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Abstract: The primary regulation of photovoltaic (PV) systems is a current matter of research in the
scientific community. In Grid-Feeding operating mode, the regulation aims to track the maximum
power point in order to fully exploit the renewable energy sources and produce the amount of reactive
power ordered by a hierarchically superior control level or by the local Distribution System Operator
(DSO). Actually, this task is performed by Proportional–Integral–Derivative (PID)-based regulators,
which are, however, affected by major drawbacks. This paper proposes a novel control architecture
involving advanced control theories, like Model Predictive Control (MPC) and Sliding Mode (SM),
in order to improve the overall system performance. A comparison with the conventional PID-based
approach is presented and the control theories that display a better performance are highlighted.
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1. Introduction

According to IEEE Std.1547 [1], a Microgrid (MG) inverter can be controlled in three different
operating modes: (i) Grid-Forming, (ii) Grid-Feeding and (iii) Grid-Supporting operating modes [2].

MGs are one of the main challenges of power engineering nowadays thanks to their capabilities to
improve the system flexibility and to effectively integrate renewable energy sources into the electricity
system [3–5], while providing ancillary services that, in the past, required specific devices (see, e.g., [6,7]).
Among these renewable energy sources, photovoltaic (PV) units are one of the most important and
promising sources from a sustainability point of view thanks to their capability to provide clean energy,
especially if coupled with electrical storage units [8].

A PV inverter is usually controlled in Grid-Feeding operating mode [9]: the PV inverter is
controlled as a current source, where the active power set-point is strictly related to a Maximum Power
Point Tracking (MPPT) algorithm, while the reactive power set point is either (i) zero, in order to use all
the inverter capability for the power coming from the sun, or (ii) comes from a secondary level control
in order to provide voltage support to the grid [10]. In the conventional approach, the MPPT algorithm
provides the DC voltage reference to the DC voltage regulator, which, in turn, generates the d-axis
current reference to the inverter’s inner current regulator. The q-axis current reference is related to the
reactive power. All the controllers in this architecture are normally Proportional–Integral–Derivative
(PID) regulators, suffering from all the major drawbacks of linear controllers [11], which are:

• The control structure is complicated due to multiple feedback loops and feedforward actions;
• The tuning procedure of PID regulators parameters is time consuming and normally performed

with trial-and-error methods;
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• Linear control can be ineffective because the fluctuating output from renewable energy sources
can cause a fluctuating output in DC bus voltage and, consequently, a deterioration in the power
quality on the AC-side.

In order to overcome the actual limitations mentioned above, innovative control theories have to
be investigated. The Model Predictive Control (MPC) is an attractive solution thanks to its flexibility
and optimal performance, especially for higher control levels; for instance, in [12], the authors proposed
an MPC regulator that was able to optimize energy and power flows between MGs; in [13], an energy
management optimization based on a distributed MPC was proposed; then, in [14], a centralized
MPC regulator for dynamic optimal power flow among energy storage systems was developed and,
in [15], the authors designed a secondary level MPC controller to effectively coordinate the action of
the dispatchable units, while allowing for efficient energy management. However, only a few works
focusing on MPC applications for primary regulation can be found in the literature: [16] uses MPC to
minimize the voltage unbalance caused by its negative sequence and to prevent power overload [17];
proposes an MPC primary regulator for islanded MG in order to control the output voltage of each
inverter, while [18,19] present a primary controller for a PV-storage system.

The Sliding Mode technique is also widely employed thanks to its robustness both for conventional
energy sources, like in [20,21], exploiting the theory of [22–24], and for MG voltage regulation in [25,26].
The Sliding Mode technique has also been applied to a single phase inverter in [27], where experimental
results show the proper control of the inverter output voltage, but the typology of the DC power
source is not specified. Applications of the more recent Higher Order Sliding Mode (HOSM) theory
can be found for MG in [28–31], showing improved performance; however, they do not consider, in the
system model, the nature of the energy sources (even though they are modeled like ideal DC power
supplies); therefore, the physical considerations cannot be explored on the basis of those models.

Considering all these aspects, the aim of this paper is to design an innovative control system able
to successfully manage, on the one hand, the features of the DC source as a PV system and, on the other,
to realize the performant control of the unit inverter in Grid-Feeding mode. In order to achieve this
purpose, advanced control theories are applied. In particular, the control action is divided into two
separated controllers: the DC-side of the unit is entrusted to an MPC controller, while the HOSM-based
controller is in charge of the AC-side regulation of the unit. The peculiarities of these advanced control
techniques give the possibility to overcome all the drawbacks of conventional control approaches
presented before and, more precisely, the proposed MPC–HOSM control system has the following
advantages:

• A simpler control structure, avoiding multiple feedback loops and feedforward actions;
• An easier tuning procedure due to the intrinsic operation of MPC and HOSM regulators;
• Improvements in the dynamics of the systems in terms of settling time, oscillations, overshoots

and decoupling between control channels.

The paper is organized as follows: Sections 2–4 are devoted respectively to the modelling of
the PV units, and some remarks are made on the conventional control approach and the design of
the proposed control system. Section 5 presents the results of the numerical simulations and the
comparative analysis with respect to conventional PID-based architectures, highlighting the improved
performances of the proposed approach. Finally, conclusions are drawn in Section 6.

2. Photovoltaic Unit Modelling

In this section, the PV unit model this paper refers to is presented. In particular, the aim here is to
provide a system model suitable for the design of a local controller. From this perspective, the PV unit
involves the PV panel, the DC filter, the inverter and the AC filter, hence no information about the rest
of the MG is available except the MG currents, which are seen as measurable disturbances. The overall
system scheme is depicted in Figure 1.
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Figure 1. Photovoltaic (PV) unit scheme.

2.1. DC-Side Dynamic Equations

Considering the system depicted in Figure 1 it is possible to write the DC-side differential
equations as:  VDCIPV(VPV,α, T) −VDCCDC

dVDC
dt = PAC

VPV −RDCIPV − LDC
dIPV

dt = VDC
(1)

where the first equation is the power balance at the DC capacitance connection and the second is the
Kirchhoff’s voltage law. VDC is the voltage at the capacitance connection, PAC is the active power
at the output of the inverter, VPV is the voltage at the output of the PV panel. IPV is instead the
current production of the PV panel and it can be expressed as follows (see [32] for the definition of the
parameters appearing in Equation (2)):

IPV(α, T, VPV) =
α

1000
ISCτI(T)


1− e

VPV
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where α and T are the solar irradiance and the cell temperature respectively. RDC, LDC and CDC are the
resistance, the inductance and the capacitance of the DC filter, respectively.

Equation (1) can be rewritten using a state transformation in order to have the voltage VPV, as a
state-variable of the system. This means that the following differential equation can be carried out:

dVPV(IPV,α, T)
dt

=
∂VPV

∂IPV

dIPV

dt
+
∂VPV

∂α
dα
dt

+
∂VPV

∂T
dT
dt

(3)

Equation (3) can be simplified by neglecting the time variation of solar irradiance and cell
temperature, and the derivative of VPV with respect to IPV can be calculated using the inverse function
theorem. Now, using the second differential equation of Equation (1), the DC-side differential system
can be written as: 

dVPV
dt = 1

∂IPV
∂VPV

(VPV)

[
1

LDC
(VPV −RDCIPV(VPV) −VDC)

]
dVDC

dt = 1
CDCVDC

[VDCIPV(VPV) − PAC]
(4)

2.2. AC-Side Dynamic Equations

Looking at the system scheme, the AC-side differential equations can be written as: e(i)abc = R f i(i)abc + L f
di(i)abc

dt + e(g)
abc

C f
de(g)

abc
dt = i(i)abc − i(g)

abc

(5)
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where e(i)abc and i(i)abc are the vectors of the inverter phase voltages and currents, e(g)
abc and i(g)

abc are the local
measurements of the voltages and currents of the MG, while R f , L f and C f are diagonal matrices
involving the resistance, inductance and capacitance values of the AC filter. The power invariant Park
transform is now applied to Equation (5), leading to:

e(i)dq0 = R f i(i)dq0 +ωp(t)SL f i(i)dq0 + L f
di(i)dqo

dt + e(g)
dq0

ωp(t)SC f e(g)
dq0 + C f

de(g)
dq0

dt = i(i)dq0 − i(g)
dq0

(6)

where e(i)dq0, e(g)
dq0, i(i)dq0 and i(g)

dq0 are the transformed version of the quantities defined in Equation (5),
while ωp and S are defined as:

ωp(t) =
dθp(t)

dt
(7)

S =


0 −1 0
1 0 0
0 0 0

 (8)

in which θp is the angle at which the Park transform is oriented. Such an angle is acquired by a

PLL oriented on the grid voltage. This way, the q-axis component of the grid voltage e(g)
q is zero.

Considering a three-phase balanced system, the zero phase-sequence is null, hence the following
differential equations describing the AC-side dynamic behaviour of the unit can be written as:

di(i)d
dt = −

R f
L f

i(i)d +ωpi(i)q −
e(g)
d
L f

+
e(i)d
L f

di(i)q
dt = −

R f
L f

i(i)q −ωpi(i)d −
e(g)
q
L f

+
e(i)q
L f


de(g)

d
dt =

i(i)d
C f

+ωpe(g)
q −

i(g)
d
C f

de(g)
q

dt =
i(i)q
C f
−ωpe(g)

d −
i(g)
q
C f

(9)

3. Conventional Grid-Feeding PV Inverter Control Scheme

The basic idea proposed in this paper is to design a new primary controller for a PV unit without
any PID regulators. The conventional control of PV inverters in grid-feeding mode is reported in
Figure 2 and has a nested structure. The outer loop (DC PID Regulator in Figure 2) receives, from the
MPPT algorithm, the PV voltage reference and produces the reference signal for the d-axis current
injected into the grid. The reference enters the inner current control (AC PID Regulators in Figure 2),
together with the q-axis current reference generated by the Current Reference Generator. The current
control, in turn, determines the modulating signals for the inverter. All the regulators in this architecture
are PID-based controls.
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4. Control System Design

In the proposed approach, instead, an MPC controller is chosen in order to track the PV voltage
reference coming from the MPPT algorithm by using the converter active power reference as control
action, i.e., the active power reference is the output of the MPC controller. Active and reactive
power references are used as inputs for the inner current regulators based on HOSM controllers.
In the following section, the control system design is proposed in detail and, in particular, the MPC
controller based on DC-side equations is presented in Section 4.1, while, in Section 4.2, the design of
the HOSM controllers related to the AC-side of the unit is described.

4.1. MPC Controller Design

The MPC controller refers to DC-side differential Equation (4) which can be rewritten as follows:

χ = f
(
χ, w, m

)
=

[
f1
(
χ, w, m

)
; f2

(
χ, w, m

)]T
(10)

where χ = [VPV; VDC]
T is the state vector, w = PAC is the scalar input, while m = [α; T]T is the

measurements vector. The mathematical model for the prediction [33] in the MPC controller can be
obtained using linearizing Equation (10) around the actual value of the state at every sampling time
step Ts and by discretizing using a zero-order hold discretization method. Thus, it is possible to reduce
Equation (10) in the form:

χ
k+1

= (I2 + TsA∗)χk
+ TsB∗wk + TsC∗mk + TsD∗ (11)

where A*, B*, C* and D* are the system matrices at the considered sampling time step Ts and the
subscript k denotes the system variables discretized at the sampling time kTs.

Then, since wk= PAC,k is used as control action and it is not possible to know a priori its final
value, PAC,k is transformed into a state variable and its derivative Jk is considered a control variable for
the system as follows [34]:

PAC,k+1 = PAC,k + Ts Jk (12)
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Finally, the measurements mk are considered as state variables, assuming that they remain constant
during the prediction horizon, i.e., mk+1 = mk. Under these hypotheses, the resulting time-invariant
discrete time model for the prediction computed by the controller is:

χ̃
k+1

=
~
A
∗

dχ̃k
+

~
B
∗

dw̃k +
~
D
∗

d (13)

where the meanings of the symbols are defined in Equations (14)–(16).

χ̃
k
=

[
VPV,k VDC,k αk Tk PAC,k

]T
(14)

w̃k = Jk (15)

~
A
∗

d =


[
(I2 + TsA∗) TsC∗

02×2 I2

] [
TsB∗

02×1

]
01×4 1


~
B
∗

d = [04×1; Ts]
T;

~
D
∗

d = [TsD∗; 03×1]
T

(16)

Using prediction Equation (13), the MPC controller is able to generate the optimal problem
solution in order to track the reference voltage VPV,re f from the MPPT algorithm. The optimization
problem is described by the quadratic programming problem below:

min
W̃

eT
k+NQek+N +

N−1∑
i=0

{
eT

k+i|kQek+i|k + w̃T
k+iRw̃k+i

}
s.t. χ̃

k+i+1|k
=

~
A
∗

dχ̃k+i|k
+

~
B
∗

dw̃k+i|k +
~
D
∗

d

(17)

where ek = χ̃
k
− χ̃re f is the state vector error, χ̃

k+i|k
refers to the prediction of the state at time (k + 1)Ts

calculated at time kTs, and N is the prediction horizon. W̃ =
[
w̃T

k . . . w̃
T
k+N−1

]T
is the vector containing

the optimal input vector uk, while Q = QT and R = RT are symmetric and positive semidefinite
weighting matrices. The control actions are generated by the MPC controller using this strategy:
the quadratic optimization problem in Equation (17) is solved by the controller at each time step by
predicting the time evolution of the state variables and, finally, calculating the optimal input for the
system within the control horizon. Then, only the first step w̃k is applied to the system, while the rest
of the solution W̃ is just discarded. The control actions calculation process is then repeated at each time
step kTs.

4.2. HOSM Controller Design

The HOSM controller refers to the AC-side equations Equation (9) written in the form:

.
x = f (x) + B(x)u + d (18)

where x =
[
i(i)d ; i(i)q ; e(g)

d ; e(g)
q

]T
is the state vector, u =

[
e(i)d ; e(i)q

]T
is the input vector, while d =[

−i(g)
d /C f − i(g)

q /C f

]T
is the disturbance vector. As pointed out in the previous section, the HOSM

controller objectives are the active power and reactive power as outputs of the PV unit. In the Park
domain, these quantities are expressed as:

Pg = e(g)
d i(g)

d + e(g)
q i(g)

q (19)

Qg = −e(g)
d i(g)

q + e(g)
q i(g)

d (20)
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In order to decouple the two control channels, let us choose θp as the capacitor voltage vector

phase angle. In this way the q-axis component e(g)
q disappears; therefore, expressions Equations (19)

and (20) become:
Pg = e(g)

d i(g)
d (21)

Qg = −e(g)
d i(g)

q (22)

As stated before, the control goal is to properly manage the active and reactive power flow at the
output of the LC filter of the inverter. Due to this fact and considering that Equations (21) and (22) are

expressed in terms of the disturbances i(g)
d and i(g)

q , it is necessary to transform the active and reactive

power requests Pg and Qg in terms of the state variables i(i)d and i(i)q . Considering that the capacitor

currents in the dq rotating reference frame i(c)dq are measurable quantities, the reference i(i)d,re f and i(i)q,re f
can be directly calculated from Equations (21) and (22) as follows:

i(i)d,re f =
Pg

e(g)
d

+ i(c)d (23)

and

i(i)q,re f = −
Qg

e(g)
d

+ i(c)q (24)

where the active power Pg has to be expressed in terms of the reference coming from the MPC regulator

and of the active power losses of the inverter filter, i.e., Pg= PAC − R f

(
i(i)

2

d +i(i)
2

q

)
and Qg can be set to

zero or to another value provided by the higher control level.

On balance, the output vector is chosen as y =
[
i(i)d ; i(i)q

]T
; therefore, the two sliding variables can

then be defined as:
σ1 = i(i)d − i(i)d,re f (25)

σ2 = i(i)q − i(i)q,re f (26)

Looking at Equation (9), one can see that σ1 and σ2 have relative degrees of one with respect to
e(i)d and e(i)q respectively. This means that a second-order sliding mode algorithm is suitable to perform
a correct tracking and provide a chattering alleviation at the same time. In particular, the suboptimal
algorithm [35] is exploited here, and hence the command laws are computed as:

u1 = −U1(σ1 − 0.5σ1max) (27)

u2 = −U2(σ2 − 0.5σ2max) (28)

where U1,2 are constant gains, while σ1,2,max are local maxima. All the details for the tuning procedure
can be found in [35].

The overall control system scheme is depicted in Figure 3.
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5. Simulation Results

In order to validate the proposed control strategy, simulation tests are developed in the MATLAB
and Simulink environment. In particular, from an electric point of view, the PV unit is simulated in
detail using the Simscape add-on [36]. In Figure 4, the simulation setup in the Simscape environment
is reported. As one can see, there is the possibility to choose the control methodology with a switch
named ‘controller selection’: the top controller cascade is the conventional one based on PID regulators,
while the bottom one is the proposed architecture based on MPC and HOSM controls. The system data
can be found in Table 1; MPC and HOSM parameters can be found in Table 2, while the PID regulator
parameters are reported in Table 3.
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Table 1. System data.

DC Side & PV Unit Data (at T = 25 ◦C and α = 1000 W/m2) AC Side & Filter Data

PMPPT 72 kW Vn 400 V
VPC,MPPT 902 V fn 50 Hz

RDC 0.15 Ω R f 0.11 Ω
LDC 5 mH L f 4.7 mH
CDC 940 µF C f 10 µF

Table 2. Model Predictive Control (MPC) and Higher Order Sliding Mode (HOSM) controller parameters.

MPC Parameters HOSM Parameters

Q Diag (2 × 107, 0, 0,
0,0)

U1 104 V/As

R 10−5 U2 3000 V/As
N 3
TS 500 µs

Table 3. Proportional–Integral–Derivative (PID) regulator parameters.

DC PID Regulator AC PID Regulators

Proportional Gain 1 A/V 3.5 V/A
Integral Gain 100 A/(Vs) 270 V/(As)

The first test considers an irradiance variation from 1000 W/m2 to 700 W/m2, starting at t = 0.2 s
and then returning to its original value via a ramp starting at t = 0.7 s. From Figure 5, the correct
actions of the MPC controller can be observed; indeed, it is possible to track the PV voltage reference
coming from the MMPT algorithm and to provide the active power reference to the HOSM controller,
whose performance can be appreciated from Figure 6.
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In this test, no reactive power regulation is considered; therefore, its reference remains at zero,
as one can note in Figure 7. The HOSM controller outputs are finally depicted in Figures 8 and 9,
where the chattering alleviation provided by the second-order algorithm can be observed.
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Moreover, a comparison with the traditional control described in Section 3 is reported below.
As one can see from Figure 10, the proposed MPC–HOSM strategy (blue line) allows for a better
reference signal VPV,re f tracking than the conventional approach (red line) with reduced overshoots
and a smoother dynamic.
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Figures 11 and 12 show, instead, the comparisons of the active and reactive power time profiles.
As one can see, the proposed control strategy is able to guarantee a faster response in terms of settling
time and to avoid overshoots. Moreover, the proposed control strategy is able to guarantee a stronger
decoupling between active and reactive powers than the conventional approach. This is due to the fact
that PID regulators are not able to properly decouple the two regulation channels, while the HOSM
controllers can decouple active and reactive powers dynamics with a proper increase in the control
gains U1,2.
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The second test involves a reactive power regulation, keeping the active one constant
(i.e., no irradiance variation is supposed). A reference step variation is provided at t = 0.2 s from
0 kVAr to 10 kVAr, a second step occurs at t = 0.4 s from 10 kVAr to −10 kVAr, while a third step with
a final reference value equal to zero is provided at t = 0.6 s.

From Figures 13 and 14, one can see that the control strategy can regulate active and reactive
power as desired; indeed, the former is maintained over its reference value throughout the simulation,
while the latter can track its reference profile with a good performance.
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In this second test case, it is possible to carry out some comparisons with the conventional control
strategy. The proposed control strategy (blue lines) is able to guarantee a faster control response as
depicted in Figure 17 and a stronger decoupling between the active and reactive powers in order to
avoid overshoots as depicted in Figures 18 and 19.
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6. Conclusions

An innovative decentralized control system architecture for the regulation of a photovoltaic unit is
proposed in this paper for MG applications. In particular, an MPC controller is designed on the DC-side
model of the unit in order to manage the DC source, while an HOSM-based controller is built to replace
the inner inverter regulators in order to improve the overall unit performance. The method is validated
through simulation tests in a MATLAB and Simulink environment, in which the electromagnetic
model of the components is considered. The simulation results show the effectiveness of the proposed
approach tested under normal operating conditions and several improvements compared to the
conventional control system based on PID regulators.
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