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Abstract: A significant majority of overhead transmission lines’ (OHLs) outages is due to
backflashovers caused by direct lightning strikes: the realistic assessment of the lightning performance
is thus an important task. The paper presents the analysis of the lightning performance of an existing
150 kV Italian OHL, namely, its backflashover rate (BFOR), carried out by means of an ATP-EMTP-based
Monte Carlo procedure. Among other features, the procedure makes use of a simplified pi-circuit for
line towers’ grounding system, allowing a very accurate reproduction of transient behaviours at a
very low computational cost. Tower grounding design modifications, aimed at improving the OHL
lightning performance, are also proposed and discussed.

Keywords: sub-transmission lines; lightning performance; backflashover rate; grounding system;
Monte Carlo

1. Introduction

The lightning performance assessment of high voltage (HV) and extra high voltage (EHV)
overhead lines (OHLSs) is paramount, as the total outage rate of such lines is mostly influenced by the
backflashover rate (BFOR) and the shielding failure flashover rate (SFFOR). Assuming an effective
shielding of the line, as generally guaranteed by the OHL design, SFFOR contribution to the total
outage rate becomes negligible and, thus, BFOR becomes largely prevalent. Because of the random
nature of many parameters involved in the backflashover phenomenon, such as the ones related
to lightning current waveform (polarity, current peak, front time, and time-to-half value) and line
insulation (critical electric field), the BFOR should be assessed, in principle, by means of statistical and
nondeterministic procedures employing the Monte Carlo method.

As the tower grounding system plays a key role for the occurrence of backflashover, an efficient
Monte Carlo procedure for BFOR evaluation should employ an accurate model of tower grounding
system, able to simulate the response of the system during fast transients related to lightning. Moreover,
nonlinear phenomena due to soil ionisation, as well as to frequency dependence of soil parameters
(soil resistivity and permittivity), should be taken into account for a realistic BFOR evaluation. Many
grounding systems models are available in literature, among them, circuit-based, field-based and
hybrid (using both circuit and field approaches) models are the most numerous; an exhaustive and
accurate review is not possible in this paper, only a brief description is provided focusing on advantages
and drawbacks of each approach. Circuit models, such as the ones described in [1-4], are simple to
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implement and less time-consuming; moreover, they allow the simulation of soil ionisation and can be
easily coupled with electromagnetic transient programs. On the other hand, they are less accurate
and do not allow including the frequency dependence of soil parameters. Field models, like the ones
reported in [5,6], are the most accurate, as Maxwell’s equations are directly solved without simplifying
assumptions, and allow the simulation of frequency dependence of soil parameters; on the other
hand, they are computationally expensive and do not include soil ionisation representation. Hybrid
models [7-9] combine both advantages and drawbacks of both circuit and field approaches. Last, only
in recent papers, such as in [10], a time domain formulation of frequency dependence of soil parameters
is given: this will also allow incorporating soil ionisation for most accurate grounding system models.

Regardless of the specific grounding system model implemented, the main drawback is that the
BFOR evaluation by a Monte Carlo approach requires a massive number of simulations; for this reason,
the use of a complete grounding system model is not suited, even in the case of circuit models, due to the
computational effort required. Therefore, simplified procedures eschewing Monte Carlo approach were
developed, most notably those suggested by CIGRE [11] and IEEE [12,13] or the ones proposed in [14,15].
On the other hand, very simplified Monte Carlo procedures were proposed in the literature [16-20].
The introduction of a simplified yet accurate pi-circuit model for the tower grounding system [9,21-24]
drastically reduced computation times, thus allowing the use of a detailed ATP-EMTP [25] model as
the simulation engine in a Monte Carlo procedure for line BFOR evaluation [26-28]. In the case of
concentrated grounding systems, the results were also validated by comparison with the well-known
CIGRE method [27].

If the line’s prospective BFOR value has to be lowered in order to bring the total line outage rate
below a tolerable threshold, an essential issue is the selection of the appropriate design measures
to improve the lightning performance of the OHL. The choice must obviously be performed from a
technical/economic point of view, taking into account both the expected decrease in the BFOR and
the cost of implementation. Some of the commonly adopted design measures to reduce BFOR are
as follows.

e Reducing the tower surge impedance (in order to mitigate the stress on the insulator strings) by
using guyed towers.

e Adding one (or more) shield wire(s).

e Increasing the critical flashover voltage of the line by installing longer insulator strings.

e Improving the grounding system efficiency by reducing the grounding impedance in the frequency
range of interest (up to 1 MHz).

e Installing line surge arresters (on all phases or only on one phase, in all towers or only in
selected towers).

The paper deals with the lightning performance evaluation of a typical Italian OHL configuration,
namely a 150 kV—50 Hz subtransmission OHL operated by Terna, the Italian transmission system
operator (TSO). The line is studied by means of the ATP-EMTP Monte Carlo procedure described
in [26,27]; grounding system arrangements actually used by Terna are simulated by means of
the pi-circuit model presented in [24], for different soil resistivities, py, ranging from 10 up to
2000 Q)-m. Possible countermeasures aimed at improving lightning performance are proposed and
their effectiveness is evaluated by calculating the related BFOR reduction.

Section 2 of this paper describes the main features of the Italian 150 kV—50 Hz OHLs (towers,
conductors, line insulation and grounding systems); Section 3 summarises the ATP-EMTP Monte Carlo
procedure used to calculate BFOR, with a particular focus on the pi-circuit model of the grounding
system embedded in the procedure. Section 4 reports data on the lightning performance of Terna
subtransmission lines currently in operation, as well as presents and evaluates the possible design
variants that can be adopted to reduce the line BFOR.
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2. Main Characteristics of Terna 150 kV OHLs

2.1. Subtransmission Lines

Standard Italian 150 kV—50 Hz subtransmission lines are three-phase, single-circuit lines.
Each phase is equipped with single 31.5 mm ACSR conductors, with an 11.4 m sag. There is
only one shield wire, consisting in an 11.5 mm steel conductor (9.7 m sag) solidly connected to each
tower peak. The average span length is 400 m [29].

2.2. Towers

The most commonly used towers in Italian subtransmission lines are steel lattice suspension
towers, whose outline is shown in Figure 1a. The overall height is 31.1 m, whereas the tower base is a
square with each side 4.8 m long. The coordinates of phase conductors and shield wire are instead
reported in Table 1. The tower surge impedance, Zs, is ~168 () and has been estimated by using the

following equation [30],
2 2
\V2 r*+h ],

Zs = 60 1n[ (1)

where h is the tower height and r is the radius at the base of the tower. Equation (1) is found
by performing a conical approximation of the tower: this allows to obtain a constant tower surge
impedance value, i.e., not dependent on the current waveform injected, which is very convenient to
employ in statistical procedures using a very large number of lightning current waveforms, each with
different parameters. In principle, the tower surge impedance value not only depends on the injected
current waveform, but also on the soil resistivity value and the v(t)/i(t) response of the tower grounding
system, as reported in [31]. The authors of [31] show that tower surge impedance slightly decreases
with the increase in soil resistivity, as well as slightly varies with the grounding arrangement, so that
Equation (1) slightly overestimates the tower surge impedance. As higher tower surge impedance
values cause higher stress on line insulation, this implies that using Equation (1) causes a slight (but
conservative) overestimation of the OHL BFOR value.
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Figure 1. (a) 150 kV overhead transmission line (OHL) tower outline (dimensions are expressed in
meters). (b) Line insulation (dimensions are expressed in millimetres).
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Table 1. Phase and shield wire conductor coordinates.

Conductors
Coordinate (m)
A B C SW
x -29 3 -35 0
y 254 234 214 311

Line insulation is dictated by the arching horn gap length, which in standard configurations is
1.46 m, corresponding to an 820 kV standard critical flashover voltage (see Figure 1b) [29]. The possibility
to add up to four insulators in the standard insulator string, without modifying the mechanical design
of the OHL, is foreseen in case the line is installed in areas with high environmental pollution.

2.3. Grounding System Arrangements

The type of tower grounding systems installed in Italian subtransmission lines is dictated
by Terna unified design document LF 91 [32]: six different grounding system arrangements are
available, as shown in Figure 2. Each arrangement is made of strap iron (FE 360 B, 15.887 mm radius,
p =0.1 x 107% O-m) buried at ~0.8 m depth; branch terminals (not shown in Figure 2) are 1.4 m long
with a 45° slope (only MT1 arrangement has no branch terminal). Terna unified design prescribes the
installation of each arrangement in a specific range of soil resistivity values, as shown in Table 2. Soil is
considered uniform and not layered.

MT3

&
48m » ®
4.8m & — e
. ¥ o
MT6

Figure 2. Grounding systems installed in Italian 150 kV OHLs according to Terna unified design.
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Table 2. Soil resistivity range for each grounding arrangement according to Terna unified design.

Grounding Arrangement  pg Range (Q2'm)

MT1 10-50
MT2 50-150
MT3 150-300
MT4 300-600
MT5 600-1300
MT6 1300-2000

3. ATP-EMTP Monte Carlo Procedure for BFOR Calculation

The BFOR is assessed by a procedure combining a Monte Carlo approach and electromagnetic
transient simulations by means of ATP-EMTP. At first, Ny lightnings (consisting of negative first strokes,
positive first strokes and negative subsequent strokes) are statistically generated; Ny direct strokes to
the line out of the Ny lightnings are selected by applying the Ericksson electrogeometric model [33].
Each direct stroke (assumed to be a direct stroke to the tower peak) is simulated with an ATP-EMTP
complete model of the system (including OHL model, line insulation model, lightning stroke model
and grounding system model) in order to check the occurrence of backflashover. The procedure
stops either when a convergence tolerance criterion is fulfilled (the relative mismatch between two
consecutive values of the ratio Ngro/N is lower than a fixed threshold) or when all generated lightning
strokes are simulated. Finally, the BFOR of the line (faults/100 km/year) may be calculated as

N
BFOR = 0.6 - =222 . N, - 100, )

cono

where Npro is the total number of simulated backflashovers, Ny is the number of the generated
lightning that corresponds to the convergence of the procedure and Ny is the ground flash density
(ﬂashes/kmz/year). The numerical coefficient 0.6 is used, as suggested in [34], to take into account
also lightning strokes within the span, which are assumed not causing backflashover. A flowchart
describing the Monte Carlo procedure is reported in Figure 3. In the following subsections, a short
description of the statistical input of the procedure, as well as of the ATP-EMTP sub-models of the
complete system, is given.

S —
Start NL=NL+1
l l Final
N, N.=0; BFOR
N=0; N =0; ATP-EMTP
lgm simulation
N<N_or NO l
g, >toll
N=N+1 yYES o _Backflashover
Statistical input
generation l YES
* N_ =N__+1
Application of the SEOI ™ 6RO End
electrogeometric model
¢ Tgn=NBrolN
< N9 stroke €,=Tg,-Tg, ,
online l
YES
Write Tg, e €,
]

Figure 3. Flowchart of the Monte Carlo procedure.
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3.1. Statistical Inputs of the Procedure

Statistical variables are generated by the procedure:

e  First and subsequent stroke lightning parameters (i.e., polarity; peak current, Ip; time-to-front, tg;
time-to-half value, tg)

e Line insulation (critical electric field, Eg)

e Location of lightning

e  Phase angle of the power frequency voltages

A detailed description of statistical distributions is given in [26-28,35] but is not reported in this
paper for the sake of brevity. However, differently than in [26-28,35], the Ip distribution of negative
first strokes used in the presented simulations is the log-normal distribution proposed in [11] and
summarised in Table 3.

Table 3. Statistical distribution of the first negative return stroke peak current.

Peak Current Amplitude Median Value Standard Deviation

Ip <20 kA 61 kA 1.33
Ip >20 kA 33.3 kA 0.605

3.2. OHL Model

A 10 km long, 150 kV OHL is considered. Line spans are 400 m long, each simulated in ATP-EMTP
by means of the J-Marty model centred at 100 kHz. At both ends, the line is connected to the surge
impedance matrix and terminated on a three-phase 150 kV—50 Hz voltage system, whereas the shield
wire is solidly grounded. Segments and cross-arms of the towers are modelled as lossless single-phase
transmission lines with the Bergeron model, considering a Z; as evaluated with (1) and propagation
speed equal t02.99 X 108 x m x s 1.

3.3. Line Insulation Model

Phase insulation is simulated by the CIGRE leader progression model [11], implemented in
ATP-EMTP by means of “MODELS” language:

dl u(t)

In Equation (3), I(t) is the leader length in meters, u(t) is the voltage across insulator in kilovolts,
dg the arching horn gap length (equal to 1.46 m in Italian 150 kV OHLs) and k is the speed parameter,
equal to 1.2 X 107® x m? x kV=2 x s7! and 1.3 x 107 x m? x kV~2 x s7! for positive and negative
flashes, respectively. Eg is the critical electric field (kV/m), which is a statistical input of the procedure,
as reported in Section 3.1.

3.4. Lightning Stroke Model

Lightning strokes are simulated by means of the well-known “Heidler” function [36], implemented
in ATP-EMTP by means of “MODELS” language. The lightning waveform is given by the

following expression,
Ip k;l £

l(t)zﬁme 2, (4)

In Equation (4), 1 is a factor adjusting the peak current value; k; is the ratio t/71, being 71 and T,
two time constants depending on tr and ty; and n is another numerical factor influencing the rate of
rise of the lightning current (in all simulations reported in this paper, n has been taken equal to 5).
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3.5. Grounding System Model

The grounding system of each tower is simulated in ATP-EMTP by means of the simplified
pi-circuit model presented in [24] and depicted in Figure 4. The model is obtained synthesizing the
full circuit model described in [4] by means of a micro-genetic algorithm optimisation procedure.
The pi-circuit is able to simulate a grounding arrangement in a given soil resistivity range and also
takes into account soil ionisation.

R(p,) L(p,)
VWA 4115

Ri(p)) == Ci(p) Y Gi(pet) S Ry == Colp) Y Gaf Paat)

=
Figure 4. Pi-circuit model.

Linear parameters Ri(pg), Ra(pg), R(pg), L(pg), C1(pg) and Cy(pg) reproduce the non-ionised
behaviour of the grounding system in the frequency range of interest, which has been setas 1 Hz-1 MHz.

Soil ionisation is instead reproduced by means of the two voltage controlled current generators
G1(pg,t) and Ga(pg,t), whose formulation is

1 1
Gilpg:t) = Vrilt) (a(pg,t) ) &-(pg))' o

In Equation (5), Vg;(t) is the voltage across the resistor R;(pg) and the “transient resistance” F;(pq,t)
is expressed as

_4 VRi (t)
Fi(pg t) = Ri(pg) = ai(pg) -10g{ 107 + Bi(pg) - | (6)

1 (P 8 )
where o;(pg) and 3(pg), respectively, expressed in () and in A~1, are numerical coefficients representing
soil ionisation; F;(pg,t) is limited in the range 10™*—R;. As in the case of pi-circuit linear parameters,
ai(pg) and 3;(pg) are also expressed as a function of p. Equation (6) approximates the ground resistance
of a cylindrical electrode whose external radius increases when the current injected to ground increases

due to soil ionisation.

3.5.1. Pi-Circuit Synthesis Procedure

The synthesis procedure yielding pi-circuit parameters is an optimisation procedure based on
micro-genetic algorithm (LGA) [37], well suited to solve multi-objective and nonlinear optimisation
problems. The synthesis procedure may be summarised as in the following.

1.  Geometrical and physical parameters of the grounding system are provided; the discretisation
step of the range of soil resistivity values of each grounding system (see Table 2) is chosen.
Pi-circuit linear parameters are calculated in frequency domain.

Pi-circuit nonlinear parameters are calculated in time domain.

Points 2 and 3 are repeated for each soil resistivity discretisation step.

AR N

For each pi-circuit parameter, both linear and nonlinear, a polynomial approximation as a function
of pg (applicable in the soil resistivity utilisation range of the grounding system) is performed.

At point 1, input data of the grounding system are read, in order to create the ATP-EMTP file
simulating the grounding system by means of the full circuit model described in [4]. Moreover, for
each specific grounding system, the soil resistivity discretisation step is chosen: such step is 100 (2-m
for MT2, MT3, MT4, MT5, and MT6, whereas for MT1, two p, values, 10 2:m and 50 (2-m, are selected.
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At point 2, for a given pg value, pi-circuit linear parameters are calculated in the frequency domain.
In the 1 Hz to 1 MHz frequency range, the input impedance of the grounding system simulated with
the full circuit model, Zgj; jin(f), is calculated by performing in ATP-EMTP a frequency scan for Ny
frequency values in the frequency range. In point 2, the nonlinear part of the full circuit model, which
simulates soil ionisation, is not represented. The nGA optimisation procedure calculates the linear
parameter set of the pi-circuit minimising the objective function

Ny
1
Nr Zf |foulz,lfn (fi) = Zﬁi,lin (fi)) @)
=

being Z; jix(f) the input impedance of the grounding system simulated by the simplified pi-circuit
model. The optimisation procedure stops when the linear parameter set of the pi-circuit minimising
Equation (7) is not updated after 1000 iterations.

Atpoint 3, for a given p, value, pi-circuit nonlinear parameters, i.e., 1, «, 1 and 3 ; of generators
G1(t) and Gy(t), are calculated in the time domain. In ATP-EMTP, a certain number N, of time domain
simulations are executed by injecting Nj. lightning currents (with different Ip, tr and tg values) in the
full circuit model (in this case including soil ionisation representation), thus obtaining N time plots of
the ground potential rise (GPR) of the grounding system, GPRg,;. Such plots are compared with GPR;
plots obtained by injecting the same lightning currents in the pi-circuit model, using in this step for the
pi-circuit the linear parameters calculated at point 2. Chosen n time values t, the uGA optimisation
procedure finds the optimal solutions for o, xp, 31 and 3, minimising the objective function

J Z|GPR} (1) = GPR2, (8], ®)

for each one of the N, lightning currents. An Nj.-dimensional Pareto front of non-dominated optimal
solutions is obtained, among which the set of o1, &y, 31 and (3, values with the minimum standard
deviation is chosen.

Points 2 and 3 are then repeated for each one of the p, values in the range of interest for the
grounding system, thus obtaining an array of pi-circuit parameter values at the end of point 4.

At point 5, for each one of the arrays obtained at point 4 and each one of the pi-circuit parameters,
a polynomial approximation as a function of pg is performed. Polynomial regression is applied, starting
from simple linear regression, with the aim of minimising the standard deviation between the outputs
provided by the pi-circuits in Equation (8) and the ones obtained by the pi-circuits with parameters
calculated by the polynomial approximations.

3.5.2. Pi-Circuit Parameters of Terna Grounding System Arrangement

All pi-circuit linear and nonlinear parameters are expressed as a function of soil resistivity p:
for a given grounding arrangement pe may vary in the range reported in Table 2 in Section 2.3 (with the
exception of MT1 grounding arrangement: in this case, soil resistivity range is 10 to 50 (2 m). Tables 4-9
report the expressions of linear parameters for the Terna grounding arrangements: in all these cases,
all linear parameters are linear functions of p,. Tables 10-15 report nonlinear parameters expressions
for the Terna grounding arrangements: for the MT6 arrangement, parameter «; is approximated by a
parabola, whereas in all other cases nonlinear parameters are either linear functions of py or constants.
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Table 4. Linear parameters for MT1 pi-circuit as a function of soil resistivity.

Polynomial Ry! Ry! Cq! Gt Rl L1
Coefficients Q) Q) (nF) (nF) Q) (uH)

a 2.398 1.333 -1.121x 1072 29.569 -3.036 0.780

b 0.221 2.7 x107° 1.22x 1073 1.19 0.404 1.077 x 1072

1f(pg) =a+b X pg.

Table 5. Linear parameters for MT2 pi-circuit as a function of soil resistivity.

Polynomial Rt Ry1 cq! Gyt R! Lt
Coefficients Q) Q) (nF) (nF) Q) (uH)

a 5.903 —4.848 2,515 x 1072 1.25 x 1072 —8.382 0.822

b 0.042 0.144 1.025 x 1072 0 0.224 294 x 1073

1f(pg):”+b><Pg~

Table 6. Linear parameters for MT3 pi-circuit as a function of soil resistivity.

Polynomial Rq! Ry! ci! )l R! L!
Coefficients ) Q) (nF) (nF) ) (uH)

a 5.149 -10.77 1.603 0.178 10.269 3.4

b 0.087 0.076 1408 x 1073 -5522x107% —2764x103 —6.813x1073

1f(pg):a+b><pg.

Table 7. Linear parameters for MT4 pi-circuit as a function of soil resistivity.

Polynomial Ry! R! Cq! Gt Rl L1
Coefficients Q) Q) (nF) (nF) Q) (uH)

a 1.599 0.808 2.554 8.986 -1.848 6.013

b 0.061 0.05 1243x 1073 -6.437 x 1074 0.008 -232x1073

Tf(pg) =a+b X p,.

Table 8. Linear parameters for MT5 pi-circuit as a function of soil resistivity.

Polynomial Rql Ry! ci! 1 R! L!
Coefficients ) Q) (nF) (nF) ) (uH)

a -1.328 -0.541 4337 25.923 1.299 12.804

B 0.04 0.036 -251x107% -1.289 x 1072 0.001 -2.399 x 1073

Uf(pg) =a+bXp,.

Table 9. Linear parameters for MT6 pi-circuit as a function of soil resistivity.

Polynomial Ryt Ry! cq! Gt R! Lt
Coefficients Q) Q) (nF) (nF) Q) (uH)

a —6.785 853.704 15.306 8.525 45.454 58.489

b 2083x1072  -32455x 1072 —0466x1072  —0.135x1072  —0.421x1072  -2.012x 1072

Tf(pg) =a+b X pg.

Table 10. Nonlinear parameters for MT1 pi-circuit as a function of soil resistivity.

Polynomial ol apt Bl Bo1

Coefficients ) Q) (A1) (A1)
a -0.115 -0.114 1.678 1.29
b 0.018 0.018 0.025 0.033

Lf(pg) =a+b X pg.
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Table 11. Nonlinear parameters for MT2 pi-circuit as a function of soil resistivity.

Polynomial ot ol B! B2’

Coefficients Q) Q) (A7) (A1
a 0.207 -0.073 0.093 0.062
b 0.003 0.004 0 0

Tf(pg) =a+b X p,.

Table 12. Nonlinear parameters for MT3 pi-circuit as a function of soil resistivity.

Polynomial ot ol B1! B2’

Coefficients ) Q) (A7) (A1
a 0.13 0 2 0.01
b 0.004 0 0.02 0

1f(pg):a+b><pg~

Table 13. Nonlinear parameters for MT4 pi-circuit as a function of soil resistivity.

Polynomial ol ot B1! B2!

Coefficients ) Q) (A1) (A1)
a -0.012 -0.137 0.633 850.5
b 6.67 x 1074 0.002 0 0

Uf(pg) =a+bXpg.

Table 14. Nonlinear parameters for MT5 pi-circuit as a function of soil resistivity.

Polynomial ot ! B1! B2!

Coefficients Q) Q) (A1) (A1
a -0.483 —0.037 14.234 234.112
b 0.001 0.001 0 0

Lf(pg) =a+bx p,.

Table 15. Nonlinear parameters for MT6 pi-circuit as a function of soil resistivity.

Polynomial ol ot Bl B!
Coefficients Q) Q) (A1) (A1)
a -1.059 64.163 1024.8 122215
b 0.135 x 102 —2.724 x 1072 0 0
-3.664 x 1077 0 0 0

1f(pg):a+b><pg+c><pgz.

In order to show the performances of the pi-circuit, comparisons between the pi-circuit and
full circuit model are shown for two out of six grounding arrangements, namely, MT4 and MT6.
Figures 5 and 6 compare frequency scans of the MT4 and MT6 impedance in the 10° to 10° Hz range
obtained the two, non-ionised, models. A very good agreement is found in case of MT4 arrangement
in the whole range of frequencies, whereas in case of MT6, discrepancies occur starting from some
thousands of kilohertz. Such discrepancies are due to the difficulty for a single pi-circuit to reproduce
exactly the resonant behaviour which may occur for large grounding system arrangements at so high
frequency values. These discrepancies, however, are not expected to compromise the time domain
response of the pi-circuit when lightning current waveforms are injected for two main reasons: their
frequency content at so high frequencies is not predominant with respect to other frequencies over
the considered 1 Hz to 1 MHz range, and the effect of soil ionisation tends to accentuate the resistive
behaviour of the grounding system.
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Figure 5. Input impedance of MT4 grounding arrangement in 1 Hz to 1 MHz frequency range. Red line:
full circuit model; black line: pi-circuit model. (a) pg =300 (2 m; (b) pg = 450 O m; (c) pg = 600 O m.
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full circuit model; black line: pi-circuit model. (a) pg = 1300 (3m; (b) pg = 1600 (Y m; (c) pg = 2000 Q m.
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Figures 7 and 8 compare MT4 and MT6 GPR obtained by the two ionised models: in these two
simulations, the lightning current is directly injected into the grounding arrangement. Moreover,
in this case, a very good agreement is found for MT4, with the largest mismatch of ~2%; most notably,
even in the case of MT6, a good agreement is found, despite the discrepancies at high frequencies
found in the frequency scan, with the largest mismatch of ~3% in correspondence of the front of the
lightning wave in Figure 8b.
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Figure 7. GPR plots against time for MT4 grounding arrangement directly injected by a lightning
current. Red line: full circuit model; black line: pi-circuit model. (a) pg = 600 Q m, Ip = 58 KA,
tp =1.63 ps, ty = 300 ps; (b) pg = 600 QA m, Ip =51 kA, tr = 1.49 ps, ty = 300 ps.
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Figure 8. GPR plots against time for MT6 grounding arrangement directly injected by a lightning
current. Red line: full circuit model; black line: pi-circuit model. (a) pg = 2000 QQ m, Ip = 44 kA,
tp =1.36 ps, ty = 300 ps; (b) pg = 2000 QA m, Ip = 38 KA, tr = 1.25 ps, tyy = 300 ps.

Last, Figures 9 and 10 compare the voltage across insulator (for each simulation only the voltage
of the most stressed phase is plotted) due to direct strokes to tower peak obtained by the two models
when the complete system is simulated with ATP-EMTP. For both MT4 and MT®6, in case both of
insulation withstands (Figures 9a and 10a) and of backflashover (Figures 9b and 10b), a very good
agreement is evidenced between the two models, also with respect to the time the backflashover occurs.
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Figure 9. Voltage across insulator (most stressed phase) against time when a 150 kV OHL equipped
with MT4 grounding arrangement is struck by lightning. Red line: full circuit model; black line:
pi-circuit model. (a) pg = 600 Q'm, Ip = 39 kA, tr = 1.26 ps, ty = 300 ps; (b) pg = 600 QO m, Ip = 99 kA,
tp = 2.44 ps, tyy = 300 ps.
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Figure 10. Voltage across insulator (most stressed phase) against time when a 150 kV OHL equipped
with MT6 grounding arrangement is struck by lightning. Red line: full circuit model; black line:
pi-circuit model. (a) pg = 2000 Q-m, Ip = 35 kA, tr = 1.19 ps, t7 = 300 ps; (b) pg = 2000 Q'm, Ip = 75 KA,
tp =1.96 s, tyy = 300 us.

4. Results

Grounding resistance at power frequency, Rsop;, is reported in Figure 11 as a function of soil
resistivity. Discontinuities are clearly due to the use of different grounding arrangements in different
soil resistivity ranges, as detailed in Table 2. Rsqp, values span from approximately 1.6 () to 29 ():
in general, the trend of Rsgy; values exhibits a less than linear increase with soil resistivity.

30
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—MT3

W

=—=MI5

// —MT6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Soil resistivity (Qm)

Figure 11. Calculated values of the grounding resistance at power frequency.
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Regarding the lightning performance in terms of BFOR, Ny, = 720,325 flashes, corresponding to
2,153,833 strokes (including both first and subsequent strokes), are generated. N; = 200,000 are the
flashes impinging the OHL. Peak current probability distributions of Ny and N flashes are shown
in Figure 12a,b, respectively. The plot in Figure 12a is not a perfect log-normal distribution, as it is
the superimposition of three different log-normal distribution (one for negative first strokes, one for
positive first strokes and one for negative subsequent strokes); peak current distribution in Figure 12b
is instead obtained by applying the Ericksson electrogeometric model to the distribution in Figure 12a.

Probability (%)
Probability (%)

R T PSP sy s P s e s L R T N B e e
0 20 40 60 80 100 120 140 160 180 200 220 240 260 0 20 40 60 80 100 120 140 160 180 200 220 240 260
Peak current (kA) Peal current (KA)

(@) (b)

Figure 12. (a) Probability distribution of the peak currents of the generated Ny flashes; (b) Probability
distribution of lightning peak currents impinging the OHL, in percent of the generated flashes.

Figure 13 reports the peak current probability distribution of the flashes causing BFOR of the
150 kV OHL when equipped with each of the grounding system arrangements and considering for
each arrangement the highest p, value in the range. The appearance of the band of critical peak current
values in the left of the distributions in Figure 13a,e is due to subsequent strokes, which also cause the
reduction of the minimum peak current value causing backflashover (this effect is instead recognisable
for all distributions).
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Figure 13. Probability distribution of the peak currents of Npro flashes causing backflashover. (a) MT1
grounding arrangement, pe= 50 () m; (b) MT2 grounding arrangement, pe= 150 ) m; (c) MT3
grounding arrangement, pe= 300 (2 m; (d) MT4 grounding arrangement, pe= 600 Q) m; (e) MT5
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grounding arrangement, pg= 1300 Q2 m; (f) MT6 grounding arrangement, pe= 2000 (2 m.

Moreover, the BFOR trends of the 150 kV OHL, when equipped with each one of the grounding
system arrangements and considering for each arrangement the highest p; value in the range, are
shown in Figure 14. In all cases reported in Figure 14, the Monte Carlo procedure has been stopped
when all generated lightning strokes are simulated and not according to the convergence criterion
described in Section 3, with the aim to show the stability (in terms of convergence) of the procedure.

Lastly, Table 16 summarises 150 kV OHL BFOR results, normalised for Ny = 1 ground flash
density value; for each grounding arrangement both the minimum and the maximum allowable soil
resistivity values have been considered, with the exception of MT1 (in this case, only the maximum soil
resistivity value has been considered). Results show a tenfold increase of BFOR over the 50-2000 (2-m

soil resistivity range.
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Figure 14. Backflashover rate (BFOR) trend as a function of the generated flashes, evaluated with (2)
considering N = 1. (a) MT1 grounding arrangement, pe = 50 Q) m; (b) MT2 grounding arrangement,
pg = 150 Oym; (c) MT3 grounding arrangement, pe = 300 (3 m; (d) MT4 grounding arrangement,
pg =600 A m; (e) MT5 grounding arrangement, p; = 1300 () m; (f) MT6 grounding arrangement,

pg= 2000 Q-m.
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Table 16. BFOR calculated by the Monte Carlo procedure for the simulated grounding
system arrangements.

Grounding Arrangement pg (Q-m) BFOR (Faults/100 km/Year)

MT1 50 0.279
MT2 50 0.203
MT2 150 0.370
MT3 150 0.276
MT3 300 0.640
MT4 300 0.490
MT4 600 1.112
MT5 600 0.706
MT5 1300 1.676
MT6 1300 1.126
MT6 2000 2.759

Considering that the ground flash density in a significantly large portion of the Italian territory is
4 flashes/km?/year [38], the authors examined the feasibility of countermeasures aimed at improving
the OHL lightning performance.

Given a soil resistivity range, install the first subsequent grounding arrangement.
Change the tower design from a single to a double shield wire arrangement.
Add additional vertical rods to the existing grounding system design.

L .

Install guy wires in order to reduce the tower surge impedance, as well as a ground ring to
connect guy wires.
5. Increase clearances and insulator string length.

The installation of line surge arresters is not evaluated in this paper, despite such countermeasure
may be very effective in BFOR reduction. However, improvements in OHL lightning performance
due to surge arrester installation are discussed in the literature, in [39,40], the best placement of surge
arresters is treated, whereas in [41], a Monte Carlo-based procedure able to assess the flashover rate of
OHLs is developed; moreover, the authors of [42] study the probability of surge arrester failures due to
lightning flashes. Last, the authors of [28] apply a Monte Carlo procedure to estimate BFOR reduction
due to surge arrester installation (in one or in all three phases) for a 150 kV overhead line with a very
high BFOR.

In the following subsections, each one of the five above listed countermeasures is examined in
detail. All presented results are normalised for the ground flash density value N, = 1 flashes/km?/year.

4.1. Adopt a Larger Grounding System

For a given soil resistivity range, one simple approach is to adopt the first larger grounding
system arrangement among the ones foreseen in Terna unified design. Obviously, this approach is
only applicable up to 1300 (3:m soil resistivity value. The solution can be straightforwardly applied
for new OHLs, whereas it is not a viable option for existing OHLs, due to right of way constraints
and authorization problems. The effectiveness of this solution is presented in Table 17, in terms of
reductions both of Rsgr, and BFOR values. The average expected BFOR reduction is ~29%, whereas
the maximum expected reduction is obtained if MT4 grounding arrangement is replaced by the MT5
one (~36.5%); moreovert, replacing MT5 with MT6 leads to a reduction larger than 30%.



Energies 2020, 13, 2142 18 of 22

Table 17. Countermeasure 1: improvement of the lightning performance for different soil
resistivity values.

Grounding Arrangement pg (A'm) Rsopzz () AR50, (%)  ABFOR (%)

MT2 50 3.16 -59.4 -27.2
MT3 150 6.34 -33.2 -25.3
MT4 300 8.66 -31.7 -23.4
MT5 600 11.15 -35.7 -36.5
MT6 1300 18.80 =222 -32.8

4.2. Add a Second Shield Wire

The addition of a second shield wire allows for a reduction in the current injected into the
grounding system, at a reduced expense in terms of tower weight and cost. For this countermeasure,
the use of a twin-bundled shield wire instead of the single shield wire normally used by Terna has been
considered: in such a way, the number of flashes striking the tower with respect to the normal design
does not increase. As for countermeasure 1, this solution is only viable for new OHLs. However,
its effectiveness is significantly higher if compared to countermeasure 1, as reported in Table 18;
moreover, differently than countermeasure 1, it is applicable also in the highest soil resistivity range,
which is the most critical in terms of BFOR. The analysis has been carried out only on the harshest soil
resistivity scenarios: an average BFOR reduction of 45.6 % is expected.

Table 18. Countermeasure 2: improvement of the lightning performance for different soil
resistivity values.

Grounding Arrangement pg (QQ-m) ABFOR (%)
MT3 300 —47.7
MT4 600 —46.7
MT5 1300 —45.2
MTé6 2000 —42.7

4.3. Add Four Vertical Rods at the Tower Base

This countermeasure entails the installation of four vertical rods (each one 6 m long) at the
tower base. Differently from the previous countermeasures, this one is applicable also for existing
OHLs, as it does not increase the right of way; the expected cost is limited to few thousands euros
(except in rocky soils). Clearly, the addition of the four vertical rods modifies the geometry of the
grounding arrangement, so the pi-circuit synthesis procedure described in Section 3.5.1 must be
reapplied; pi-circuits parameters obtained for this countermeasure are not reported in the paper.
The analysis has been carried out considering the MT4, MT5 and MT6 arrangements: results obtained
in terms of lightning performance evaluation (reported in Table 19) are not so good, showing a limited
effectiveness of this countermeasure. Only for MT4 there is an appreciable Rspy, and BFOR reduction
of approximately 10% and 14%, respectively; in case of MT6, the enhancement with respect to the
currently adopted Terna practice is practically null, because of the very small contribution of the four
vertical rods in reducing the v(t)/i(t) ratio of the grounding system in soils with so high resistivity values.

Table 19. Countermeasure 3: improvement of the lightning performance for different soil
resistivity values.

Grounding Arrangement  pg (Q'm)  Rsop: () ARspn: (%)  BFOR (Faults/100 km/Year) ~ ABFOR (%)

MT4 600 15.59 -10.0 0.960 -13.7
MT5 1300 23.15 -4.1 1.605 —4.2
MT6 2000 28.80 -0.4 2.740 -0.7
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4.4. Install Guy Wires and Ground Ring

This countermeasure aims at reducing both the tower surge impedance (by installing four guy
wires) and the grounding impedance at high frequency (by adding a ground ring to the existing
grounding system arrangement). The analysis has been carried out considering only MT4 and MT5
arrangements with the additional ground ring, as shown in Figure 15. In this context, the guy wires do
not fulfil any structural requirement; they are connected between the tower (~2 m below the lowest
phase) and the four edges of the grounding ring. Guy wires are made of 11.5 mm aluminium clad
steel ropes; self-inductances of each guy wire have been estimated using the formulation reported
in [11], yielding 42 uH and 57 uH for MT4 and MT5 arrangements, respectively. Moreovet, in this case,
as for the previous countermeasure, the pi-circuit synthesis procedure must be reapplied since both
the geometry and the lightning current injection points of the grounding arrangements are different
than the standardized ones. Lightning performances are reported in Table 20. Results evidence
how this countermeasure is the most effective in terms of BFOR reduction even if, differently than
countermeasure 2, such reductions strongly vary depending on the guy wire length, which in turn is
determined by the grounding system layout. In fact, despite a practically equal reduction of the Rsgp,
values for MT4 and MT5 arrangements, a higher BFOR reduction is evaluated for MT4, due to a lower
inductance of guy wires.

Figure 15. MT4 and MTS5 layout with ground ring.

Table 20. Countermeasure 4: improvement of the lightning performance for different soil resistivity values.

Grounding Arrangement  pg (0'm)  Rsop: ()  ARspp: (%)  BFOR (Faults/100 km/Year) ~ ABFOR (%)

MT4 600 11.61 -33.0 0.414 -62.8
MT5 1300 15.76 -34.7 0.910 —45.7

Despite the very good results in terms of lightning performance, this countermeasure has some
significant drawbacks, such as increased right of way and visual impact, whereas in terms of costs
there is no particularly high impact.

4.5. Increase Insulator String Length

This countermeasure has been applied in this paper only to OHLs grounded via MT6. Further
four 146 mm insulators have been added to the original insulator string. This would imply the increase
of the tower height of about 60 cm, with a corresponding increase of weight, cost and visual impact.
An insignificant increase (about 1%) of flashes striking the tower is expected. The BFOR reduction
expected is one of the highest obtained among all the proposed countermeasures and is equal to 57.6 %.
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5. Conclusions

The paper reports the lightning performance evaluation, in terms of backflashover rate, of a
standard Italian 150 kV OHL construction, considering several different tower grounding arrangements
commonly adopted by Terna, the Italian TSO. An ATP-EMTP Monte Carlo procedure performs the
backflashover rate calculation by generating statistical inputs and by performing transient simulations.

Five different design countermeasures are proposed in order to reduce the backflashover rate:

e Adoption of a larger grounding system than the one prescribed by Terna specification for the
given soil resistivity range.

e Installation of a second shield wire.

e Addition of four vertical rods to the tower grounding system.

e Installation of guy wires (with no structural purpose) and ground ring.

e Addition of four insulators to the standard insulator string.

The effectiveness of each countermeasure in reducing both the grounding resistance at power
frequency (when applicable) and the backflashover rate has been evaluated. Technical and economic
preliminary considerations related to the viability of each countermeasure are also reported.

Moreover, the addition of four vertical rods is the less effective countermeasure, especially for high
resistivity soils, where the resulting lightning performance improvement is negligible; on the other
hand, this is the only design modification that can be straightforwardly implemented in existing OHLs
without increasing OHL right of way and visual impact. All other proposed solutions are expected
to have good performances, but their adoption in new OHLs should be evaluated based on a fully
comprehensive economic analysis.
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