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Abstract: In the power industry, the deployment of smart grid resources in power systems has become
an issue of major interest. The deployment of smart grid resources represents an additional uncertainty
in the integrated generation and transmission planning that raises uncertainties in investment-related
decision making. This paper presents a new power system planning method for the integration
of electric vehicles (EVs) and wind power generators into power systems. An interval-stochastic
programming method is used to account for the heterogeneous uncertainties attributable to natural
variability and lack of knowledge. The numerical results compare the multiple integration scenarios
and verifies the effectiveness of the proposed method in terms of cost distribution and regret cost.

Keywords: smart grid; integrated generation and transmission planning; interval-stochastic
programming; wind power; electric vehicle

1. Introduction

The prominent trend toward smart grid development is the increasing integration of new energy
resources into power systems. Such resources—which include renewable energy, electric vehicles (EVs),
demand response (DR), and energy storage systems (ESSs)—have the potential to enable high-efficiency
operation of power systems utilizing clean, secure energy sources [1]. The studies for integrating new
energy resources have been conducted. An open source-based hardware platform [2] and monitoring,
control system was developed [3,4]. While digitalizing the power grid, a secure authentication for new
energy sources was also studied [5]. A comparison of several forecasting methods is presented [5].
The integration and application of new resources is summarized in [6].

As smart grid resources become more widely integrated into the power system, the system
operators face critical challenges to balance the supply and demand in the power system. They have
to develop ways to balance supply and demand while considering the distinctive and stochastic
characteristics of smart grid resources [7]. Furthermore, these challenges also take place in an
integrated generation and transmission planning [8,9]. In turn, the risk of potential losses associated
with non-optimal investment decisions in power system planning will increase.

It is important to develop a comprehensive understanding of the uncertainties involved in new
energy resources [10,11]. However, existing power system planning methods involving smart grid
resources [12,13] take into account only uncertainties associated with natural variability. The focus
of this paper is to present a new integrated generation and transmission planning method that also
reflects risks arising from increased uncertainties caused by major smart grid resources such as EVs
and wind power generators.

In this study, stochastic programming is used to model the uncertainty attributable to the natural
variability of smart grid resources. Probabilistic distributions associated with the new energy resources
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are estimated by means of entropy pooling (EP) [14,15], which is a scenario analysis method based
on the Bayesian perspective. Furthermore, interval programming is used to model uncertainties
attributable to the lack of knowledge and minimax regret criterion for minimizing potential losses of
the interval optimization problem. In addition, an interval-stochastic programming method [16,17] is
used to simultaneously account for both interval and stochastic variables in an integrated generation
and transmission planning problem.

The remainder of this paper is organized as follows: In Section 2, an integrated generation and
transmission planning problem involving smart grid resource models is formulated. The proposed
interval-stochastic power system expansion planning method based on the entropy pooling is presented
in Section 3. The effectiveness of the proposed method is shown under multiple EV charging price
scenarios in Section 4.

2. Problem Formulation

The proposed method is designed to determine the investment location, timing and capacity of
generator and transmission, considering the uncertainties of deployment and generation pattern of
smart grid resources. Figure 1 presents the schematic diagram of the proposed method.
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Figure 1. Schematic diagram of the proposed method.

In this section, the problem formulation of the generation and transmission planning problem is
presented. First, the hourly generation of new energy resources is modeled with the consideration of
their uncertainties. Then, the master and slave problem of the proposed optimization problem using
Benders’ decomposition is discussed.

2.1. New Energy Resource Model Under Uncertainty

In this study, interval-stochastic models of new energy resources such as EV charging loads and
wind power are formulated. Because the impact on the power grid of wind power is significant due
to its capacity, the uncertainty of wind power is considered before other renewable energy sources.
In the EV charging load model, the key factors influencing the EV charging loads generally include the
number of EVs, the daily energy consumed by EVs, and the hourly charging patterns of EVs [13,18,19].
Likewise, the key factors influencing the wind power generations generally include the wind speed,
the conversion rate from wind to electrical energy, and the annual diffusion rate of wind power
capacity [12,20]. Uncertain factors regarding the deployment of each new energy resource, for which
probabilistic distributions are hard to obtain, are modeled as interval variables, whereas other uncertain
factors are modeled as stochastic variables.
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EV Charging Load

The anticipated annual market diffusion rate of EVs in future year y (ωy
±) within vehicle markets

is express as follows:

ω±y =
M±

1 + exp(κ · ι) · exp(−κ · y)
, ∀y, (1)

where ± is the index for interval variables, M is the saturation level of the diffusion curve, ι is the
parameter of the inflection point, and κ is the delay factor characterizing the shape of the deformed
exponential function. The anticipated annual market share rate of EVs has been modeled as a logistic
curve (“s-shaped curve”) [19,21]. Based on the diffusion rate ωy

±, the number of EVs at each bus in
every year can be calculated. The EV charging load during hour h in year y at bus i (EVyhiψ

±) in an
anticipated power system is presented as follows:

EV±yhiψ =

NEV ±yi∑
υ=1

((
Cmax
υ

Rmax
υ
·Rday

υψ · ηυ

)
· ρhψ

)
, ∀yh, i, ψ. (2)

where NEVyi
± is the number of EVs in future y year at bus i, υ is the index for EVs, Rυmax is the

maximum driving distance of an EV with a fully charged battery, Cυmax is the capacity of an EV battery,
Rυψda is the daily driving distance per EV, and ηυ is the EV charging efficiency, ρhψ is the distribution
of EVs by charging state during certain hour.

2.2. Formulation of Integrated Generation and Transmission Expansion Planning with Smart Grid Resources

The objective of conventional integrated resource planning (IRP) is to minimize investment costs,
subject to planning and operational constraints. New energy resources under uncertainties are modeled
as interval-stochastic variables. The uncertainties, such as load growth and fuel price, were taken
into account [22], however, to restrict the focus of this study to the effect of smart grid resources, only
the effects of smart grid resources are considered. A Benders’ decomposition technique is used to
determine both deterministic and stochastic variables simultaneously [23].

2.2.1. Wind Power Generation

In this study, wind speed is estimated using a stochastic variable that follows a Weibull
distribution [12]. A discontinuous function (Pyhwψ) for the output of a single wind turbine at
hour h

Pyhwψ =


0,

Pmax
w ·

(
Zw + Uw(vA

yhψ) + Qw(vA
yhψ)

2
)

Pmax
w ,

,
0 ≤ v ≤ vc, v ≥ vs

vc ≤ v ≤ vr

vr ≤ v ≤ vs

,∀yh, w, ψ. (3)

where Z, U, and Q are the parameters that describe the conversion rate from wind to electrical energy.
In addition, w is the index for wind power turbines, Pmax is the maximum output of the wind power
turbine, and vc, vr, and vs are the cut-in wind speed, rated wind speed, and the cut-off wind speed of the
wind power turbine, respectively. Based on the model of new energy resources that can be formulated,
an integrated generation and transmission planning problem is presented in the following subsection.

2.2.2. Benders’ Master Problem

The optimization problem for integrated generation and transmission planning defined for a
deterministic stage can be represented using the following equations. The objective function (Z) for
minimizing the investment cost and expected mean value of operational cost is given by:

Min .
xg, xt,φ

Z± = IC±(xg±, xt±) + φ±, (4)
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where xg and xt represent the investment decisions in generating capacity and transmission lines,
respectively; IC represents the investment cost function; and ϕ represents the expected mean value of
the operational cost from the dual function. The investment cost IC can be represented as follows:

IC±(xg±, xt±) =
NY∑
y=1


 ∑

g∈G+

ICGg · xg±gy +
∑

i j,t∈T+

ICTi j · xt±i jty

 · (1 + m)−(y−1)

− SCY, (5)

where NY is the length of the planning horizon in years; i-j are the index for bus pairs; g and t are the
generation unit transmission line indices, respectively; m is the discount rate; SCY is the salvage cost in
the final planning year Y; G+ and T+ are the candidate sets of the generation units and transmission
lines to be built; and ICG and ICT are the investment cost coefficient of building the generation and
transmission line, respectively.

The first constraints for a master problem are the dual constraints due to the Bender’s
decomposition technique.

φ± = E±
(
OC±ψ(xg±, xt±)

)
≥

NY∑
y=1

(
(±yψ)

(n−1)
− (ξ

(n−1)
yψ · xg±gy + π

(n−1)
yψ · xti jty)

)
, ∀n. (6)

where E(OC(·)) represents the expected value of the operational cost function OC, n is the iteration
index number, and o, π, and ξ are the dual values of the objective function, the generation capacity
limit, and the transmission capacity limit, respectively, in the slave problem. The other constraints are
investment constraints, and equality constraints.

2.2.3. Benders’ Slave Problem

Consequently, the slave optimization problem for system operation defined for each probabilistic
scenario can be represented using the following equations. The objective function for minimizing
operational cost can be expressed as follows:

Min.
xp±

OC±ψ =
NY∑
y=1

NH∑
h=1

∑
g∈G

(
OCGgy·xp±gyhψ

)
·(1 + m)−(y−1)

. (7)

where NH is the number of the hours in the year, G is the set of the available generation units, xp
is the generation schedule of generation units, and OCG is the generation cost coefficient of the
generation unit.

The constraints of the slave problems include constraints such as:

• The nodal power balance equation
• The upper and lower limit constraints for generator output and line flow
• The power flow constraints
• The thermal unit ramp up/down rate limits
• The equality constraint for power flow variables

In the proposed planning problem, investment decisions are scheduled at yearly intervals, while
electricity demand is met at hourly intervals. The dual constraint in Equation (6) is represented
in terms of the expected marginal mean values of the system operational constraints and indicates
the optimality and feasibility of the slave problems. The solution technique incorporating minimax
criterion is presented in the following section.
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3. Integrated Generation and Transmission Planning Method Incorporating New Energy
Resources under Uncertainties

To deal with interval variables, the proposed problem has to be reformulated. Additionally, a
method to fix an interval solution into one value is needed. On the other hand, due to the complexity
of stochastic programming, the sampling technique is needed to reduce the scenarios which are
considered. In this section, the two-step method with minimax regret criterion for interval variable
and EP for sampling the stochastic variables are presented.

3.1. Risk-Based Decision-Making Method for Interval Planning Problem with Minimax Regret Criterion

In this study, the uncertainties involved in the deployments of smart grid resources—such as
the diffusion rates of EVs and the projected capacity of installed wind generators—are represented
as interval parameters. A two-step method [17] is used to deal with the interval parameters by
reformulating the proposed interval power system planning model into two deterministic submodels:
upper and lower bound models. By transforming the interval variables into deterministic variables
and solving each submodels, the interval bound of investment solution can be obtained. To deal with
interval-valued solutions, a minimax regret criterion for minimizing potential losses is incorporated
as a decision-making criterion for the interval optimization problem. To obtain the minimax regret
solution within infinite alternative sets, a bi-objective optimization method incorporating both upper
and lower bound models is used in this study. Consequently, the objective function of the proposed
master problem (4) can be rewritten as follows [24]:

Min .
xg, xt,φ

Z = Z+ + Z−. (8)

The investment decision variable in both submodels are set to the same value, to share an identical
investment result for both cases; however, operational decision variables are decoupled. Consequently,
investment solutions that minimize the opportunity costs can be obtained. These solutions also satisfy
the feasibility conditions of both upper and lower bound models.

3.2. Interval-Stochastic Programming Method with Entropy Pooling

In this subsection, the uncertainty attributed to the natural variability of smart grid resources
is considered using an appropriate stochastic model. Previous studies [25,26] have shown that
consideration of the multiple distributions could help manage the risks associated with forecasting
errors in the decision-making problem. In this study, EP is employed to consider the multiple
distributions for forecasting the introduction of smart grid technologies. EP, a novel scenario analysis
technique for portfolio optimization, estimates the posterior probabilistic distributions of stochastic
variables by minimizing the relative entropy of their prior (reference) and posterior PDFs. In the EP
model, the posterior PDFs f (·) of stochastic variables (φψ) can be estimated by solving the following
optimization problems:

f
(
ϕψ

)
≡ arg min

f∈Ω

{
ε
(

f
(
ϕψ

)∣∣∣∣ f (ϕψ))}, ∀ψ. (9)

where f (·) represents the prior PDFs of stochastic variables; Ω, the set of alternative distributions
on stochastic variables; and ε(·), the relative entropy between the prior and the posterior model.
By estimating the Bayesian PDFs of stochastic variables, the proposed method incorporates a
wide-spectrum distribution for forecasting smart grid resources. The relative entropy between
the prior and the posterior model (ε(·)) can be expressed as follows:

ε
(

f
(
ϕψ

)∣∣∣∣ f (ϕψ)) ≡ ∫
f
(
ϕψ

)[
ln f

(
ϕψ

)
− ln f

(
ϕψ

)]
dµ, ∀ψ. (10)
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The relative entropy minimization procedure of the EP model can prevent the distorted estimation
of the posterior distributions. Moreover, the EP provides accurate estimates in low-probability results;
therefore, it can be adopted in tail simulations for testing the robustness of the determined solutions.
In this study, the estimated posterior model of stochastic variables, in which multiple PDFs are
integrated, provides wider distributions than those provided by the prior model. In other words, the
proposed Bayesian PDF model estimates the area of high uncertainties, but not the specific values.

The consideration of stochastic samplings of EV charging loads and wind generation could
result in a large number of scenarios. The fast-backward scenario reduction algorithm in [27] is
used to approximate a smaller number of scenarios with corresponding probabilities. This algorithm
determines the interval of a set of scenarios and assigns new probabilities, with possible outcomes of
uncertain parameters.

The proposed power system planning problem is solved using an interval-stochastic model that
reflects the uncertainties of multiple variables. The probabilistic scenario tree approach [27] is used
to deal with a series of rare events generated by adopting the multiple probabilistic distributions of
smart grid resources. The finite sets of probabilistic scenarios are represented by nodes, and these
nodes are arranged in terms of the stages of the probabilistic variables. Branches connect nodes from
different stages, and they are then used to calculate the conditional probability between connected
nodes. The proposed power expansion planning method involving the use of the interval-stochastic
smart grid resource model can be summarized as Figure 2.
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4. Numerical Results

The proposed method is tested using projected Korean power system growth between 2020 and
2027 [28]. The base year and discount rate for present-value calculations are assumed to be the year
2020 and 5.0%, respectively. Chronological load curve (CLC) data are represented by polling two typical
days (highest demand peak in each month) per month to obtain 576 h/year of data. Table 1 shows
the data for the candidate generation units [28]. From Table 1, it can be seen that peaking candidate
generation facilities, such as LNG-fired units, could be located within metropolitan areas in which
electricity demand is concentrated. By contrast, the candidate base-load and intermediate generation
facilities, such as nuclear and coal-fired units, could be located in nonmetropolitan areas. Data for
candidate transmission lines are shown in Table 2, from which it can be seen that the characteristics of
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candidate transmission lines are determined by their length. The output pattern of hydro generations
is created from a historic hourly hydro generation profile of the Korean power system.

Table 1. Data for Candidate Generation Unit.

Fuel Type and
Capacity (MW *)

Candidate Sites
(Area) Capacity (MW)

Construction
Cost Coefficient

(k$/MW)

Incremental
Heat Rate

(kcal/kWh)

LNG-fired#500 Metro 500 741 1558
LNG-fired#700 South West 700 730 1521
Coal-fired#500 South East 500 1145 1893
Coal-fired#800 Central 800 1058 1985

Coal-fired#1000 Central 800 1058 1985
Nuclear#1000 South East 1000 2122 2084
Nuclear#1400 South East 1400 1790 2217

* MW: MegaWatt (106 Watt).

Table 2. Data for Candidate Transmission Line.

Line Type Capacity
(MW)

Reactance
(p.u./km)

Construction
Cost Coefficient (k$/km)

Line#1 466 1.06 × 10−4 926
Line#2 518 9.16 × 10−5 1057

In this research, the following scenarios will be used to study how smart grid resources such as
EVs and wind power generators influence integrated generation and transmission planning:

(1) Basecase scenario—this scenario assumes integration of neither wind nor EVs
(2) Wind integration scenario—in which only wind power generation is integrated
(3) Regulated charging scenario—in which the time-of-use charging price of EV is set to be low in

off-peak time and the schedule of EV charging is managed to occur when the system net load
(i.e., system load minus wind power) is lowest. In this scenario, charging of a vehicle takes place
only when it reaches the home of the user.

(4) Unregulated charging scenario—in which the charging price is uniform, so that the EVs are
charging freely just after their trip. In this scenario, charging of a vehicle occurs twice, when it
reaches the office and their home.

The key influencing factors and the patterns of EV charging loads can be estimated using statistical
data obtained from the Korean National Statistics Office [29] and from Korea’s EV demonstration
project. It is assumed that the ratio of new vehicle to total vehicle registrations over the past few
years will be equivalent to that in future years, and that dissemination scenarios from previous
studies [30,31] can be used to estimate the annual diffusion rate of EVs into the vehicle market. Table 3
provides interval data representing a broad spectrum of views on the anticipated annual penetration
of smart grid resources, EVs, and wind. From this, a reasonable inference can be made that, in 2024,
approximately 1.4 to 3.6 million EVs will be integrated into Korean power systems. In scenario (3)
and (4), the EV is assumed as the classic EV which can only charge from the grid. To obtain an hourly
charging load, it is assumed that EV charges 8.7 kWh in a day on average with a 2.3 kW converter,
therefore, they charge for 4 hours per day on average. Candidate sites selected for the installation
of wind power generation capacity can be found in the southwest part of the country and on Jeju
Island; parameters of a Weibull function for wind speed variation can be estimated from historical data
recorded on the island by the Korea Meteorological Administration (2009).
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Table 3. Interval Data for Yearly Projected Deployment of Smart Grid Resources.

Year 2020 2021 2022 2023 2024 2025 2026 2027

Volume of electric
vehicles (EVs)

Lower 903,003 1,059,057 1,195,502 1,311,020 1,404,234 1,504,074 1,611,014 1,725,557
Upper 2,347,808 2,753,548 3,108,304 3,408,652 3,651,007 3,910,594 4,188,637 4,486,449

Cap. of wind (MW) Lower 7971 9861 11,177 11,492 11,492 11,492 11,492 12,009
Upper 14,803 18,313 20,757 21,342 21,342 21,342 21,342 22,302

Under the Renewable Portfolio Standard (RPS), 12.0% of Korean electricity should be supplied by
renewable resources in 2027 [28], although various studies [32,33] anticipate that the actual annual
renewable energy investment could differ from policy objectives. Figure 3 shows the representative
hourly system load profiles of each scenario for one day (24 h) of the first week in 2027.
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The proposed planning method is applied to obtain an optimal investment decision, with respect
to integrated generation and transmission planning. The numerical computation takes about an hour
for each scenario, with a i3-4000M CPU and 4GB RAM laptop using the GAMS with the Matlab.
The generation and transmission investment decision results in 2027 for each smart grid deployment
scenario are shown in Table 4. Figure 4 shows the annual accumulated installed capacity and its
interval range for each scenario.
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It can be seen that the generation and transmission investment decision results in each scenario
vary, owing to differing levels of smart grid resource incorporation. In the basecase scenario, multiple
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transmission lines are established to supply metropolitan demand, resulting in a relatively large
quantity of electrical power flowing to the north.

In the wind integration scenario (2), an increase in required ramping rates combines with a
decrease in off-peak system loads to stimulate a greater investment in candidate-peaking generation
than in any other scenario. The integration of wind power generation in non-metropolitan areas results
in the addition of more transmission lines, because wind-powered generators are located far from
metropolitan areas and thus cause transmission congestion between metropolitan and non-metropolitan
areas at off-peak times.

Table 4. Generation Unit and Transmission Line Addition by Smart Grid Deployment Scenario.

Scenario
Basecase
Scenario

(w/o SG * Resources)

Wind
Integration

Scenario

Regulated
Charging Price

Scenario

Unregulated
Charging Price

Scenario

Number of Generation Unit Addition by Fuel Y\Type in 2027

LNG **-fired#500 7 8 (N1) 6 (H1) 9 (N2)
LNG-fired#700 6 8 (N2) 6 ( - ) 6 ( - )
Coal-fired#500 3 3 ( - ) 3 ( - ) 4 (N1)
Coal-fired#800 5 3 (H2) 6 (N1) 7 (N2)

Coal-fired#1000 2 1 (H1) 2 ( - ) 2 ( - )
Nuclear#1000 4 3 (H1) 5 (N1) 5 (N1)
Nuclear#1400 7 6 (H1) 8 (N1) 7 ( - )

Number of Transmission Line Addition in 2027

Transmission line 32 33 (N1) 34 (N2) 37 (N5)

* SG: Smart Grid, ** LNG: Liquefied Natural Gas.

In the regulated charging scenario (3), an increase in minimum system loads owing to EV charging
load at off-peak times results in more investment in candidate base-load generation units than in the
wind integration scenario. Because the EV charging load in this scenario reduces required ramping
rates and does not cause an increase in peak load, there are comparatively fewer candidate transmission
lines in the southwest corridor and in other areas.

In the unregulated charging scenario (4), a greater number of new generation units and transmission
lines are added than in the regulated charging scenario, while the proportion of peaking capacity is
slightly higher. Owing to the increase in uncertainty at peak times, the interval range of investment
decisions in this scenario is higher than in the regulated charging scenario.

In order to show the effectiveness of proposed power expansion planning, cases using a minimax
regret criterion that incorporate the interval-stochastic method is compared with cases that do not,
as follows:

(I) Case using interval-stochastic method—power expansion planning with the proposed
interval-stochastic optimization method is used. Formulation is as described in Section 2, and the
minimax regret criterion is used as described in Section 3.

(II) Case using deterministic method—power expansion planning with the deterministic
optimization method [34] is used. Stochastic variables, as described in Section 2, turn into the
deterministic variables with fixed expect values of PDFs. Interval variables are set to values of medians.

Figure 5 shows cumulative and probabilistic distributions of the total costs based on the fixed
investment decisions in 2027 owing to each case, with incorporating probabilistic distributions of smart
grid resources. It can be seen from Figure 5 that a slope of the probabilistic distribution associated with
case (I) shows less variance than case (II); this is because the proposed method is designed to take into
account the set of stochastic scenarios pertaining to the adoption of new smart grid technologies.

In addition, Figure 6 shows annual regret costs [35] of cases (I) and (II), under four different
interval states. The regret cost of each interval state presents the differences between the total cost
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based on fixed investment decisions owing to each case, and the local optimum objective value at a
certain interval point. It can be seen from Figure 6 that the regret cost of case (II) is greater than that of
case (I) at lower and upper boundaries. This is because the incorporation of the proposed multistage
can help reduce the potential losses associated with making non-optimal decisions regarding smart
grid resources. Therefore, the adoption of the proposed power expansion planning method may not
guarantee that the outcome of a particular risky decision will be optimal, but it could reduce the risk of
prediction errors concerning new resources.
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“U-U” denote interval values of wind generation and EV is fixed to “lower and lower”, “lower and
upper”, “upper and lower”, “upper and upper” respectively.

5. Conclusions

In this study, the interval-stochastic programming based integrated generation and transmission
planning problem is proposed. The proposed method considers the uncertainties of EVs and wind
power generation, which are modeled through the EP technique. Additionally, the minimax regret
criterion is applied to handle interval solutions into a deterministic manner.

The proposed problem is formulated through the interval and stochastic variables associated
with EVs and wind power generation. The numerical test is conducted on the Korean power system,
with multiple renewable integration scenarios to observe the influence of the charging price policy of
EVs. The result shows that the investment cost of the power grid could be reduced with reasonable
pricing, by comparing regulated and unregulated charging scenarios.

By comparing cumulative and probabilistic distributions of the total costs, the result shows that
the stochastic approach of the proposed method can reduce the risk from uncertainty, comparing the
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result of the deterministic IRP problem. Additionally, with the regret cost at the boundary condition of
each interval variable, it is shown that the minimax regret criterion successfully reduces the potential
losses from a non-optimal decision.

If a sufficient number of sample observations can be collected, the presented Bayesian probabilistic
model for smart grid resources can be further improved. Therefore, the selection of an appropriate
investment time frame can be useful in managing innovation risks imposed by a lack of data on new
resources. In future work, the integration of more renewable energy sources, such as PV and energy
storage systems, and an assessment of the reliability associated with the power system expansion
should be tackled.
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