binary mixtures of different combinations of particle aspect ratios (AR = 0.1 and 6,
AR = 0.15 and 6, AR = 0.2 and 6, and AR = 0.3 and 6) with different rods fractions (C = 0.25, 0.5, and
0.75) are modeled in the present simulations. Variations of the normalized shear stress, normalized
pressure, and ratio of shear stress to pressure with average order parameter Save is plotted in Figure 16
for various binary mixtures at a solid volume fraction of ν = 0.5. The pressure Ptot is the average value
of three normal stress components, i.e., Ptot =

(
σtot

xx + σtot
yy + σtot

zz

)
/3. As shown in Figure 16a,b, the data

for shear stresses and pressures collapse on master curves, especially for Save > 0.5. Some scattering
data are observed at smaller order parameters. These results indicate that the particle-phase stresses
have a strong dependence on the order parameter when the particle alignment becomes significant
with Save > 0.5, regardless of particle aspect ratios and compositions of the binary mixtures; While the
particle shape and the composition of a mixture also play a role in determining the stresses of a randomly
oriented particle bed with a small order parameter. In dense flows, the collisional stress component
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σcol determines the total stress [30]. The collisional stress σcol depends on the particle–particle contact
forces Fcj (see Equation (11)). The alignment of particles can reduce the projected area of a particle
in the plane perpendicular to the flow, reducing the interference of neighboring particles and thus
decreasing the particle–particle contact forces. As a result, the particle alignment-dependence of the
particle–particle contact forces Fcj may lead to the order parameter-dependence of the particle phase
stresses. Since the shear stresses and pressures are functions of the order parameter Save, their ratio,
which is known as the bulk friction coefficient, also depends on Save, as shown in Figure 16c.

The normalized shear stress and pressure are assumed to follow the exponential correlations,

σtot
xy

ρd2
vγ2

= exp(a1 · Save + b1) (21)

Ptot

ρd2
vγ2

= exp(a2 · Save + b2) (22)

The coefficients a1 and b1 can be determined by fitting to the data in Figure 16a, and a2 and b2

can be determined by fitting to the data in Figure 16b. The values of a1, b1, a2, and b2 are provided in
Table 2. Dividing Equation (21) by Equation (22) gives,

σtot
xy

Ptot
=

exp(a1 · Save + b1)

exp(a2 · Save + b2)
= exp[(a1 − a2)Save + b1 − b2] (23)
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Figure 16. Variation of (a) normalized shear stress, (b) normalized pressure, and (c) ratio of shear stress
to pressure with average order parameter Save for various binary mixtures. The solid volume fraction
is ν = 0.5.

Table 2. Coefficients in Equations (21) and (22) for binary flows at the solid volume fraction of ν = 0.5.

Coefficients a1 b1 a2 b2

Values −5.0174 2.2389 −3.3785 2.8122

The curve on Figure 16c represents Equation (23).
The solid volume fraction also has a significant impact on the stresses. Figure 17 shows the

variation of normalized shear stress, normalized pressure, and ratio of shear stress to pressure with
average order parameter at various solid volume fractions. The binary mixtures consist of the disks
with AR = 0.15 and the rods with AR = 6. It can be seen that different exponential expressions with
different sets of coefficients (a1, b1, a2, and b2) can be determined for the different solid volume fractions.
Thus, the four coefficients, a1, b1, a2, and b2, can be expressed as functions of solid volume fraction ν,
and polynomial functions are assumed as follows,

a1, b1, a2, or b2 = A1ν
3 + A2ν

2 + A3ν+ A4 (24)
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solid volume fractions ν. It is noted that the vertical coordinate is the logarithmic coordinate. Thus, the
stresses have the exponential dependence on Save for various ν.

By fitting to the obtained data, the coefficients in Equation (24) can be determined for a1, b1, a2,
and b2, as presented in Table 3.

Table 3. Coefficients in Equation (24).

A1 A2 A3 A4

a1 3235.0 −4730.0 2258.6 −356.60
b1 2243.7 −3343.9 1617.2 −257.18
a2 −2439.4 3610.5 −1731.9 270.80
b2 −1643.9 2506.1 −1222.6 193.67

Equation (23) can be rewritten as,

σtot
xy

Ptot
exp(b2 − b1)


1

a1−a2

= exp(Save) (25)

The term on the left-hand side of the above equation is the bulk friction coefficient modified by
the parameters which can be expressed as functions of the solid volume fraction ν (Equation (24)).
The modified bulk friction coefficient is plotted against the order parameter Save in Figure 18. The data
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for the various binary mixtures, which are presented in Figure 17c, tend to collapse on an exponential
curve in Figure 18. The effects of particle alignment, compositions of the mixtures, and solid volume
fractions ν on the bulk friction coefficient have been considered in the empirical correlation shown
in Figure 18. It should be noted that the results presented in Figures 16–18 include not only the
steady-state data, but also the data before the steady flow is achieved, illustrating the strong order
parameter-dependence of the stresses.
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6. Conclusion

Granular shear flows of binary mixtures of frictionless rods and disks are simulated using the
Discrete Element Method (DEM). In the binary mixtures, rods and disks have the same volume but
significantly different shapes. Thus, the effects of particle shape differences on the binary mixture
flows are investigated in this work. In shear flows, the rods and disks show stacking and ordering
behavior, which is enhanced as the flow develops before reaching a steady state. By changing the rods
fraction in the mixture, the average stack size changes slightly. The number fraction of the particles
that are included in the stacks is smaller for the binary mixtures than for the monodisperse rods or
disks, because the probability to form a stacking structure is reduced by the contacts between the
particles of different shapes.

A summary of the main results and conclusions on the stresses of the binary mixtures of rods and
disks are presented as follows:

� For the binary mixtures of the rods with AR = 6 and the disks with AR = 0.3, the stresses of
the mixtures are bounded between the stresses of the monodisperse rods (AR = 6) and the
monodisperse disks (AR = 0.3). At a given solid volume fraction, as the rods fraction increases
from 0 to 1, the stress of the mixture changes monotonically from the stress of the monodisperse
disks (AR = 0.3) to the stress of the monodisperse rods (AR = 6).

� For the binary mixtures of the rods with AR = 6 and the disks with AR = 0.2, 0.15 and 0.1, the
stresses of the mixtures are still bounded by the stresses of corresponding monodisperse systems
at the low solid volume fractions (ν < 0.4), while larger stresses are obtained for the mixtures
than for the monodisperse systems at the high solid volume fractions (ν ≥ 0.4). It is found that
the average particle rotational kinetic energies of these mixtures are greater than those of the
monodisperse rods and disks in the dense flows, because larger difference in particle shape causes
difficulties for the dense packing, leading to stronger particle–particle interaction in the flow.
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Due to the enhanced particle rotation, smaller order parameters, which is a measure of the degree
of particle alignment, are obtained for the mixtures than the monodisperse systems.

� The data of the stresses versus the order parameter for dense binary flows with different particle
shapes and different compositions can collapse on exponential function curves, indicating the
strong dependence of the stresses on the particle alignment. Based on the simulation results,
an empirical expression of bulk friction coefficient (ratio of the shear stress to pressure) for the
dense binary flows is proposed to account for the effects of the particle alignment and solid
volume fraction.

� The previous dense granular flow models, such as the µ(I)-theory [4], have been successfully
applied to the spherical particle flows. However, the effect of particle shape is difficult to be
taken into account in these models. The present results (Equations (21)–(25)) may give a hint
that the order parameter S should be included in the rheological laws for the elongated and flat
particle flows.
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Appendix A

Table A1. Determination of overlap size, contact normal vector, and contact point position for the basic
contact types between two cylindrical particles. The equations, which can be found in [24], are defined
in particle i’s body-fixed frame of reference. The contact detection algorithms for several special contact
scenarios are referred to [25].

Contact Types Equations

Face–face contact
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where Li and Lj are the major axial lengths of contacting cylinders i and j,
zi

cyl j is the z-coordinate of the center of particle j in particle i’s
body-fixed frame of reference.

Contact normal vector:
n̂i

contact = [0, 0, sign (zi
cyl j)]

in which the function ‘sign’ returns the sign of the expression.

Contact point position:
xi

contact =
(
xi

contact, yi
contact, zi

contact

)
,

in which,
zi

contact = zi
cyl j − sign(z i

cyl j)
(

1
2 Lj −

1
2δn

)
(
xi

contact, yi
contact, 0

)
= (Ri −

1
2δr)

^
r

i
,

δr =
(
Ri + Rj

)
−

√
(x i

cyl j

)2
+(y i

cyl j

)2
,

^
r

i
=

(x i
cyl j, yi

cyl j , 0)√
(x i

cyl j

)2
+(y i

cyl j

)2
,

where Ri and Rj are the radii, respectively, of the particles i and j, and
xi

cyl j and yi
cyl j are the x and y-coordinates, respectively, of the center of

the particle j.
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