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Abstract: Energy consumption forecasting is of prime importance for the restructured environment
of energy management in the electricity market. Accurate energy consumption forecasting is essential
for efficient energy management in the smart grid (SG); however, the energy consumption pattern is
non-linear with a high level of uncertainty and volatility. Forecasting such complex patterns requires
accurate and fast forecasting models. In this paper, a novel hybrid electrical energy consumption
forecasting model is proposed based on a deep learning model known as factored conditional
restricted Boltzmann machine (FCRBM). The deep learning-based FCRBM model uses a rectified
linear unit (ReLU) activation function and a multivariate autoregressive technique for the network
training. The proposed model predicts future electrical energy consumption for efficient energy
management in the SG. The proposed model is a novel hybrid model comprising four modules:
(i) data processing and features selection module, (ii) deep learning-based FCRBM forecasting
module, (iii) genetic wind driven optimization (GWDO) algorithm-based optimization module,
and (iv) utilization module. The proposed hybrid model, called FS-FCRBM-GWDO, is tested and
evaluated on real power grid data of USA in terms of four performance metrics: mean absolute
percentage deviation (MAPD), variance, correlation coefficient, and convergence rate. Simulation
results validate that the proposed hybrid FS-FCRBM-GWDO model has superior performance than
existing models such as accurate fast converging short-term load forecasting (AFC-STLF) model,
mutual information-modified enhanced differential evolution algorithm-artificial neural network
(MI-mEDE-ANN)-based model, features selection-ANN (FS-ANN)-based model, and Bi-level model,
in terms of forecast accuracy and convergence rate.
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1. Introduction

Electrical energy consumption forecasting is imperative for efficient energy management in
the supply and demand sector of the smart grid (SG) [1]. It is significant in the supply side due to
two reasons: (i) lack of viable planning of resources to efficiently cope with the consumers’ demand,
and (ii) energy is an irreversible process and cannot be stored. Precise and accurate electric load forecast
facilitates efficient load dispatch in power utilities and transaction markets. On the other hand, it is
indefensible in the demand side, because electric load forecasting optimizes the energy management
system and equipment use. Moreover, it also plays an imperative role in ensuring secure operations of
the SG [2]. Energy theft is one of the major threats faced by the SG. It takes place when an adversary
compromises the smart meters to send tampered consumption readings, which could lead to economic
losses. Electrical energy consumption forecasting can be used in identifying possibly compromised
smart meters whose behaviors significantly deviate from the forecasted ones. However, the accuracy
of electrical energy consumption forecasting cannot often cope with the societal requirements. It is
influenced by stochastic and uncertain influencing factors, such as human social activities, temperature,
irradiance weather parameters, environmental parameters, economic development, climate change,
and state policies. Consequently, it is challenging to improve the accuracy of forecasting networks.
It is unrealistic or cumbersome to consider all the influencing factors [3]. Thus, it is feasible to improve
the forecast accuracy by developing a model that takes into account the key parameters.

Over the past few decades, numerous methods have been developed and employed for accurate
electrical energy consumption forecasting, such as obsolete time series models including Kalman
filters [4], exponential smoothing [5], grey forecasting model (GM) [6], regression models [7,8], and
autoregressive integrated moving average (ARIMA) models [9]. The existing forecasting models are
capable of forecasting electrical energy consumption patterns. However, the accuracy is not good enough
due to the networks’ inherent limitations. The linear regressors are knowledge-based and are suitable
for linear problems, while their performance would compromise when solving non-linear problems.
The ARIMA models consider current and historical data points to forecast and ignore other influencing
factors. The GM model is suitable to handle only exponential growth trend problems. To overcome the
limitations accompanied by the discussed models, in recent years, intelligent models have been proposed
for forecasting such as artificial neural network (ANN) [10,11], machine learning [12], radial basis fuzzy
logic [13], and expert systems [14]. Though intelligent methods outperform classical statistical methods,
ANN based models stuck in local minima, radial basis logic methods are radially invertible, and expert
systems need knowledge databases. Thus, hybrid forecasting models are developed, where individual
modules are integrated. For instance, in [15], authors proposed an integrated framework of support
vector machine (SVM) and modified enhanced differential evaluation (mEDE) algorithm. The authors
in [16] developed a hybrid model using support vector regression (SVR) and chaotic particle swarm
optimization (CPSO) algorithm. In [17], the authors designed a hybrid model of SVM and artificial
intelligence (Al) for load forecasting. The hybrid and integrated models are superior than single and
individual module-based models in terms of forecast accuracy.

As discussed, ANN-based models are widely used for forecasting; however, these models are
trapped into local minima due to the restriction on their generalization ability and therefore, cannot
select abstracted features from the given sample set. A deep learning model, known as factored
conditional restricted Boltzmann machine (FCRBM), overcomes these drawbacks and reduces the error
metric to improve the forecast accuracy. FCRBM employs learning principles with ReLU to increase
generalization in the training process and generate accurate forecasts. Because of the deeper layer
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layout, attractive features, and empirical performance, FCRBM has become one of the most popular
and promising forecasting models [18]. Therefore, in this paper, a deep learning FCRBM is used in the
forecaster module for forecasting. The irrelevant and redundant information directly affects accuracy
and convergence rate. Therefore, a novel concept of the candidates’ interaction is introduced in addition
to the redundancy and relevancy filters. The proposed genetic wind driven optimization (GWDO)
algorithm [19,20] is chosen, among other algorithms, due to its fast convergence and powerful ability to
search an optimal solution [21]. GWDO optimizes the thresholds of these filters and feeds the optimized
thresholds to the feature selection module for feature selection. This, in turn, improves the accuracy.
In this article, a novel hybrid model is proposed, which is an integrated framework of data
processing and feature selection technique, a deep learning FCRBM model, and our proposed GWDO
algorithm (FS-FCRBM-GWDO). The performance of the proposed FS-FCRBM-GWDO model is validated
by comparing it with existing models in terms of three performance metrics: mean absolute percentage
deviation (MAPD), variance, and correlation. The major contributions are described as follows:

e A novel hybrid FS-FCRBM-GWDO forecast model is proposed that integrates the merits of
individual techniques to enhance both metrics: (i) accuracy (MAPD, variance, and correlation),
and (ii) convergence rate. The proposed model is capable of mapping the input space to the
feature space to learn the stochastic and complex patterns of electrical energy consumption.

o  The proposed FS-FCRBM-GWDO model considers both the exogenous influencing parameters
and the historical electrical energy consumption pattern.

e A novel concept of feature interaction is developed in addition to relevancy and redundancy
filters of feature selection techniques to make the feature selection process more effective.

e The ReLU and multivariate autoregressive algorithms are integrated with FCRBM to improve
both accuracy and convergence rate, which are not present in the existing models.

e The GWDO algorithm is proposed for the optimization module to further reduce error in the
forecasting results returned from the FCRBM based forecaster by fine-tuning the control parameters.

The remainder of the manuscript is organized as follows: The recent and relevant work is
demonstrated in Section 2. In Section 3, the proposed hybrid FS-FCRBM-GWDO model is described.
The results of our simulations are presented and discussed in Section 4. Finally, in Section 5, the
manuscript is concluded with potential future directions. Abbreviations and notations used in this
work are listed at the end of the paper.

2. Related Work

Electrical energy consumption forecasting strategies have been proposed for the past many years
and employed in the SG for efficient energy management. These strategies are categorized into four
classes according to time resolution [22]. The first class is about very short-term energy consumption
forecasting [23], which corresponds to the energy consumption forecasting of time resolution from
minutes to hours. The second class is about short-term electrical energy consumption forecasting
of time resolution from days to a week [24]. The third class is the medium-term electrical energy
consumption forecasting of time resolution from one week to a year [25]. The fourth class is about the
long-term electrical energy consumption forecasting of time resolution for more than a year [26].

Classical statistical methods and intelligent methods are commonly used for electrical energy
consumption forecasting. ANN is widely used as an intrinsic system and as a part of the hybrid system
for electric load forecasting. In [27], Kohonen's self-organizing map is used for the day ahead electric
load forecasting in Spain. The described strategy comprises three stages. The daily load profile is treated
as a time series and is stored in the neurons; After the training phase, the arrangement of neurons
is such that the load profile given to the neuron is similar to the neighboring neurons. During the
second phase, the data samples are presented to the network and wining neurons are extracted. Then,
the data samples of the winning neurons are divided into two parts. The first one corresponds to
the input profile and the second one corresponds to the forecasted profile. The effect of exogenous
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parameters on accuracy is also considered. It is also reported that the percentage error varied from
1.84% to 2.33%. A differential polynomial neural network for short-term load forecasting is described
in [28]. The network is a multi-layer network and by its decomposition, partial differential equations are
solved. The twenty-four hours ahead load is forecasted using the historical electric load data of Canada.
The forecasted energy consumption pattern deviates from the target pattern by an error of 1.56%.
A short-term load forecasting method based on weather information is proposed in [29]. The power
system is divided into subnetworks based on weather information. Separate models are developed for
each subnetwork. The abstracted features are selected form large data sets using cosine distance method.
The models are based on ANN, ARIMA, and GM to forecast the future load. A hybrid forecast strategy
is proposed in [30] based on an intelligent algorithm. The strategy includes a novel feature selection
technique and a complex forecast engine. A novel features selection technique selects appropriate
features that are fed into the forecast engine. The forecast engine is two-staged and is implemented
on Reglet and Elman neural network. The intelligent algorithm tunes the adjustable parameters of the
forecast engine for improving accuracy along with a reasonable convergence rate. The performance of
the described model is evaluated by comparing it with the benchmark models. A deep learning-based
forecasting framework with appliances energy consumption sequence is proposed in [31]. The accuracy
is notably improved by incorporating appliances consumption sequences in addition to the deep neural
network. An integrated framework of the forecaster module based on deep learning and optimization
module based on the heuristic algorithm is proposed for electric load forecasting [32].

The authors in [33], proposed an Elman neural network-based forecast engine to predict the
future load in the SG. The weights and biases for this network are optimally adjusted by an intelligent
algorithm to obtain accurate forecasting results. The authors proposed a novel forecasting model
that could generalize the standard ARMAX model to Hilbert space [34]. The proposed model has a
linear regression structure and uses functional variables for operation. The considered variables are
autoregressive terms, moving average terms, and exogenous parameters. The functional variables are
integral operators whose kernels are modeled as sigmoidal function. The parameters of the sigmoidal
function are optimized using the quasi-newton algorithm. The model is validated on the daily price
profile of the Spanish and German electricity market. However, accuracy is enhanced due to the
optimization module integration, which increases the execution time. In [35], authors reveal the effect
of data integrity attacks on the accuracy of four forecasting models: SVR, multiple linear regression,
ANN, and fuzzy interaction regression. The data integrity attacks attempt to damage the performance
of various forecasting models and have a significant impact on the resilience of the power system.

In the aforementioned recent and relevant work, authors mostly focused on ANN-based models
for electrical energy consumption prediction due to its capability for handling the nonlinear electrical
energy consumption pattern. However, the ANN-based forecasters perform well for small data but
do not behave well for large data in terms of accuracy. In this regard, in the literature, either the
optimization module is integrated with ANN-based forecaster or deep learning models are adopted to
improve the forecast accuracy. However, the optimization module and deep learning models cause
high execution time overhead while improving the accuracy. The recent and relevant research in terms
of techniques, objectives, datasets, limitations, and critical remarks is summarized in Table 1.
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Table 1. Brief review of recent and relevant work in terms of techniques, objectives, datasets, limitations,

and critical remarks.

Techniques Objectives Datasets Limitations Critical Remarks
The prime focus of authors is
Forecast accuracy This model is useful for only  on accuracy improvements
ARIMA and exponential — improvement for power  National grid and Y y imp

smoothing [23]

generation scheduling in
real-time.

Great Britain

very short term load
forecasting.

for univariate methods while
the accuracy improvement of
univariate is not sufficient.

ANN and self-organizing
map [27]

To build a decision
support system for
commercializing
company bidding.

Spain power grid

This model achieves
moderate accuracy at the
cost of slow convergence
rate (high execution time).

Meteorological and load data
is used in this model and
other exogenous parameters
are ignored that significantly
affect the forecast accuracy.

Differential polynomial
neural network [28]

Reduction of generation
cost and spinning reserve
capacity.

Canada power
grid

Unnecessary and overload
prediction leads to large
reserves and high cost.

Slow convergence and less
accuracy is observed in this
model, which have a direct
impact on cost and spinning
reserve.

ANN, ARIMA,
and GM [29]

To improve the accuracy
of bulk power system.

China Fujian
Province power

grid

The system becomes more
complex by dividing the
system into subnetworks.

Improvement in accuracy by
using large exogenous
parameters at the cost of
high complexity and slow
convergence rate.

Accuracy and capability

Australian energy

This model has a large

Reglet and Elman neural ~ improvement for market The model has large complexity that directly
network [30] efficient operation of the . complexity. impacts the convergence
commission
power system. rate.
Forecast accurac The system model has slow ;1;23 raoc‘f:;ajg’i: I;om?i{a};ces
Long term short term improvement foz Canadian convergence due to the o r}\) sumption sg lfell)’lCe
memory [31] P household incorporation of household P q i’

household scheduling.

appliances sequence.

however, the convergence
rate is compromised.

Improvement of load
forecasting accuracy for

Irish commission

The model has a slow

The hyperparameters are
tuned by the intelligent

SVR [33] L for energy techniques which improved
minimizing cost and . convergence speed.
. regulation (ICER) accuracy at the expense of
energy imbalance. . . .
increased execution time.
They improved accuracy is
ARIMAX and Improvement of forecast Spanish and improved due to

quasi-newton
algorithm [34]

accuracy for system
operators and the market
agent.

German energy
market

The convergence speed is
compromised.

incorporating of sigmoid
function. However, the
computational time is

increased.

Global energy The power system resiliency
ﬁllt\(lelr\lcfi\olll} and fuzzy f‘zﬁigr‘:ce(ier:igi ¢ attacks forecasting The resilience is improved at  is enhanced at the expense of
regression [35] on data integgrity competition increased time complexity. higher complexity of

- ’ (GEFC) 2012 modeling.
Improvement of The developed model
MI, ANN, convergence rate and PJM market The complexity of the model outperforms for small
and mEDE [36,37] accuracy for US EKPC is increased. datasize and worst perform
and Dayton grid. for large datasize.
The convergence rate is The ANN forecaster
ANN-based hybrid Microgrid accuracy PJM market compromis% d while improved the accuracy,

models [38,39]

improvement.

improving forecast accuracy.

which degrade the execution
time.

3. The Proposed Deep Learning-Based Hybrid Model

A novel hybrid FS-FCRBM-GWDO model for electrical energy consumption forecasting is
proposed, as illustrated in Figure 1, which is an extension of our earlier conference paper [40].
The proposed hybrid model aims to improve forecast accuracy, convergence speed, and scalability.
FS-FCRBM-GWDO is composed of four modules: (i) data processing and feature selection module,

(it) FCRBM-based forecasting module, (iii) GWDO-based optimization module, and (iv) utilization
module. Both historical energy consumption pattern data and exogenous parameters (wind speed,
dew point, temperature, and humidity) are given as input to the data processing and features selection
module. At first, the received input data is normalized and passed through the relevancy, redundancy,
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and interaction phases. This module aims to clean the data and select abstractive features for the
forecast process by maximizing relevancy, minimizing redundancy, and maximizing features interaction.
The selected features are fed into the FCRBM-based forecasting module. The purpose is to predict the
future electrical energy consumption pattern of the FE power grid. The forecasted energy consumption
is fed into the optimization module based on the GWDO algorithm. The objective is to enhance forecast
accuracy, which is very important for efficient energy management. Finally, the forecasted energy
consumption pattern is fed into the utilization module to use the predicted energy consumption pattern
for efficient energy management in the SG. The detailed demonstration is as follows:

Section 3.1. First module: FS Section 3.2. Second Module: FCRBM
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Figure 1. Schematic diagram of the proposed hybrid FS-FCRBM-GWDO framework for electrical
energy consumption forecasting.

3.1. Data Processing and Features Selection Module

The input dataset that has both historical energy consumption pattern and exogenous parameters
(wind speed, dew point, temperature, and humidity) is fed for pre-processing and feature selection. First,
the dataset is passed through the cleansing phase to recover missing and not a number (NAN) values
with average or median values of the previous day. Then, the cleansed data is fed to the normalization
operation using Equation (1) to make data entries within the limit of the activation function:

X —u(X)

St(X), @)

Norm =
where Norm is the normalized data, X is the input data, and std is the standard deviation. The input data
(X) includes electrical energy consumption data pattern (P(h,d)), dew point (D (h, d)), temperature
(T(h,d)), and humidity (H(h,d)) parameters. The hour & and day d represents particular hour and
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day, respectively, in historical data. The wind speed, dew point, temperature, and humidity are called
exogenous parameters. Energy demand shows the correlation with variation in exogenous parameters.
For example, increase or decrease in the external temperature induces changes in energy demand. Same
applies to the other parameters. The FS technique has irrelevancy, redundancy filters, and features
interaction phase in order to remove irrelevant, redundant, and nonconstructive information due
to three reasons: (i) redundant information is not useful and causes execution overhead during the
training phase, (ii) irrelevant features do not provide useful information and act as an outlier, and (iii)
interacting features provide useful information to enhance electrical energy consumption forecast
accuracy. The relevancy, redundancy filters, and feature interaction phases are discussed as follows:

3.1.1. Relevancy Filter Operation

For feature selection relevancy operation is of great importance because input features and target
variables are correlated in order to select key features. Many techniques for relevancy measurement are
used [41] among feature selection techniques. The chosen FS technique measures mutual information
to ensure how closely the two variables x and y are correlated. The FS technique observes y by studying
x and vice versa. For variables x and y, the FS is represented by I(x; y) and is defined for individual
(p(x), p(y)) probability distribution as well as for joint probability distribution (p(x,y)). Suppose that

S={x1, x2, x3,--., XM}, )

where x1, xp, x3,...,x) are input variables, S is input variables set and the target variable is y.
The mutual information between input x; and target y variables are checked; when the mutual
information between two variables is large enough, they are closely related. In addition, the relevance
of input x; variable with target y variable is computed as follows:

D(x;) = I(x;; y), ®)
where D(x;) denotes the relevance of the input variable with the target variable.

3.1.2. Redundancy Filter Operation

Several authors in [42-44] developed redundancy filter operation to check the redundancy among
input variables because redundant information complicates the process and increases the convergence
speed. The redundancy evaluation is performed among the input candidates based on mutual
information. The purpose is to discard redundant features. The authors in [41] stated that closely related
input variables degrade the feature selection process. This is because two input variables have more
common information and very little redundant information about the target variable. Thus, a variable
with little redundant information regarding the target variable may be counted incorrectly as highly
redundant and is filtered out, while it may be the abstractive feature for the proposed mode. In order to
solve such problems, an interaction gain based redundancy measure (Ig) is introduced in [39] as:

RM(x;, x5) = 1g(xj; xs;y)

— 1[(x; xe);y] — I(x5%5) — I(xsy), @

where RM(x;, x;) is the redundancy measure, x;, x5 are candidate inputs, and y is the target variable.
Ig can be mathematically modeled in terms of joint and individual entropy as:

Ig(xi; x5;y) = H(xi,xs) + H(xi,y) + H(xs, y)

H(x;) — H(xs) — H(y) — H(x; x¥), ©

where H(x;), H(xs), and H(y) denote individual entropy while H(x;, xs), H(x;,y), H(xs,y), and
H(x;, xs,y) denote joint entropy.
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3.1.3. Features Interaction Operation Session

In [39], the authors proposed irrelevancy and redundancy filters to discard irrelevant and
redundant features and keep the desired features for further processing. However, the limitation
filter-based method is that it discards individual features that are irrelevant; though these irrelevant
features become relevant when used together with other input features. In this regard, in this work,
a FS strategy is introduced, which takes the concept interaction in addition to the redundancy and
irrelevancy filters. When two input variables x; and xs have redundant features around target v,
then the joint mutual information measure of input variable with y will be less than the sum of
individual mutual information measures. Hence, it results in negative value according to Equation (4),
which denotes redundant features x; and x; for the model. If the value of Equation (4) is absolute,
it shows the amount of redundancy. On the other side, if x; and xs input variables interact with the
target variable y, their interaction causes joint (x; and x;) mutual information with target y greater than
the sum of individual mutual information. Thus, the positive value of Equation (4) shows interacting
features and its positive and absolute value depicts the amount of interaction. Consequently, for
interaction and redundancy, Equation (4) can be defined in terms of interaction gain (Ig) as follows:

‘ ) {Ig(xixsy), ifIg(xixs;y) <O,
RM(xi, x;) { 0 otherwise ©)
{ ) Ig(xixsy), ifIg(xixs;y) >0,
Inxi, x;) = { 0 otherwise 7)

where Equation (6) is a modified version of Equation (4) for redundancy measure, and Equation (7) is
for interaction measure. The computation of interaction measure IM(x;) for each candidate feature is
as follows:

IM(x;) = Maximize { In(x;, x; 8
(%) xjggl_@ﬁ@{ n(xi, xj) } ®)

3.1.4. The Modified Feature Selection Technique

The purpose of this modified feature selection technique is to maximize both relevancy and
interaction, and minimize redundancy based on the filters introduced in the preceding Section 3.1.
Our modified feature selection technique also considers candidates interaction, while the existing
techniques [39,41-44] only consider relevancy and the redundancy filters. Figure 2 shows the flow
chart of our modified feature selection technique. The detailed description and step-by-step procedure
is as follows:

Step 1: Input data including the candidate set of inputs and target value y are given as input to
the technique.

Step 2: Pre-filtering phase is demonstrated as follows:

e  The blocks enclosed in the dotted box in Figure 2 belong to the pre-filtering phase. In this phase,
the relevancy and interaction measures are calculated, and candidate inputs are ranked based on
the calculated measure.

e The information content can be measured from its individual information and the gained
information using a modified version of Equation (4) mentioned in the flow chart in Figure 2.
The function f(, ) is a monotonically increasing function, and « is a weight factor that weights
the relevancy versus interaction measure. It can be adjusted and fine-tuned subject to the
forecasting problem.

o  The selected candidate inputs of the pre-filtering phase (S”) are sorted in descending order based
on the information content.

Step 3: Filtering phase individually depicted in Figure 3 and is described as follows:
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Input candidates set and
target y

|
v

Relevancy measure using

Equation 3’3)
Vx e

|

Interaction measure using
Equation (4)
Vx eS

Sorting candidate inputs

usin,
Ie(x,) = f{D(gx‘.), IM (x,)}
=D(x,))+a.IM (x;),a >0

|

Return

P r P P P
S={x,%,, X,...,X;, }

v

v
w Filtering stage (see Fig. 3)
Remove §
S= lS&S

Post filtering stage (see Fig. 4)

l§&§

NO n
S

Return S, which is the finally selected
candidates

l

Figure 2. Flow chart of the modified feature selection technique.

e The output of the pre-filtering phase is fed as an input to the filtering phase. In this step,
the pre-selected features are partitioned into selected (S°) and non-selected (5") features as shown
in Figure 2. The redundancy measure is calculated by Equation (9) as:

p Lo pr
R(x;) = Minimize {RM(xi, x]-)} , )
r P
X;€ES

Py, 5. . . p P
where R(x;) indicates the redundancy measure for each candidate input x; € S.
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e The information value of candidate features is evaluated based on three measures: redundancy,
relevancy, and interaction, which is mathematically described as:

} (10)

= D(&) + a.IM(¥) + B.R(%:), a, B> 0,

~—

»«£>:g{zxﬁmfwu£»1«£

where V(x;) denotes information value, g (, ) indicates a monotonically increasing linear function,
and B denotes adjustable parameter, respectively.
o  Decision about the information value is taken as follows:

p s S 14
If V(&) > Ry — S=5+{x)
n n
— §=S5+

Xi

P
{xi},
where Ry, is the redundancy threshold. The information value is compared with the redundancy
threshold; if it is greater than or equal to the redundancy threshold, then it will be put in the set of

) a1
If V(%) < Ry

selected features list (E), otherwise it w