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Abstract: The series hybrid electric powertrain is the main architecture of the hybrid electric tracked
vehicle. For a series tracked hybrid electric bulldozer (HEB), frequent fluctuations of the engine
working points, deviation of the genset working points from the pre-set target trajectory due to
an insufficient response, or interference of the hydraulic pump consumed torque, will all result in
increased fuel consumption. To solve the three problems of fuel economy, an adaptive smooth power
following (ASPF) control strategy based on an optimal efficiency map is proposed. The strategy
combines a fuzzy adaptive filter algorithm with a genset’s optimal efficiency, which can adaptively
smooth the working points of the genset and search the trajectory for the genset’s best efficiency
when the hydraulic pump torque is involved. In this study, the proposed strategy was compared on
the established HEB hardware in loop (HIL) platform with two other strategies: a power following
strategy in a preliminarily practical application (PF1) and a typical power following strategy based
on the engine minimum fuel consumption curve (PF2). The results of the comparison show that
(1) the proposed approach can significantly reduce the fluctuation and pre-set trajectory deviation
of the engine and generator working points; (2) the ASPF strategy achieves a 7.8% improvement in
the equivalent fuel saving ratio (EFSR) over the PF1 strategy, and a 3.4% better ratio than the PF2
strategy; and (3) the ASPF strategy can be implemented online with a practical controller.

Keywords: hybrid electric bulldozer; tracked vehicle; control strategy; adaptive control;
power smoothing

1. Introduction

In recent years, hybrid electric vehicle (HEV) technology has been rapidly developed. As a new
type of power transmission technology, the HEV is recognized as one of the best solutions for energy
saving and emission reduction in the world [1]. Following the success of HEV technology in the
automotive field [2–4], the world’s major manufacturers and related research institutions tried to
apply it in the field of construction machinery. In the research and development of hybrid electric
construction machinery (HECM), hybrid technology of the loader and excavator has been previously
achieved [5,6]. It was not until 2008 that the Caterpillar company developed a diesel-electric driven
bulldozer based on HEV technology, named D7E, which attracted extensive attention worldwide due
to its excellent performance of 20% energy saving, 10% productivity improvement, and 50% service
life extension [7]. After that, a special project was set up to develop the first hybrid electric bulldozer
(HEB) of China in 2011 [8]. Since then, research on the HEB, as a heavy-duty off-road hybrid electric
tracked vehicle, has received increasing attention [9–11].
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Control strategies, especially energy management strategies, represent a hot topic in HEV
technology research. The core purpose of a control strategy is to optimize the fuel economy and
emission of the power system, while satisfying the driving purpose, by reasonably controlling the
power distribution among multiple energy sources. The technology of the HECM or hybrid special
vehicle should be based on the application, transfer, and expansion of HEV technology. Such control
strategies are also research hotspots in their fields. Even with the development and introduction of
autonomous vehicles, the vehicle control strategy is the most attractive technical research field [12–14].
HEBs mainly adopt the series hybrid electric powertrain due to their violently fluctuating operating
resistance. As the amount of research on the control strategy of series HEB is still small, in order to
fully draw lessons from related research results, we have reviewed the control strategy of series HEV,
the control strategy of other types of HECMs which also face the problem of HEV technology transfer,
and some of the recent research on the HEB control strategy.

Research on the control strategy of the series hybrid power system can be simply divided into
three types, based on the characteristics: rule-based control [15], optimization-based control [16,17],
and intelligent control [18,19]. As shown in Table 1, it can be seen that the three types of control
strategies have advantages and challenges in practical engineering applications. The rule-based control
strategy is the most commonly used strategy of the series HEV in practical applications. The on-off

(thermostat) strategy is the simplest, and permits the genset to always work at the best efficiency point,
but the engine is often switched on and off, and the energy loss in start-stop and charge-discharge
is large. The power following strategy requires frequent changes in the engine operating points to
follow the changing load. However, the engine efficiency is relatively low, the dynamic energy loss
is large, and the charge and discharge energy loss of the energy storage unit (ESU) is small [20].
The on-off and power following strategy also are called deterministic rules. The optimization-based
control makes use of various optimization algorithms to solve objective functions and obtain the
optimal control law. It can be divided to instantaneous and global optimization, according to the time
scale of the optimal solution. Two typical instantaneous optimization strategies are the equivalent
consumption minimization strategy (ECMS) and its derivative adaptive-ECMS, which calculate the
minimum objective function at every moment [16]. Dynamic programming (DP) is a classic and
accepted global optimization algorithm used to measure the maximum potential of fuel saving in the
whole drive cycle time. Stochastic dynamic programming (SDP) is then formed by considering some
uncertainty factors in the load. Between the moment and duration of the optimal time scale, the model
predictive control (MPC) converts the solution problem over the entire drive cycle time into a value
over a short future period by using sensing devices and methods [21]. An indirect and analytical
algorithm employed to solve the global optimal control problem is Pontryagin’s minimum principle
(PMP), which is also widely adopted and offers an optimal solution close to the DP result by solving a
Hamiltonian minimization problem [22]. These optimization-based controls are often segmented into
online and offline optimization-based strategies, depending on whether the controls can be applied in
real vehicles [1,20]. Fuzzy logic is also mentioned as a kind of rule-based control for fuzzy rules [23],
while it is categorized as intelligent control due to its intelligence features of non-model and nonlinear
systems in this paper. Intelligent control approaches, including the back propagation neural network
(BPNN), genetic algorithm (GA), and machine learning [4,24], which rely on engineering experience
and engineering databases, have excellent properties in dealing with uncertain mathematical models,
high nonlinearity, and complex task requirements [25,26]. They are also widely adopted in series HEVs
and have a good adaptability.
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Table 1. Classification and comparison of control strategies of the series hybrid electric powertrain.

Category Subcategory Advantages Challenges

Rule-Based Control
On-off Simple and reliable, high real-time, widely

used in engineering
Poor portability, poor adaptability, low

energy optimal efficiencyPower following

Optimization-Based
Control

Instantaneous
optimization

Accurate optimization objectives and
solutions, instantaneous or global optimal

energy distribution, good fuel economy

Large computation and high requirement
on processor, poor realizability of global

optimizationGlobal
optimization

Intelligent Control

Fuzzy logic
Unnecessary accurate mathematical model,

robust and adaptive, suitable for
real-time control

Depend on the engineering experience or
database, knowledge base highly required

Neural network
Expert system

Machine learning

The control strategies of different types of HECMs have also been studied in terms of the above
three aspects. The rule-based control strategies of HECMs have been researched the most. Unlike
HEVs, the control strategies of HECMs mainly require the characteristics of operating conditions to be
combined. In research on the control strategy of a hybrid excavator, the pressure of the hydraulic pump
was often used to identify the working load, and the control rules were made according to the load
level [27]. The working process of the excavator and the moving process of each part were analyzed in
detail, and the pressure of the operating system was measured in real time to obtain an estimate of the
required and recoverable energy [28]. The key point of energy saving control for excavators lies in the
design of energy recovery control for moving parts, such as boom and swing systems [29]. Research on
the hybrid loader control strategy has also paid attention to the discrimination of operating conditions
and to making rules according to the characteristics of the load. The power consumed by a loader’s
hydraulic system and the impact on the powertrain’s dynamic response have often been taken into
account to design the strategy [30]. In most studies, the load of the operating system was incorporated
into the energy management of the hybrid loader by measuring the outlet pressure of its hydraulic
pump [31]. The characteristics of the high transiency and periodicity of construction machinery are
both common and specific in control strategy design. The complexity of the working environment of
construction machinery, as well as the significant and frequent changes in operating loads, bring new
difficulties to energy management and control [6,32]. Research on the HECM control strategy based on
an optimization algorithm has been increasing in recent studies. For instance, Nilsson et al. proposed
a predictive control approach using SDP under severe disturbances and uncertainties, according to the
repetitive pattern of operation of the wheel loaders [33]. SDP control based on prediction also achieved
an energy consumption optimization effect on the hybrid excavator [34]. A comparative assessment of
ECMS, DP, and thermostat controllers [35]; joint control and parameter optimization by adopting DP
control and GA [36]; and a comparison of DP, PMP, and MPC [37], for a hybrid excavator have been
conducted. Since intelligent control approaches have a good robustness for nonlinear systems, and
HECMs have complex operating conditions and uncertain model parameters, intelligent controls have
also been widely studied in this field. Intelligent algorithms such as reinforcement learning [38,39],
fuzzy logic [40,41], and the particle swarm optimization (PSO) algorithm [42] have been applied to
the energy saving control of HECMs. Therefore, research on other types of HECM control strategies
developed according to the characteristics of their operating conditions can provide enlightenment for
us to control the HEB: the characteristics of HECMs, such as the periodicity of work, short idle time,
and high fluctuation [43], especially the power supply and recovery of the hydraulic actuators, should
be taken into account in the control.

At present, only a few institutions have actually developed HEBs, but research articles on control
and simulation of the HEB have been increasing in recent years [7,8,44]. In [45,46], the fuel-saving
control concept of D7E was briefly introduced; that is, engine control in the series system was not
affected by the load torque so that the speed of the generator could be controlled within a narrow
range to improve the efficiency, but the detailed control strategy was not given. Song et al. proposed
a power following control strategy based on the minimum fuel consumption curve of the engine
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for an HEB [9]. Wang et al. also proposed a load power following control strategy and adopted
three engine speed control methods for a comparative study [11]. However, these studies did not
take the efficiency of the generator into account when calculating the optimal efficiency. Wang et al.
proposed applying MPC to an HEB, compared the MPC to DP and a rule-based control strategy, and
artificially added white noise interference to test the robustness of MPC, which indicated that the
energy consumption and robustness of the HEB under the MPC strategy are better than those of the
rule-based strategy [10,47–49]. Wang et al. then proposed an improved MPC strategy for an HEB
without future driving information [50], and applied the MPC to the analysis of the HEB’s energy
storage unit [51].

Although various types of algorithms have been applied to the control of the HEB in the existing
literature, these studies have basically treated the HEB as a tracked vehicle similar to [52,53], which did
not pay enough attention to the difference between HEVs and HEBs. Specifically, in most of these HEB
control strategies, the influence of the torque consumed by the hydraulic pump of the working system
on the genset operating point has not been considered, even though instantaneous disturbance of the
hydraulic pump would increase the fuel consumption and emission [45]. In addition, there has been
little discussion about the fact that the transient fuel consumption caused by frequent changes of the
engine operating points is higher, in which case the load power of the bulldozer fluctuates violently.
Additionally, very little attention has been paid to the fact that the frequent adjustment of the HEB’s
engine operating points causes an insufficient instantaneous response of the engine and then leads to
the points deviating from the optimal target trajectory, before finally resulting in an engine efficiency
decline. Therefore, it is necessary to carry out in-depth research on these problems for developing the
control strategy of HEBs.

Therefore, the purpose of this paper is to propose an innovative Adaptive Smoothing Power
Following (ASPF) control strategy to solve the above mentioned problems. In general, the problems
include frequent fluctuations of the engine working points, deviation of the genset working points
from the pre-set target trajectory due to an insufficient response, and interference of the hydraulic
pump consumed torque, all of which result in the fuel consumption increasing. The control strategy
takes the impact of the drastic fluctuation in the bulldozer’s load and the abrupt demand torque of
the hydraulic pump on the working points of the HEB’s genset into consideration. The adaptive
smoothing algorithm is used to automatically reduce the transient fuel consumption and the working
points’ deviation from the high efficiency zone. In addition, the algorithm is combined with an optimal
efficiency map of the genset considering the correction for interference of the operating system demand
torque. A novel transient fuel consumption model embedded in the HEB model and a hardware in
loop (HIL) platform is developed to test the proposed approach. The methodology of the proposed
control strategy is a combination of fuzzy control theory, real-based control, and the optimization
method. The verification method is based on adopting a validated simulation model and an HIL test
platform. The test indicates that the proposed approach could solve the above problems and feature an
excellent on-line real-time robustness and adaptability for energy saving of the HEB.

The rest of this article is organized as follows: the HEB model with a novel transient fuel
consumption model based on BPNN is developed in Section 2; in Section 3, the ASPF based on an
optimal efficiency map strategy is proposed and described; the HEB HIL platform is built in Section 4;
Section 5 presents the simulation results and a discussion of the proposed approach; and the last
section summarizes the major conclusions.

2. HEB Simulation Model

A simulation model is the basis for recognizing the characteristics of each part of the HEB and
analyzing the control strategy. The control strategy performance can be simulated and analyzed after
being incorporated into the simulation model. Additionally, the simulation model is essential and
primary for the HIL platform test. Therefore, the simulation model of HEB should first be established.
The modeling process is based on an analysis of the HEB architecture and component characteristics.
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The detailed modeling and validation process information can be found in our previous study [54].
The theoretical foundation of the model is derived from the bulldozer’s dynamics and kinetics, the
component characteristics, and the modeling method of Advanced Vehicle Simulator (ADVISOR)
software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA) [55].

2.1. HEB Architecture

The object of this research is derived from the first Chinese HEB—a tracked vehicle that has a
series hybrid powertrain and a hydraulic operating system. Its architecture schematic diagram can
be seen in Figure 1. This powertrain adopts double wheel-side motors to drive tracks on both sides,
enabling the HEB to achieve center-based steering. The drive system employs a typical alternating
current(AC)-direct current (DC)-AC transmission form to convert mechanical energy into electrical
energy and then mechanical energy. The blade operating system is driven by the hydraulic pump,
whose power comes from the engine and flows through the transfer case. Table 2 gives the main
specifications of the HEB.
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Figure 1. Schematic diagram of the hybrid electric bulldozer (HEB) architecture.

Table 2. Specifications of the HEB.

Component Parameters Quantity

Vehicle

Curb weight 27,500 kg
Dynamic radius 0.468 m

Track center distance 2.000 m
Track length 2.730 m

Engine
Rated power 154 kW
Rated speed 1950 rpm

Maximum torque 927 Nm

Generator

Maximum power 200 kW
Rated power 175 kW

Maximum torque 1123 Nm
Maximum speed 2200 rpm

Motor

Maximum power 75 kW
Rated power 105 kW

Maximum torque 800 Nm
Maximum speed 6000 rpm

Supercapacitor Static capacity 5 F
Energy capacity 0.34 kWh

Hydraulic Pump Maximum pressure 21 MPa
Rated flow 200 L/min

Reducer Speed ratio 93.120
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2.2. A Novel Engine Model Based on BPNN

The majority of engine models adopted in HEV simulation research include a kind of simple
experimental look-up-table [9,10,48–53], which is acquired from an engine steady-state universal
characteristic experiment. This approach can only reflect the static fuel economy, rather than the
transient fuel consumption. Therefore, some researchers noticed the difference between steady and
transient fuel consumption, began researching transient fuel properties, and attempted to build
transient fuel consumption models [56–59]. In [60], it was found that the transient fuel consumption
would increase with the increase of the loading rate, as shown in Figure 2.
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Therefore, the increased fuel consumption in a transient state could be more inevitably obvious
in the bulldozer’s severely fluctuant load. To provide the fuel consumption in this situation with a
greater accuracy, a novel engine model with a transient fuel consumption sub-model based on BPNN
is proposed in this paper. The modeling approach of key sub-models of the engine model is briefly
described in the following.

2.2.1. Transient Fuel Consumption Model

The transient fuel consumption model consists of a steady fuel consumption and a transient
correction factor. The steady fuel consumption is based on an engine universal characteristic map and
calculated by two-dimensional interpolation, which can be shown as

Bs = Tenebe(Te, ne)/(9549·ρfu), (1)

where Bs is the steady fuel consumption, Te is the engine torque, ne is the engine speed, be is the specific
fuel consumption on the basis of the look-up table, and ρfu is the fuel density.

The BPNN was selected to identify a transient fuel consumption correction factor due to its
excellent learning ability. The engine torque Te, engine speed ne, and their calculated differentials
and product were employed as the input layer of the BPNN, considering the engine transient process,
including speed and torque variation. The output layer is the correction factor employed to correct
the steady fuel consumption model. The BPNN was first trained by a cluster of data collected in the
actual engine operation. Figure 3 shows the structure of the transient fuel consumption model based
on BPNN.
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Figure 3. Structure of the transient fuel consumption model based on the back propagation neural
network (BPNN).

The transient fuel consumption can be expressed as

Bt = Bs(ne, Te) ×Rbp(ne, Te, dne, dTe), (2)

where Bt is the transient fuel consumption; Rbp is the correction factor based on a trained BPNN
calculation; and dne and dTe are the differential of engine speed and torque, respectively.

This BPNN employed the trainlm function as the train function, log-sigmoid as the hidden layer
transfer function, and the purelin function as the output layer transfer function. This trained model
finally achieved a good simulation performance compared to the experimental data. More details on
the model can be found in our previous research [61].

2.2.2. Output Torque Model

The steady output torque can be calculated by interpolation of an engine torque-speed-throttle
characteristic map as

Te,s = fTn,e(ne,γe), (3)

where Te,s is the engine steady torque, fTn,e is the interpolation function of the torque-speed-throttle
characteristic map, and γe is the engine throttle.

Considering the transient operation process, a delay of the throttle voltage, injection pressure,
and air inflow would lead to a delay of the output torque. For describing the transient process, the
dynamic output torque can be expressed as

Te = Te,s ·
1

1 + τes
, (4)
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where Te is the engine dynamic output torque, τe is the engine time constant, and s is the
Laplace operator.

2.3. Driveline Components’ Models

2.3.1. Electric Machine Model

The electric machine model is applicable for modeling a motor or generator. The model uses a
first-order inertia link to represent the response delay between the output and the target torque. The
dynamic output is also limited by the voltage range, maximum current, and external characteristic
torque, which can be denoted by

Tem =

min(Tem,ul, Tem,cl, Tem,max) motor mode

max(Tem,ul, Tem,cl, Tem,max) generator mode
, (5)

Tem,ul =

Tem,cmd ·
1

1+τems Uem,min ≤ Uem < Uem,max

0 Uem < Uem,min or Uem ≥ Uem,max
, (6)

Tem,cl =

UemIem,max/ωem motor mode

−UemIem,max/ωem generator mode
, (7)

Tem,max =

Tdr
em,max(ωem) · 1

1+τems motor mode

Tbr
em,max(ωem) · 1

1+τems generator mode
, (8)

where Tem is the output torque of the electric machine; Tem,ul, Tem,cl, and Tem,max are the limited torque
of the voltage, current, and external characteristic, respectively; Tem,cmd is the target torque command;
τem is the torque respond time constant; Uem, Uem,min, and Uem,max are the current, minimum, and
maximum voltage of the electric machine, respectively; Iem,max is the maximum current of the electric
machine; ωem is the angular speed of the machine; and Tdr

em,max and Tbr
em,max are the maximum

permissible limit in the driving or braking process, respectively.
The torque balance equation of the electric machine links the relationship of the torque and the

angular speed as follows:

Tem − Tem,l = Jem
dωem

dt
, (9)

where Tem,l is the load torque and Jem is the rotational inertia of the electric machine.
The efficiency module is the main part of the electric machine model. The efficiency is calculated by

a look-up table obtained from an electric machine characteristic experiment, which can be described as

ηem = fη,em(Tem, nem), (10)

where ηem is the electric machine efficiency and fη,em is the interpolation function of the electric
machine efficiency map.

Figure 4 provides the efficiency maps of a driving motor and generator. Due to the fact that the
electric machine could work in four quadrants as a motor, including the driving and braking state
of forward and reverse, the efficiency data of the motor spreads over the four quadrants, while the
generator can only operate in one quadrant to generate power.

2.3.2. Supercapacitor Model

The supercapacitor model was developed as an equivalent circuit model. The model takes the
impact of temperature into account. The resistance and capacitor are the functions of the temperature
and current, and described as

Resc = fRe,sc(Temsc, Isc), (11)
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Csc = fC,sc(Temsc, Isc), (12)

where Resc is the resistance of the supercapacitor, Temsc is the temperature, Isc is the current, Csc is the
capacitor, fRe,sc represents the resistance function, and fC,sc represents the capacitor function.Energies 2020, 3, x FOR PEER REVIEW 9 of 25 
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The parameters of the circuit part can be calculated as

Isc =
Usc −

√
(U2

sc − 4RescPsc)

2Resc
, (13)

Usc(n + 1) = Usc(n) − Iscdt/Csc, (14)

SOC = (Usc(n + 1) −Usc,min)/(Usc,max −Usc,min), (15)

where Usc is the voltage, and Usc,min and Usc,max are the minimum and maximum voltage of the
supercapacitor, respectively.

The temperature of the supercapacitor is calculated according to the power loss of resistance and
coulombic efficiency and heat transfer process. The temperature can be shown as

Temsc = Temsc,ini +

t∫
0

Psc,h − Psc,a

msccsc
dt, (16)

Psc,h =

I2
scRedis

sc Isc ≥ 0

I2
scRechg

sc − IscUsc(1− ηcoul) Isc < 0
, (17)

Psc,a = (Temsc − Tema)/Reh, (18)

where Temsc is the supercapacitor temperature; Temsc,ini is the initial temperature of the supercapacitor;
Tema is the ambient air temperature; Psc,h is the heat power; Psc,a is the heat power transferred to air;
msc is the mass; csc is the specific heat capacity; Redis

sc and Rechg
sc are discharge and charge resistance,

respectively; ηcoul is the coulombic efficiency; and Reh is the heat resistance.

2.3.3. Hydraulic Pump Model

The hydraulic pump model mainly presents its torque and power consumption and simplifies the
hydraulic operation system, which is sufficient for researching the powertrain energy and control. The
hydraulic pump model can be denoted by
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Thp =
phpqhp

2πηhp
, (19)

Php =
50phpQhp

3ηhp
, (20)

Qhp =
qhpnhp

1000
, (21)

where Thp is the torque of the hydraulic pump, nhp is its speed, php is the outlet pressure, qhp is its
displacement, ηhp is its efficiency, Php is its power consumption, and Qhp is the flow.

2.3.4. Tracked Walking Mechanism Model

The tracked walking mechanism model is represented based on the kinematic relationship and
takes the slip ratio as a major factor into consideration. The traction and speed of the tracks can be
formulated as

Ft =
Tin

t ηt

rdw
, (22)

ωt =
ν

(1−ϕ)rdw
, (23)

where Ft is the tangential traction of tracks, Tin
t is the input torque, ηt is the track efficiency, rdw is the

radius of the driving wheel, and ϕ is the track slip rate.

2.4. Dynamic Model

The HEB has to overcome the resistance of bulldozing, climbing, ground deformation, acceleration,
and air friction. The air friction is small and can be neglected due to the velocity of the bulldozer being
very low. The dynamic model can be shown as

Ft = mvehgµ cosα+ mvehg sinα+ ξmveh
dv
dt

+ Fb, (24)

where mveh is the HEB mass, g is the gravitational acceleration, α is the slope angle, ξ is the rotary
mass coefficient, v is the velocity, µ is the ground deformation resistance coefficient, and Fb is the
bulldozing resistance.

In order to accurately calculate the resistance, the ξ was identified and the Fb was extracted in our
previous research [7].

Finally, the HEB model was built in the Simulink environment, as shown in Figure 5.Energies 2020, 3, x FOR PEER REVIEW 11 of 25 
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3. ASPF Control Strategy

The control strategy is the core of this paper and plays an important role in every performance of
the HEB. It was developed and optimized according to three current problems that we found in existing
research. Therefore, the target problems are presented below, firstly by simulating the operation and
control process. The methodology of the control strategy is based on fuzzy control theory, a filter
algorithm, optimization, and a rule-based strategy. The detailed structure and composition of the
proposed control strategy is then introduced.

3.1. Target Problem

The control improvement goal of this research is to resolve three problems. The first two problems
are related to the limitation of genset’s output power and the fluctuation of working points. The last
is related to re-establishing the working points on the optimal efficiency trajectory according to the
involvement of the interference torque.

3.1.1. Frequent Fluctuation of Genset’s Working Points

In most studied power following control strategies, the genset output power is conducted to
follow the drive system demand power. As the demand power is constantly changing, the operation
points of the genset also frequently change. In particular, when the operation points are controlled on
a pre-set trajectory, different powers correspond to different speeds and torques, resulting in severe
fluctuations of the speed and torque of the genset and further leading to an increase of transient
fuel consumption.

3.1.2. Large Change Rate of Output Power

A large change rate of the genset output power will cause its operation points to deviate from
the target pre-set trajectory. Due to rapid change of the transient drive system demand power, and
switching operation points requiring a certain response time, the points may deviate from the trajectory
in the switching process. This deviation will cause the operation points to depart from the minimum
fuel consumption curve and spread over a lower efficiency district, resulting in a deterioration of
fuel consumption.

The transition processes of different change rates of output power were simulated to illustrate
the process, as shown in Figure 6. It indicates that the actual working points deviate from the pre-set
minimum fuel consumption curve because of the rapid power change and insufficient responsiveness.
However, this phenomenon disappears and the points track the trajectory well if the power change
is slow.

3.1.3. Hydraulic Pump’s Interference in Target Trajectory

The torque consumed by the hydraulic pump will also lead to the genset operation points deviating
from the pre-set target trajectory for torque interference. Most previous studies have ignored the
hydraulic pump torque and its interference effect [8–10,50,51], which will finally cause a decrease of
the genset efficiency and increase of fuel consumption.

3.2. Development of the ASPF Strategy

An ASPF control strategy is proposed here to provide a comprehensive solution to these problems.
Through this strategy, the demand power signal is divided into the trend part and the fluctuation
part to make the genset output smooth and stable, and the supercapacitor supply the output power
fluctuation. Therefore, the transient fuel consumption and the deviation from the target trajectory can
be reduced. Meanwhile, when there is torque consumption of the hydraulic pump in the working
system, the optimal efficiency working points of the genset are found for control to avoid interference.
The structure and development process are presented below.
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3.2.1. Structure of the ASPF Strategy

The structure of proposed ASPF control strategy is shown as Figure 7. It employs two critical
steps, including a fuzzy adaptive filter and optimal efficiency control of the genset module, to solve the
problems above and improve the power following control strategy. Utilizing the computed demand
power of the drive system as the input, and introducing state of charge (SOC) and pressure feedback,
the strategy outputs the engine target speed and generator target torque to the subcomponent controller.
Energy distribution between the genset and the supercapacitor can be completed through determining
the genset output power.

3.2.2. Fuzzy Adaptive Filter

The fuzzy adaptive filter integrates a fuzzy logic controller with a first-order inertia filter. By using
the self-adaptability of the fuzzy controller to automatically adjust the filter coefficient, the output
power can be smoothed with the SOC in a permissive range. Figure 8 shows the smoothing process
based on the fuzzy adaptive filter.
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The variables in Figure 8 can be expressed as

∆SOC = SOC− (SOChi + SOClo)/2, (25)

P′ds = Pds(t) − Pds(t− 1), (26)

where ∆SOC is the deviation of SOC; SOChi and SOClo are the high and low threshold value,
respectively; P′ds is the difference of the demand power; and Pds is the demand power.

The first-order inertia filter can be developed by

P∗ds(t) = βPds(t) + (1− β)P∗ds(t− 1), (27)

where P∗ds is the filtered demand power and β is the filter coefficient.
The SOC deviation and the demand power difference are normalized as the fuzzy logic inputs,

which can be shown as
∆SOCin = ∆SOC/max(∆SOC), (28)

P′ds,in = P′ds/max(P′ds), (29)

where ∆SOCin and P′ds,in are the normalized SOC deviation and demand power difference, respectively.
The degree of membership (DOM) values of input and output variables of the fuzzy logic controller

are defined as shown in Figure 9. Because the filter will introduce a delay effect of input signals, the
SOC deviation is entered here in order to prevent the SOC from exceeding its limits. Table 3 shows the
fuzzy logic rules in the knowledge base. The basic formulation principle of the rule table is that the
demand power is filtered and the SOC is kept within the predetermined range as much as possible.
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Table 3. Fuzzy logic rules.

β
P’

ds,in

NB NM NS Z PS PM PB

∆SOCin

NB NB NB NM PB PB PB PB
NS NB NM NM Z PS PM PB
Z NS NM NM NB NM NM NS
PS PB PM PS Z NM NM NB
PB PB PB PB PB NM NB NB

By employing the min-max inference approach of the Mamdani type and the centroid method
for defuzzification, the output map of the fuzzy inference system, that is, the fuzzy control table, can
be achieved, as shown in Figure 10. The control map is a symmetrical valley type about its center,
since the filtering function can be as large as possible within the SOC limits when the difference in the
demand power and the deviation of SOC are opposite in sign.

3.2.3. Correctional Optimal Efficiency Map

The module of optimal efficiency control of the genset is the other crucial part of ASPF, as shown
in Figure 11. This module takes the demand power of generation and the pressure of the hydraulic
pump as inputs to calculate the generator target torque and the engine target speed as outputs. The
input mechanical power of the generator can be calculated by

Pg,m =
Pg

ηg(Tg,est, ng,est)
, (30)
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where Pg,m is the input mechanical power of the generator; Pg is the generating electric power; Tg,est and
ng,est are the estimated torque and speed, respectively; and ηg is the efficiency interpolation function.
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The optimal efficiency map is the core of this module. The problem of searching the optimal
efficiency map can be converted into a problem of searching the optimal curves under different input
torques of the hydraulic pump by using Equation (30). The consumed torque of the hydraulic pump
can be calculated by Equation (19). Through changing the hydraulic pump torque continuously and
searching each optimal efficiency curve of the genset at each torque value, the optimal efficiency map
can finally be obtained, as shown in Figure 12.
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The relationship between the input torque of the generator, the engine torque, and the hydraulic
pump torque can be expressed as

Tg = Te − Thp, (31)

where Tg is the input torque of the generator.

4. HEB HIL Platform

In order to validate the real-time control effect of the proposed strategy, an HEB controller HIL
experimental platform was developed, as shown in Figure 13. The control strategy was converted into an
executable C code and integrated with the controller underlying software, and was then downloaded in
the vehicle control unit (VCU). Meanwhile, the controlled object model was downloaded to the dSPACE
Autobox simulator (DS1103, dSPACE, Paderborn, North Rhine-Westphalia, Germany). The real-time
supervisory control interface was developed on the host computer monitor. The communication
network among the VCU, the Autobox, and the host computer monitor was established with the means
of the control area network (CAN) and transmission control protocol/internet protocol (TCP/IP).Energies 2020, 3, x FOR PEER REVIEW 17 of 25 
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Figure 13. Testing program of hardware in loop (HIL) of the HEB controller.

Figure 14 shows the developed HEB HIL test platform, which could be used to test and compare
the real-time control effect of online strategies. The model incorporated in the HIL platform was
validated by employing the practical HEB real bulldozing process data, as shown in [61]. Therefore,
the combination of the validated model and the real VCU could test the real-time performance and
effectiveness of the proposed control strategy to some extent.
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5. Results and Discussion

Due to the lack of a standard drive cycle of bulldozers like that of automobiles, a representative
actual drive cycle of the bulldozer, which was extracted and constructed from a large number of
bulldozing experimental data in our previous research [7], was adopted for simulation and comparison.
Figure 15 shows the drive cycle, including the bulldozing stage and empty returning stage. The
bulldozing stage can be further divided into cutting-soil, transporting-soil, and unloading-soil stages.Energies 2020, 3, x FOR PEER REVIEW 18 of 25 
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In order to validate and compare the control effect, three control strategies were compared under
the representative actual drive cycle. Table 4 describes the compared strategies: a power following
strategy in a preliminarily practical application (PF1), a typical power following strategy based on
the engine minimum fuel consumption curve (PF2), and the proposed strategy (ASPF). Figure 16,
Figure 17, Figure 18 and Table 5 show the comparison results.

Table 4. Comparison of different control strategies.

Control Description

PF1
A power following control strategy used in our previous real HEB experiment,
where the genset follows the demand power, and the engine speed follows the

accelerator and remains within 1300 to 1800 r/min.

PF2 A typical power following control strategy based on the engine minimum fuel
consumption curve in the series powertrain.

ASPF Proposed adaptive smoothing power following control strategy based on the
optimal efficiency map.

Table 5. Comparison of fuel consumption.

Vehicle Control FC (L) EFC (L) EFSR (%)

HMB - 0.671 0.671 -
HEB PF1 0.569 0.568 15.4

PF2 0.537 0.538 19.8
ASPF 0.517 0.515 23.2

FC: fuel consumption; EFC: equivalent fuel consumption; EFSR: equivalent fuel saving rate.
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Figure 16 shows the comparison of a group of key powertrain parameters, including the generator
output power Pg, supercapacitor output power Psc, supercapacitor SOC, engine torque Te, and engine
speed ne. It can be observed that the generator output power fiercely fluctuates and follows the
demand power under the PF1 and PF2. However, the change of generator output power is relatively
smooth under the ASPF. The supercapacitor power under the ASPF is larger and fluctuates more than
that under the PF1 and PF2. Meanwhile, the SOC of the ASPF varies within a permissible range. The
first three subgraphs of Figure 16 illustrate that the self-adaptive filter algorithm in the ASPF can
smoothen the power adaptively and keep the SOC within pre-set limits simultaneously by timely
adjustment of the filter coefficient, which can prompt higher engagement and take full advantage of
the high efficiency of the supercapacitor. The fourth and fifth subgraphs show that ASPF makes the
engine speed and torque more stable, especially relative to the PF2 based on the trajectory, through
smoothing the genset output power. Therefore, the ASPF can play a positive role in stabilizing the
working points of the engine and generator, which can achieve a reduction of the transient energy loss.

Figure 17 compares the engine working points with different strategies under the same
representative drive cycle. It can be seen that the engine working point distribution with PF1
is widespread and mainly within the speed range from 1300 to 1800 r/min in different loads, whereas it
is far away from the low fuel consumption area. From the middle subgraph, we can see that the engine
operating points of PF2 are distributed around the minimum fuel consumption curve. However, they
could not coincide with the curve because of their dramatic fluctuation and insufficient response on the
timeline shown in Figure 16. The left subgraph shows that the engine working point distribution of
ASPF is very close to the pre-set optimal efficiency curves of combining the engine with the generator
under different hydraulic pump consumed torque. This relatively concentrated distribution is the
result of the effect of the adaptive filter link shown in the above graph.

Figure 18 compares the generator working point distribution with three control strategies under
the same drive cycle. It can be seen that the distribution shape of the generator points is similar to that
of the engine points on account of the coaxial junction of the engine and the generator. The generator
working points of PF1 and PF2 are more widely distributed than those of ASPF for the adaptive filter.
The difference between the generator torque below and the engine torque above is the hydraulic pump
consumed torque, which is also reflected on the joint optimal efficiency curves in the above and below
graphs. The ASPF keeps the generator points along the optimal efficiency curves as much as possible,
in which following the routes can result in a greater generator efficiency.

The fuel consumption of the three control strategies and the prototype of the traditional
hydro-mechanical bulldozer (HMB) under the same simulated drive cycle is shown in Table 5.
The equivalent fuel consumption (EFC) was obtained from balancing the supercapacitor SOC. The
equivalent fuel saving ratio (EFSR) is the comparison of EFC, reflecting the energy consumption
comparison. The HEB equipped with the ASPF strategy can achieve 23.2% EFSR compared with the
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HMB. However, it can only achieve 15.4% and 19.8% EFSR with the PF1 and PF2 strategy, respectively.
The ASPF strategy can improve EFSR by 7.8% and 3.4% with respect to the PF1 and PF2 strategy, which
indicates that the proposed strategy is more effective.

6. Conclusions

An adaptive smoothing power following (ASPF) control strategy based on an optimal efficiency
map for a series tracked HEB has been proposed by considering its operation characteristics in this
research. The three problems of increased fuel consumption presented in previous control studies to
be solved by this strategy, including frequent fluctuation of the engine working points, deviation of the
genset working points from the pre-set target trajectory due to a lack of response, and interference of the
hydraulic pump consumed torque, were analyzed in detail. The whole HEB system simulation model
with a novel transient fuel consumption model based on BPNN was established. The HEB HIL platform
was then developed to evaluate the real-time performance and the effect of the strategy in a practical
application. The methodology of the proposed control strategy is based on fuzzy control theory,
real-based control, and the optimization method. The method of effect verification is incorporated on
the basis of the adoption of a validated simulation model and an HIL test platform.

The ASPF strategy was compared with two strategies: a power following strategy in a preliminarily
practical application (PF1) and a typical power following strategy based on the engine minimum fuel
consumption curve (PF2). The results show that (1) the ASPF strategy can significantly reduce the
fluctuation and pre-set trajectory deviation of the engine and generator working points; (2) the EFSR
can be improved by about 7.8% and 3.4% with the ASPF strategy compared with the PF1 and PF2
strategy; and (3) the ASPF strategy is able to perform well in a real controller. It can be concluded that
the proposed strategy can be effective and efficient in practical online HEB applications. The results
also show that the discovered problems indeed exist and the corresponding control strategies are valid
in HEB.

Filed tests of the HEB with the ASPF strategy will be carried out to further advance the real
application value in our future research. The limitation of the ASPF strategy in real applications relative
to previous work is that it should obtain the pressure signal of the hydraulic pump as the input for
calculation, so a pressure sensor should be placed in the outlet of the hydraulic pump. Nevertheless,
the proposed strategy and the problems solved and focused on in this paper are significant references
for other types of HECMs. Moreover, future study will also explore comparisons of the ASPF online
strategy and the optimization algorithm-based theoretical offline strategy to evaluate its potential
for improvement.
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Nomenclature

Variables
α slope angle,
β filter coefficient
η efficiency, %
µ ground deformation resistance coefficient
ξ rotary mass coefficient
ρ density, g/L
τ time constant
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ϕ track slip rate, %
ω angular speed, rad/s
be specific fuel consumption, g/(kWh)
B fuel consumption rate, L/h
c specific heat capacity, J/(kg·°C)
C capacitor, F
f function
F force, N
g gravitational acceleration, m/s2

I current, A
J rotational inertia, kg·m2

m mass, kg
n speed, r/min
p pressure, Pa
P power, W
q displacement, ml/r
Q flow, L/min
r radius, m
R correction factor
Re resistance, Ω;
s Laplace operator
SOC state of charge
t time, s
T torque, Nm
Tem temperature, °C
U voltage, V
ν velocity, m/s
Subscripts
a air
b bulldozing
bp back propagation neural network
cl current limit
cmd command
coul coulombic
ds drive system
e engine
em electric machine
est estimated
fu fuel
g generator
h heat
hi high
hp hydraulic pump
in input
ini initial
lo low
m mechanical
s steady state
sc supercapacitor
t transient state
ul voltage limit
veh vehicle
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Superscripts
br braking process
chg charging process
dis discharging process
dr driving process
Abbreviations
ASPF adaptive smooth power following
BPNN back propagation neural network
CAN control area network
DOM degree of membership
DP dynamic programming
ECMS equivalent consumption minimization strategy
EFC equivalent fuel consumption
EFSR equivalent fuel saving ratio
ESU energy storage unit
FC fuel consumption
GA genetic algorithm
HEB hybrid electric bulldozer
HECM hybrid electric construction machinery
HEV hybrid electric vehicle
HIL hardware in loop
HMB hydro-mechanical bulldozer
MPC model predictive control
PF power following
PMP Pontryagin’s minimum principle
PSO particle swarm optimization
SDP stochastic dynamic programming
TCP/IP transmission control protocol/ internet protocol
VCU vehicle control unit
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