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Abstract: The physiological and cognitive effects of environmental stimuli from the built environment
on humans have been studied for more than a century, over short time frames in terms of comfort,
and over long-time frames in terms of health and wellbeing. The strong interdependence of objective
and subjective factors in these fields of study has traditionally involved the necessity to rely on a
number of qualitative sources of information, as self-report variables, which however, raise criticisms
concerning their reliability and precision. Recent advancements in sensing technology and data
processing methodologies have strongly contributed towards a renewed interest in biometric data as
a potential high-precision tool to study the physiological effects of selected stimuli on humans using
more objective and real-time measures. Within this context, this review reports on a broader spectrum
of available and advanced biosensing techniques used in the fields of building engineering, human
physiology, neurology, and psychology. The interaction and interdependence between (i) indoor
environmental parameters and (ii) biosignals identifying human physiological response to the
environmental stressors are systematically explored. Online databases ScienceDirect, Scopus, MDPI
and ResearchGate were scanned to gather all relevant publications in the last 20 years, identifying
and listing tools and methods of biometric data collection, assessing the potentials and drawbacks
of the most relevant techniques. The review aims to support the introduction of biomedical signals
as a tool for understanding the physiological aspects of indoor comfort in the view of achieving
an improved balance between human resilience and building resilience, addressing human indoor
health as well as energetic and environmental building performance.

Keywords: biometric data; biosignals; non-intrusive sensing; physiological metrics;
environmental stimuli; stress detection; health; comfort

1. Introduction

Urban living is on the rise. The majority of the population worldwide lives in urban
areas and expectations are that the number of global urban inhabitants will grow up to two
thirds in the next 30 years [1]. At the same time, research shows that people also spend a
great majority of their time in closed environments made by humans; over the past few
decades people on average spent between 90% and 98% of their time indoors depending on
season and holiday time [2–5]. These numbers can also be expected to rise further during
crisis events forcing people indoors—be it heat waves, hurricanes, or global pandemics.

The progressive detachment of humans from the natural world has proven to have
a series of negative impacts on users ranging from low productivity [6], disruption of
the circadian rhythm [7,8] and the hormonal system [9], resulting in diseases such as
sleep disorders, immune system disorders, macular degeneration, cardiovascular diseases,
diabetes and osteoporosis to cancer [10]. Furthermore, as we increasingly become an
“indoor species”, the indoor built environment is known to pose serious health hazard
risks, commonly known as sick building syndrome (SBS) or “building-related illnesses”
(BRI) [11,12]. They derive from a lack of good design and proper maintenance and the use

Energies 2021, 14, 232. https://doi.org/10.3390/en14010232 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-1129-7500
https://orcid.org/0000-0002-4283-7963
https://orcid.org/0000-0002-0129-2549
https://orcid.org/0000-0001-7682-0652
https://doi.org/10.3390/en14010232
https://doi.org/10.3390/en14010232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14010232
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/1/232?type=check_update&version=2


Energies 2021, 14, 232 2 of 40

of new hazardous chemicals in building materials as well as in furnishings and consumer
products [9]. Being largely undocumented, exposure levels to the chemicals in everyday
life should seemingly increase with people spending more time indoors and air exchange
rates decreasing as buildings are made more airtight to improve energy efficiency [9,12].

Achieving healthier indoor conditions also becomes relevant from the perspective of
energy and environmental building efficiency, if the bigger picture of overall sustainability
is considered. Not only have researchers claimed that improved indoor conditions affecting
user productivity can end up with massive savings on a company’s operational costs [13,14],
but the overall energy use has been clearly described as a consequence of trying to attain
comfort (in terms of homeostasis) [15].

Therefore, we urgently need to improve our understanding of short- and long-term
impacts of the indoor environments on us, in order to not only design energy and resource
efficient spaces, but also ones that improve the health and wellbeing of people [16].

1.1. Measuring Human Wellbeing and Health in Indoor Environments

Wellbeing and health are naturally related concepts. While these can be considered to
consistently impact each other, they are neither synonyms nor consequent [17]. The World
Health Organization (WHO) defines health as a “state of complete physical, mental and
social wellbeing”, in other words, a state that goes beyond the mere absence of disease [18].
While “wellbeing” is an easy concept to grasp when contextualized, it remains hard to
define and predict [19]. It is widely used across a great number of disciplines, setting focus
on different aspects such as physical health (absence of disease) and comfort, psycholog-
ical aspects (individual internal generation of meaning and sense of self), ethical aspects,
social aspects (comparison with others as a means of assessing one’s own abilities and
functioning), economical aspects (standard of living, the real opportunities available to
individuals), etc. [19,20]. In many cases, wellbeing, wellness [21] or also subjective wellbeing
(SWB) [20] are interchangeably used and measured in terms of “happiness” [19,20,22] or
“life satisfaction” [20]. These concepts are not only very broad but are also to a big part
based on subjective judgments of satisfaction, as well as individual aims and values, which
can change over time and between contexts. This creates critical challenges in terms of
measurement and comparison due to differences in type and magnitudes of the chosen
parameters and experimental conditions along with notorious problems of information
bias even in studies with good reliability and validity [22].

Needing more objective parameters to evaluate the quality and efficacy of wellbeing
conditions and interventions, SWB has been further broken down into concepts that include
more measurable and objective factors [20,22].

In general, the human reactions that can be observed in response to environmental
agents can be classified into three kinds: (i) behavioral, (ii) physiological and (iii) psy-
chological [23]. Behavioral aspects are coordinated responses of individuals or groups to
internal and/or external stimuli [24] including objectively observable activities and noncon-
scious processes (habits) [25]. These actions, reactions, or mannerisms (habitual gestures
or way of speaking or behaving [26]) mostly refer—in the context of building physics—to
physical (body) actions. Physiological aspects refer to the autonomic responses of the
bodily parts of an organism to a stimulus, whether as a form of homeostasis, withstanding
changes in environmental conditions that are outside their optimal range [27], or to trigger
a behavioral reaction in response to an immediate threat [28]. The rising availability of
sensing technologies and data processing methodologies has turned biometric sensors into
interesting high-precision tools to study the physiological effects of environmental stimuli
on humans [29]. Psychological aspects are functional processes, operations, and changes
that relate to the mental and emotional state of an individual (or a group of individuals in
the case of group dynamics). Depending on what is measured and, on the methods used,
different combinations of these three aspects are taken into account.

Which parameters and methods are appropriate to reliably measure the effect of
environmental conditions on users?
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The answer to the question is inevitably complex as it depends, among many factors,
on the timeframe taken into account and the overall aim of the study. While health and
psychologically oriented studies tend to focus on measuring outcomes as individual stress
or satisfaction [30–34], economically oriented research tends to use more performance-
based criteria focusing on productivity [35,36].

For what concerns the built environment, the significance of the environmental context
and conditions in determining human health has mainly been the object of environmental
psychology studies [37,38], healthcare environment design [15,38–41], and studies on sick
building syndrome [15]. Research in the field of building physics on the other hand
has largely focused on indoor comfort [15,16,30,42–51] and user satisfaction [30,32] as a
measure of the indoor environmental conditions, and in some cases also on productivity
and performance [2,14,35,52–54]. These methods follow, at heart, radically different visions
of human wellbeing and/or health, and can be grouped into three major categories:

• Self-selection metrics include preference, acceptance, satisfaction and comfort;
• Performance-based metrics include attention, distractibility, productivity and

mental workload;
• Physiological metrics include discomfort and stress.

1.2. Self-Selection Metrics

Self-selection refers to the act of individually opting “in or out of something (such as
a group, activity, or category) in accordance with one’s personality, interests, etc.” [14].
The term is used in economic and social statistics referring to a type of selection bias that
can arise when following rules of non-probability sampling, as decisions deriving from
self-selection are the object of study [55]. By distorting the selection rules, self-selection
makes determination of causation more difficult, resulting in influencing the data.

The term “self-selection” is generally not used in the field of building physics, al-
though three main methods used to measure the quality of indoor environments (prefer-
ence, satisfaction, and comfort) are overtly known to be highly subjective [22,50,56–58].
Experiments in the field of architecture largely rely on soft data assessed by questioning
test subjects about their preferences, which is the case in a great majority of thermal comfort
studies [6,16,30,42,50,59–62].

1.2.1. Preference, Acceptance and Satisfaction

Preference involves a choice between two or more alternatives. In preference testing,
users or consumers are typically given a choice and asked to indicate their most liked
option [63]. Acceptance (or liking) involves rating a specific option or aspect on a scale and
can also be achieved without the need of comparing the solution with any other one [63].
What fundamentally connects preference and acceptance as measures is that none of these
concepts reflect an ideal solution (the best possible), but at most an optimized solution.
Both terms are largely used in business-oriented fields for consumer testing. Research in
the context of the built environment also employs these terms [30] to estimate the quality
of indoor environments.

Satisfaction is a more complex type of testing as it involves, from the side of the
test subject, the rating of a specific option against one’s individual scale of values and
expectations. As compared to preference and acceptance, satisfaction does in fact reflect a
positive assessment. Despite the innate complexity of the valuation method, satisfaction is
a well-established metric for assessing quality in the indoor environments [32,57,64]. In
building engineering, an indoor environment is generally considered acceptable when
80% of the occupants are satisfied with the conditions [58]. Occupants’ environmental
satisfaction is directly related to the amount of perceived comfort [32,64], and both of these
aspects sequentially impact user performance [14].

All three concepts are often, and sometimes interchangeably, used in indoor environ-
mental research to describe user feedback and assess environmental conditions. While part
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of the assessment truly depends on the physical conditions of the context, a large part of
the estimation is determined by individual psychological conditions.

1.2.2. Comfort

Comfort is defined as the “absence of unpleasant sensations” or as described within
the most widespread definition in the field of building physics “the condition of mind that
expresses satisfaction with the (thermal) environment and is assessed by subjective evalua-
tion” [58]. It is therefore, by definition, a lack of discomfort: a neutral state with no stress.
From a biological perspective, comfort can be effectively compared to the maintenance of
homeostasis, indicating the absence of environmental stressors [15]. Comfort is broadly
recognized as a multidimensional and subjective construct that varies across contexts [15]
and depends on functional and environmental factors, on personal health and mood and is
recognized as being highly subjective [14,15,47,65].

A large majority of comfort studies are based on the unvoiced assumption that physical
health is a direct consequence of comfort. The gap existing between the definition of indoor
comfort conditions and long-term health conditions however becomes apparent when
looking at studies showing correlations between time spent in thermoneutral environments
and the likeness of developing obesity [66–69]. Similarly, exposure to conditions outside
the thermoneutral zone have shown to reduce the susceptibility to developing type 2
diabetes [70].

Measuring comfort is a difficult task. Comfort studies rely largely on self-reports and
other types of user-feedback methods [6,16,30,42,50,59–62]. Though subjective measure-
ment remains a major research method in many disciplines, the reliability of the results is
contested by many authors [56]. If on one hand self-reports allow taking into account the
mental state and mood of users, the data also involve a large risk of information bias [22,71].
The feedback is not only strongly influenced by the individual character of the perceived
conditions, which can be minimized if analyzed over larger numbers of individuals, but
psychological components are also known to consistently alter users’ perceptions and
thermal expectations of an environment [50,56]. Moreover, the data typically lack precision
in timing, are generally not scalable and are usually difficult to reproduce [56]. Moreover,
measuring comfort involves the collection of processed and combined data, such as physi-
ological factors (thermoregulation), potentially random or non-repeating variables such
as climatic behavior (subjects turn on the desk fan, wear another piece of clothing, etc.),
and psychological or other highly individual factors (emotional stress levels, hormonal
levels, etc.). Although current practice statistically normalizes individual differences in the
datasets by collecting data on a large scale, it also involves significant physiological aspects
not being easily parsed from the datasets.

1.2.3. Considerations on Self-Selection Metrics

Investigating the perceived indoor environmental conditions is on one hand an impor-
tant task, as it takes the objective physical measures of environmental data into account, as
well as the psychological mindset of the occupants [72]. However, from a health perspective,
the importance of users’ perception is relative for two main reasons:

1. Indoor comfort and indoor health are related concepts but refer to two essentially
different timeframes. While comfort is perceived in an immediate and narrowly
defined point in time, potentially changing within hours, minutes or seconds, health
is the result of a multitude of actions happening over a much longer lapse of time,
and can as such not be assessed by users in the present time but only retrospectively;

2. The use of self-selection measures, such as preference, satisfaction and to some degree
also comfort, to determine the quality of an environment (often implying also health),
is essentially driven by the idea that users are able to distinguish the conditions that
are positive from those that are detrimental to their health. This is however not always
the case as even in the cases where the long-term health effects of a specific action are
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known, the choice between an immediate gratification (e.g., smoking) and a delayed
gratification (health) is in psychological terms not always obvious [73].

In all self-selection metrics described, issues concerning potential systematic data
bias have been raised. Surveys, questionnaires, and other self-reporting systems can
also be argued as to discard neutrality as the subjects are made temporarily consciously
aware of their surroundings when they are questioned about them. Additionally, these
highly individual pieces of information pose problems with replicability, scalability and
comparability of the said data.

1.3. Performance-Based Metrics

Performance-based metrics are most often aimed at measuring the efficiency of a system
in economic terms, whether the outcome is expressed as environmental, financial or process
excellence. Such metrics are effective to express usability and to inform key decisions [74]
as they reduce complex measurements and result in a single value that can be tracked,
managed, and improved. While complexity is reduced, looking only at the outcome of a
network of interacting factors, it is important to keep in mind that these shortcuts can also
become misleading when used for process improvement.

In the context of the built environment, performance-based metrics are used to ex-
press functionality in domains such as energy performance, indoor environmental quality,
environmental impact, capital, and operating costs [75–77]. Few studies have focused on
performance metrics in the occupant domain, and even those mostly focus on the built
environment’s qualities rather than on the effect on users [75].

Typical user-based performance metrics measure task success (binary success or level-
based success), time on task (completion of a task within a time limit), error-based measure
(single or multiple error opportunities), efficiency (number of actions required to complete
a task, ratio of task success rate to the average time per task) and learnability (how any
efficiency metric changes over time) [2,14,33,35,36,38,74,78,79].

1.3.1. Productivity

A number of studies have attempted to measure the effect of indoor environmental
conditions by evaluating user performance in terms of productivity, mostly focusing on
the thermal aspect [2,14,51,78] and on indoor air quality [14,53,78]. The underlying con-
cept is that as environmental conditions exceed the range of comfort, the human body
adapts to sustain the level of task performance. This is achieved through homeostatic
adaptation on one hand and through psychological adaptive behavior (as attentional focus)
on the other [51]. If the environmental conditions exceed the body’s maximum range of
adaptability, the attentional resources are depleted, and human performance ultimately
deteriorates [51]. Assessing productivity can be achieved either using (i) subjective ap-
proaches, with self-assessing methods to rate perceived performance over a specific period
of time [2]; (ii) quantifying productivity by defining a context- and content-specific ratio
of output to input (ratio of company turnover to employee cost [80], individual/team
performance [35,36,81], etc.) and gathering data in a real environment [14]; (iii) evaluating
performance based on specifically designed tests (neurobehavioral tasks such as logi-
cal/comprehension/numerical/visual/memory etc. [82] or perceptual motor tasks [83]).
The main drawbacks of assessing indoor environmental conditions by measuring produc-
tivity come from the environmental effects not being directly reflected on the subjects’ task
performance [84], due to partial adaptation to the stressing agents [51] and individual
motivation [85], which can offset the effects on task performance. In fact, productivity is
known to be influenced by many factors, among which are personal, social, organizational,
and environmental factors [14].

1.3.2. Attention and Distraction

Another performance measure used is selective attention and its counterpart, distraction.
To overcome its limited processing resources and reduce the amount of sensory information
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it needs to comprehend [86], the brain uses various filtering mechanisms. It therefore con-
stantly oscillates between states of deep focus—as we momentarily disengage from the real
world when we are highly concentrated on a task [87]—and awareness of our surroundings—
when we are distracted by environmental stimuli [86]. The oscillations between bursts of
attention can therefore be closely linked to our behavior [88], providing indications on
the effects the surrounding environments have on us. Specifically, increased cognitive
engagement (attention) is known to produce decreased sensitivity to visual events [87] with
slower reaction times, decreased situation awareness [89], and specific eye movements such
as spontaneously closing the eyes or looking away [90]. The neural oscillations leading
to selective attention, alternating periods of either heightened or diminished perceptual
sensitivity, have been studied through human behavioral studies [88,91,92], but also using
physiological measures as electroencephalography (EEG) [88] and oculomotor capture [87].
Researching the impact of selective attention can be a complex task, as can be seen by the
multiple attempts to collect and interpret data from different sources:

• Detection of foreseeable behavior and movements in the test subjects: detection of
head and neck movement using a series of sensors [93,94], detection of eye-movement
data [95], gait analysis [96,97];

• Detection of specific biosignals, such as measuring cortical activity related to externally
cued auditory events using event-related potentials (using EEG, electrooculogram
(EOG) and electromyogram (EMG) signal extraction) [98–100] or using other measures
as oculomotor control [101,102].

1.3.3. Mental Workload

Similarly to selective attention, mental workload or mental fatigue, defined as “the
mental resources devoted to the tasks of an individual” [103], is used to measure a lack
in performance typically characterized by higher error rates, decreasing efficiency and
alertness, and effort disinclination [104], resulting in some cases also in detrimental health
effects on long timeframes [105,106]. While measurements of productivity are limited
and offset by individual motivation and ability to maintain the performance, mental
workload can be assessed using physiological measures, such as electroencephalography
(EEG) on subjects while being asked to perform tasks specifically designed to activate
typical cognitive functions [2]. Other commonly used measures of physiological metrics
include event-related potentials, magnetoencephalography, positron emission tomography,
electrooculograms, cardiovascular measures, pupillometry, respiratory measures, and
electrodermal measures [107].

1.3.4. Considerations on Performance-Based Metrics

Summarizing the reviewed types of performance-based metrics, only selective at-
tention and mental workload appear to enable an objective measurement of the effect of
the surrounding environment on users through the use of physiological measurements.
These systems measuring cortical activity are on one hand accurate, providing a good
option as a quantitative approach but present some intrinsic limitations: (i) datasets are
very complex to read, and in some cases (as selective attention) do not provide a specific
EEG signature; (ii) datasets can potentially be affected by many other factors [2]; (iii) the
potentially high number of false positives due to interference from other body functions
and movements. Reliability of the results can be theoretically achieved by adopting a
multimodal approach [89], combining two or more physiological detection methods.

As far as this review could find, these methods are commonly used in the field of
neuroscience [108], psychiatry [109], computer science and biomedical informatics [110],
as well as architecture, computing and engineering [89], but very few attempts have been
undertaken in the field of building physics [2,111].

As discussed in the beginning of the paper, another aspect that part of building physics
studies focuses on, apart from comfort (or sensation and preference), is mental workload
and productivity. While both terms have a similar individual complexity, they also have a
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similar timeframe: both comfort and productivity are momentary states. However, these
are also some of the most important factors in building operations and have a direct impact
on the economy and use of resources. This argument is significant on a strategic level.
While comfort studies prioritize optimizing building energy use and user satisfaction, and
studies on productivity bring a more direct economic impact; both constellations forgo the
health implications as they are not visible at the same timescales.

1.4. Physiological Metrics

Physiological aspects refer to the autonomic responses of the bodily parts of an
organism to a stimulus, to withstand changes in environmental conditions that are outside
their optimal range [27], or to trigger a behavioral reaction in response to a threat [28].

1.4.1. Discomfort

As previously discussed, comfort perception is the main key measure used in building
physics to assess the quality of indoor environments, although the concept is known to
be strongly impacted by psychological factors and the data are potentially biased. The
sensation of discomfort on the other hand is the complementary entity of comfort [112] and
is more broadly researched in fields such as ergonomics [112,113], medicine [114–116] and
psychology [33,117,118]. Discomfort is described as a mental or physical uneasiness or
annoyance [119], resulting in a natural response of avoidance or reduction in the source of
the discomfort [114]. While in many studies physical discomfort is used as a synonym of
pain [33,116], not every discomfort can be attributed to pain [114,115]. In most research,
discomfort is identified and measured using self-report [112], assessing the severity, fre-
quency, and duration of work-related body-part discomfort [113,116], or the observation
of physiological and behavioral outcomes [114,116]. Generally, literature agrees on the
subjective nature of the sensation of discomfort [114,116–118]. In physiological terms,
there are no receptors to measure comfort (which is defined as lack of discomfort), while
discomfort does in fact leave a mark.

1.4.2. Stress

Stress is the prototypical response to an internal or external event, force, or condition
(the stressor), triggering a cascade of processes to help the body to adapt [25]. The effects
are behavioral, physiological, and psychological [120], testifying how the stress experience
relates both to the objective perception and the subjective evaluation of an event [56]. Phys-
iological stress response is largely involuntary and is mediated by the autonomic nervous
system (ANS) [56] as neurotransmitters and hormones signal action to the body [121].
Examples of the physiological stress response are palpitations, sweating, dry mouth, short-
ness of breath, fidgeting, accelerated speech, augmentation of negative emotions (if already
being experienced), and longer duration of stress fatigue [25]. Although the concept is
often negatively connotated, under certain circumstances, stress can also have positive
adaptive effects such as arousal [56,122] and enhancing immune function (e.g., preparing
the immune system for challenges such as wounds or infection) [121]. The impact on
health and performance has also been shown to vary depending on the person’s individ-
ual mindset regarding the stress conditions [123]. Damaging, long-term consequences of
stress are essentially encountered as the reaction becomes a chronic condition [29,124–127].
Stress has been suggested to have four main components impacting health [128]: exposure,
reactivity, recovery, and restoration. (i) The number of stressors experienced (exposure); (ii)
the strength of the individual physiological reaction (reactivity); (iii) time of recovery from
the stress reaction (recovery); (iv) healing processes of the organism (restoration), which
might be hindered by the stressful condition.

In other words, stress is the physiological reaction of the body to a necessity of
adaptation, triggering the body’s homeostatic functions to regulate (temperature, heart
activity, blood pressure, respiration, and glucose levels) [56,129,130]. As long as the range
of adaptation required is within the capacity of the organism [131], the dominant perception
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is of comfort. If the stimuli exceed the capacity of adaptation, the resulting sensation is
of discomfort. Stress can therefore become an interesting measure in the field of building
physics as a source indicator for physiological change in conditions. Especially as, contrary
to the case of mental workload, stress has many known biophysical signatures, allowing
for better data precision and reliability [89].

1.4.3. Considerations on Physiological Metrics

Physiological metrics appear to have a good potential to sustain the current main-
stream data collection methods in the field of building engineering, potentially offering
reliable and objective methods to measure environmental stressors. Specifically, recent
advancements in sensing technology and time-sensitive biomedical data acquisition are
opening up new possibilities to use biomedical signals as indicators of quality. The promise
of parsing physiologically relevant data is that the impacts of additional variables, such as
adaptive behavior, tolerance, psychology, exposure time, can be studied against a constant,
in a situation where almost all other parameters vary.

1.5. Research Gap

More objective means are needed in the field of building physics to measure the effects
of indoor environments on users as the mainstream parameters of indoor environmental
quality, comfort, and discomfort are widely accepted as subjective sensations and data
collection methods are prone to be biased. Following a review of methods to measure
human wellbeing and health, the use of physiological signals to detect stress is seen as a
promising alternative.

The use of these methods is however relatively new to the field of building and
climate engineering, where solid theoretical foundations need to be established before being
systematically used. While biosignal patterns are regularly researched for psychological,
social, and mental stress conditions, comparatively few attempts were found to be made
in the field of building physics to investigate the patterns of individual biosignal features
triggered by stress factors originating from the built environment.

Within this context, this review reports on a broader spectrum of available and ad-
vanced biosensing techniques used in the fields of building engineering, human physiology,
neurology, and psychology. The aim of this review is to offer a systematic and compre-
hensive insight on the current capacity to detect stress from the built environment using
biosignal measures. Emphasis is put on the efficiency, robustness, and consistency of
biosignals as a data source. Specifically, the paper will:

1. Review the current state of knowledge in neighboring fields of study that can be of
use in the field of building physics;

2. Review the current parameters and measures used to describe indoor environments;
3. List and assess relevant biosignals highlighting their effectiveness and reliability with

regard to stress detection;
4. Establish the relationship between the multitude of biosignal features and their

corresponding behavior under different environmental conditions;
5. Establish reliable biosignal (and multimodal biosignal) indices that reveal the under-

lying physiological mechanisms of the stress response;
6. Discuss existing limits and solutions of the methods reviewed.

2. Materials and Methods

The paper explores the interaction and interdependence between (i) indoor envi-
ronmental parameters affecting humans and (ii) human biosignals that respond to the
environmental stressors by activating a physiological response. As such, the review was
developed in subsequent phases of research and analysis. The topic is addressed from a
holistic point of view, defining the relevant features through a qualitative and multidisci-
plinary research approach. State-of-art knowledge in the relevant fields was reviewed by
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searching online available databases: ScienceDirect, Scopus, MDPI and ResearchGate and
through the university libraries of the authors’ home university.

A total of 246 sources were reviewed throughout this paper. A large majority of
the publications, 82.5% of the total amount, were published after 2000, and 93.1% were
published after 1990. Figure 1 shows a histogram based on publication years.

Figure 1. Histogram of publication years of sources.

Out of these 246 sources, journal papers seem to be the absolute majority when looking
at the types of the publications. Figure 2 shows the breakdown of the entire bibliography
based on the publication types.

Figure 2. Breakdown of publication types.

Due to the interdisciplinary nature of the research topic and aiming to achieve a
broad overview of the methods used to measure human health and wellbeing, the research
reviewed appears to be extremely broad and diverse. Table A1 categorizes the publications
based on their authors’ original research fields and Figure 3 illustrates their distribution.
As can be seen in both Table A1 (please see Appendix A) and Figure 3, nearly half of the
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reviewed material comes from medical fields (general medicine, neuroscience, biomedical
engineering, biology, psychology) and 31% originates from fields related to built envi-
ronments (architecture, building engineering, building physics). The third prominent
discipline seems to be computer sciences with 11%, including relevant sensing and data
acquisition technologies or data analytics.

Figure 3. Distribution of main research fields of authors.

2.1. Methods for Measuring Human Wellbeing and Health in Indoor Environments

For the first step, the available methods commonly used, according to literature, to
measure human wellbeing and health in the indoor environment were briefly summarized.
The databases were searched with the keywords “health, well-being, indoor environment,
self-selection, assessment, questionnaire, survey, satisfaction, performance, comfort, pro-
ductivity, attention, mental workload, fatigue, task performance, cognitive performance,
physiological, discomfort, stress, biosignal”.

For this part, 157 sources were reviewed in total: 10 books, book chapters and theses,
18 conference papers, 121 journal papers, 4 standards, guides or reports and 4 websites. The
publication dates range from 1950 to 2021, with 130 of the publications dated after 2000.

The majority of the research came from the fields of built environment (28/157)
and indoor environment (building physics and engineering, 24/157) as well as medicine
(27/157). Table A2 shows the sources used in this chapter based on the authors’ main
research fields in further detail (please see Appendix A).

Table A3 provides a more specific grouping for the publications contributing to the
review and discussion of definitions of human aspects. “Stress” comes forward as the most
repeated term amongst these publications, mostly with medical origins (25 publications
out of 38) and computer sciences and engineering background (12 out of 38), with no
occurrences in built environment or building engineering originated publications. However,
the term “comfort” is the most common in these two fields (with 23 out of 36), with only 6
from a medical background. Finally, “health” comes forward as a shared term, as it appears
in the publications from a medical background 21 times out of 36, and 14 times in the
sources with a built environment background.
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2.2. State of Art: Indoor Environmental Quality (IEQ) Parameters

For the second step, indoor environmental parameters typically used in the field of
building physics were summarized in order to give a structured overview of the aspects
that are usually taken into consideration in the design and environmental regulation of
indoor spaces. The databases were searched using different combinations of keywords,
such as “indoor environmental quality, IEQ, air quality, IAQ, thermal IEQ, thermal comfort,
visual IEQ, visual comfort, visual health, acoustic IEQ, acoustic comfort, acoustic health,
indoor health, comfort, occupant comfort, user comfort”. The literature available on IEQ
parameters appears to be very broad as the concepts are well-established in the field of
building physics. This is the reason why the literature search was focused on identifying
relevant reviews, proceeding in a second step to find specific articles that focused on single
aspects of interest.

As a result, 90 sources were reviewed in total, amongst which 50 of these sources were
also used in the previous summary of measures for human health and wellbeing. The
search includes recent as well as well-established sources on different indoor environmental
condition theories between the years 1973 and 2021, and 75 of these were published after
2000. As can be seen in further detail in Table A4, the majority of publications (72 out of 90)
are journal papers (please see Appendix A).

The majority of the reviewed material came from the field of building related research
and building physics (in total 58 out of 90). Table A5 shows a catalogue of IEQ-related
publications reviewed in this paper, based on their authors’ main research fields.

Looking at the cross relation of human factors and IEQ parameters, it seems that “health”
and “comfort” come forward as frequent terms used in reviewed IEQ research, followed by
“productivity”, “performance, mental workload”. However, comparing Table A6 to Table A3,
where the sources on human aspects were categorized based on their focus, it was revealed
that the literature on “stress” was the most prominent. However, in Table A6, it becomes
clear that research on stress in relation to IEQ is not equally prominent; with “health”
(33/90) and “comfort” (25/90) having higher priorities amongst reviewed publications on
IEQ, while “stress” being found as the focus point of a single publication in this category.

Looking at the distribution of subcategories of IEQ parameters, thermal IEQ research
presents itself as most prevalent, with 26 publications out of 90, while acoustic IEQ research
comes last with 9 publications. Table A7 provides an overview of sources based on their
relative IEQ parameter focuses.

Aspects that are relevant in terms of human health and comfort or otherwise useful
for further bridging with biosensing techniques were identified and summarized. More
specifically, all IEQ parameters were discussed in terms of:

• Threats to human health and wellbeing;
• Variables and sub-parameters;
• Solutions and strategies to improve the specific IEQ parameters and achieve healthy

ranges for the indoor conditions;
• Parameter measurements, units in use, methods of measurement, limits to the methods.

2.3. Background Research on Physiological Signatures

For the third step, an extensive investigation of published studies on available biosens-
ing techniques, used to measure human stress response, was performed. Broad research
criteria were initially adopted in order to take into consideration a larger pool of potential
biosignals. Databases were therefore scanned using different combinations of a number
of keywords, among which were “biosignals, biologic signals, biomedical signals, biosen-
sors, neurophysiology, psychophysiology, electroencephalogram (EEG), electrocardiogram
(ECG), heart rate (HR), electrodermal activity (EDA), galvanic skin response (GSR), physiol-
ogy of comfort, physiology of stress, stress recognition, mental workload, stress hormones”,
and the research was expanded to the sources cited by the selected literature. The search
was subsequently narrowed down to more recent publications, focusing on research and
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technologies achieved within the last 20 years (with the exception of publications that were
of specific relevance).

As a result, a total of 110 publications were reviewed; the majority (78/110) being
journal papers. Table A8 shows the sources based on their publication types.

When checked against the authors’ main research fields (Table A9), it was clear that
medical fields take the lead, followed by computer sciences and engineering in sensing
and data acquisition technologies. Amongst the reviewed sources, research from built
environment or building physics seems to have weak direct correlation to physiologic or
biologic methods in terms of human aspects (health, comfort, wellbeing) in the context of
indoor environmental quality.

2.4. Selection of Biosensing Techniques

Relevant biosensing techniques were subsequently selected from the larger pool of
physiological signatures based on their relevance in the context of measuring potential
indoor environmental stress sources.

Originally, the list of biosignals retrieved from the literature review was as shown
below (see Figure 4):

Figure 4. List of biosignals gathered from the literature review. Biosignals marked as bold are
examined in this paper.

Selected biosensing techniques were then organized according to hierarchy and rel-
evance following their prevalence in stress literature, but more importantly in building
engineering stress literature, efficacy and accuracy of the results, and robustness of the
system. The selected biosensing techniques were then examined in means of their physio-
logical processes and relevance to the stress cues as investigated in this paper.

Finally, limits and potentials of these techniques described in the literature were
further mentioned and discussed for all selected biosignals.

3. Results
3.1. Indoor Environmental Parameters

The factors influencing an individual’s perception of the environment of a built space
include a variety of aspects characterizing on one hand the physical setting itself and on the
other the person’s reactions to the context. The parameters in the physical space that can
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trigger a (conscious or subconscious) reaction in the users essentially include (i) environ-
mental (air quality, climate, noise, light), (ii) functional/spatial (disturbances, interruptions,
distance from work, resources, plan, layout, ergonomics) and (iii) psychological factors
(privacy, territoriality, aesthetics) [35,36]. This review focuses on the factors pertaining to
the physical environment, and as such only the aspects under point (i) are further explored.

The physical parameters and conditions of an indoor space are mostly straightforward
and objective. These can be measured according to state-of-the-art procedures and with
broadly accepted units. Ranges of acceptability for human health conditions are set through
national laws and standards, although in most domains research still does not agree with
precision on the ranges of acceptability and healthiness [16,47]. A common way to describe
the physical indoor conditions is through the assessment of the indoor environmental
quality (IEQ). This system is adopted in many green building systems—the United States
Green Building Council (USGBC), the Leadership in Energy and Environmental Design
(LEED) and the Comprehensive Assessment System for Building Environmental Efficiency
(CASBEE) [14].

Indoor environmental quality (IEQ) describes the environmental conditions inside a
building in relation to the health and wellbeing of its occupants and is determined through
air quality, thermal, visual, and acoustic parameters [2,132,133]. In comparison to indoor
air quality (IAQ) and thermal IEQ, both visual and acoustic IEQ have received way less
attention [43], as can also be seen by the number of sources reviewed in each section
(see Table A7).

3.1.1. Indoor Air Quality (IAQ)

Variables influencing indoor air quality (IAQ) include airborne contaminants from
indoor and outdoor sources (gases and particles from equipment and furnishings, cleaning
products, building materials, pollutants, etc.), ventilation rate, humidity and the type
of indoor activities and the occupants’ adaptive opportunities (manually intervening to
adjust the conditions) [133]. Perceived IAQ is an umbrella of reported descriptors such as
odor/smell, stuffy air, and dry and wet (humid) air [134].

The quality of indoor air has a direct impact on users’ health and comfort [21,42,135].
Poor IAQ can directly cause severe respiratory and cardiovascular diseases, allergies,
asthma, and sick building syndrome (SBS) [11,12,14,21]. As indoor air has been found to
be in some cases up to five times as polluted as outdoor air [136] and new buildings tend
to be increasingly tightly insulated from the external environment to achieve better energy
balance [12,15,21], greater attention needs to be given to achieving good IAQ.

• Airborne Contaminants

Airborne contaminants from indoor and outdoor sources, such as gases and parti-
cles from equipment and furnishings, cleaning products, building materials, pollutants,
etc., substantially affect IAQ. Common airborne contaminants include volatile organic
compounds (VOCs, such as formaldehyde and benzene), microbiological volatile organic
compounds (MVOCs), nitrogen oxides (NO and NO2), polycyclic aromatic hydrocarbons
(PAHs) and carbon monoxide (CO) [135,137]. Carbon dioxide (CO2) is mostly not consid-
ered as a pollutant as its major source (in non-industrial indoor environments) is the human
metabolism itself, but rather it is considered as a contribution to lesser air quality [53].
Finally, a great number of chemicals and materials used in everyday environments are also
known to impact IAQ. A (non-exhaustive) list includes:

1. Polychlorinated biphenyls (PCBs) used in electrical equipment, caulking, paints and
surface coatings;

2. Chlorinated and brominated flame retardants, used in electronics, furniture, and textiles;
3. Pesticides used to control insects, weeds, and other pests in agriculture, lawn mainte-

nance, and the built environment;
4. Phthalates used in vinyl, plastics, fragrances, and other products;
5. Alkylphenols used in detergents, pesticide formulations, and polystyrene plastics;
6. Parabens used to preserve products such as lotions and sunscreens.
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As a result of weak regulatory requirements for chemical safety testing, only limited
toxicity data are available for many new chemicals that are being developed on a daily
basis. Mechanisms of action, adverse effects, and dose–response relationships for many of
these chemicals are poorly understood and no systematic screening of common chemicals
for endocrine disrupting effects is currently underway, so questions remain as to the health
impacts of these exposures [9]. Over the past 15 years, some chemical classes commonly
used in building materials, furnishings, and consumer products have been shown to be
endocrine disrupting chemicals, meaning they interfere with the action of endogenous
hormones [9].

Solutions to contrast the accumulation of these pollutants include raising the ventila-
tion rate, controlling or reducing indoor human activities such as smoking and cooking,
and controlling the safety of building materials (paints, preservatives, etc.) and indoor
elements (furniture, equipment, cleansers, etc.) [135,138]. Indoor greenery has been found
to have positive biofiltering effects taking up toxic agents as benzene, formaldehyde,
trichloroethylene [139], particulate matter (PM, fine solid particles suspended in a gas) [33]
and CO2 from the air during the photosynthetic process [14,78]. Additionally, studies
have suggested that buildings exhibit decreasing tendencies of VOCs in indoor environ-
ments over time, which is why old buildings tend to have lower VOC levels than new
buildings [14].

Measuring of IAQ is a complex task as it has many potential components [14]. The
most common methods for indoor air sampling and analyses are toxic organic (TO) meth-
ods, air pollutants in indoor air IP-methods (compendium of methods for the determination
of air pollutants in indoor air) and air-phase petroleum hydrocarbon (APH) methods [140].
The emission rate of air pollution is measured in olf (from “olfactory”), where 1 olf is
the emission rate of pollutants from one standard person (an average adult working in
a non- industrial workplace, sedentary and in thermal comfort with a hygienic standard
equivalent to 0.7 baths per day) [141]. Decipol (from “pollution”) is used to represent the
level of perceived air quality, where 1 decipol is the pollution caused by one standard
person (one olf) ventilated by 10 l/s of unpolluted air [141]. The decipol scale ranges from
0.1 decipol (outdoors in a city) to 10 decipol (sick building). [141]. The main difficulties and
limits to the measurement and mapping of VOCs are linked to their very broad diversity in
physio-chemical properties [14]. This entails varying degrees of sensitivity to the diverse
compounds and subjective reactions in individuals, which in turn brings difficulties in
developing standard measures for sampling and analysis [14].

• Ventilation Rate

Indoor spaces are ventilated to reduce contaminants in the air and exchange the
exhausted indoor air. While higher ventilation rates give better IAQ values [14], they also
result in thermal exchanges between indoor and outdoor areas and therefore in higher
energy consumption as the air entering needs to be treated to meet the indoor thermal
comfort requirements [45]. Researchers however argue that achieving better health and
productivity of occupants with higher IAQ levels results in substantial financial returns in
comparison to the annual energy and maintenance costs of the building [14].

The ventilation rate is expressed as the outdoor air flow into a building per unit of
time divided by the number of people in the building, and thus in liters per second (l/s)
per person or per square meter.

• Humidity

Recommended levels of indoor humidity are between 40 and 60% [142]. Higher rates
of humidity in indoor spaces have shown to improve sleep quality and reduce effects on
the vocal cord on one hand [143], but also to create unhealthy conditions that can bring
microbial growth—fungal, bacterial and mold [133,142]—and affect the rate of outgassing
of formaldehyde from indoor building materials, the rate of formation of acids and salts
from sulfur and nitrogen dioxide, and the rate of formation of ozone [142]. Low humidity
on the other hand can favor the survival and transmission of many influenza viruses as
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well as aggravate the eye tear film stability and physiology, and the osmolarity of the
upper airways [143]. “Dry air”, which is a very common complaint in indoor spaces [134],
is a sensation most likely caused by an exposure to sensory irritants such as indoor air
pollutants [48,144]. Literature recommends distinguishing between elevated moisture
in construction materials, elevated relative humidity (RH) resulting in condensation on
surfaces, and RH in the breathing and ocular zone [143].

Relative humidity (RH) is measured as a percentage of water vapor in the room air,
relative to the amount of vapor that the air could contain at a given temperature and
is usually measured with a hygrometer. Absolute humidity (AH) measures the water
in grams per kg of air at a defined pressure and is used in some cases for comparison
and identification of associations, also considering sometimes better correlation between
outdoor and indoor AH [143].

3.1.2. Thermal IEQ

Thermal comfort is one of the main factors affecting occupants’ perceived environ-
mental satisfaction [2] and IEQ-productivity belief [6], influencing their health and well-
being [60,132]. Uncomfortable thermal indoor conditions have been reported to affect
cognitive performance and productivity [2,14,51] and to be in extreme cases responsible for
sick building flu-like symptoms (eye, nose, and throat irritation) [2]. The range of indoor
temperatures deemed acceptable also has a strong bearing on building energy require-
ments [51]. It is therefore understandable that the opportunity of achieving important cuts
in operational CO2 emissions with the energy efficiency upgrade of the existing building
stock [145] has driven much research to focus on the thermal aspect.

• Definition

Thermal comfort as we refer to in the field of building physics is traditionally defined
through people’s psychophysical responses, rather than purely biophysical processes.
Thermal comfort is a subjective state of mind where each individual, influenced by physical,
physiological and psychological factors, expresses a judgement of satisfaction with the
thermal environment [14,47,49]. While thermal comfort is a highly subjective condition,
thermal sensation is more objective and is therefore used to describe the human response
to thermal comfort [146]. Other indicators used include thermal acceptability (the degree
of an occupant’s approval of the environment, which is subjective and directly related to
the individual’s expectation) and thermal preference (the expressed ideal thermal state of
the environment) [30]. Variables that influence the comfort sensation are multiple. On one
hand are the physical factors defining the thermal state of the environment: mean radiant
temperature, relative humidity, air velocity and air temperature [14]. On the other are the
factors influencing the human perception and preference towards the thermal conditions:
individual factors such as age, gender sex, metabolism rate, mood, etc. [34,147]; dynamic
factors such as clothing, activity patterns, posture (sedentary or steady conditions) [58]; and
contextual climatic conditions as geographical factors, weather, and time of the year [14].

• Thermal Comfort Models

Achieving optimal indoor thermal comfort conditions is a complex task that has been
at the center of scientific debate for about fifty years [50,62]. The outcome has been two
approaches for defining thermal comfort.

The “single temperature optimum” model is based on climate chamber data, on
the heat balance theory and on thermoregulation physiology [59]. This analytical model
defines the predicted mean vote (PMV) index and the predicted percentage of dissatisfied
occupants (PPD) through physical parameters (air temperature, mean radiant temperature,
air velocity and relative humidity) and human variables (clothing insulation and activity
level) [62]. Thermal comfort is therefore expressed around a single optimum temperature
for any given combination of comfort parameters [148]. In this approach, any deviation
from the thermal optimum anticipates a loss in comfort, performance, and productivity [51].
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The “adaptive comfort” model on the other hand is based on field studies and consid-
ers that occupants’ thermal acceptability, which depends on behavioral, physiological and
psychological factors, influences the thermal comfort perception [14,49]. While subjects
in lab conditions expect a finely controlled thermal environment, calculating the comfort
predictions to a pessimistic value and are therefore less tolerant [50], in environments
dependent on outdoor temperature fluctuations and passive design solutions, users accept
a broader thermal comfort range [50,51]. Higher comfort and cognitive demands are also
expected to be absorbed to a certain degree by the subjects with little or no deleterious
effect appearing until those adaptive resources are depleted [51].

While both the “single temperature optimum” and the “adaptive comfort” models
rely on thermal behavior to a certain extent, the thermoneutral zone (TNZ) describes a
range of ambient temperatures where the body’s core temperature can be maintained as
relatively constant solely through control of dry heat loss (without regulatory changes in
metabolic heat production or evaporative heat loss) [46,149]. The concept distinguishes
itself from the thermal comfort models [149] as being within the thermal comfort zone does
not guarantee that the body is in thermal balance at basal metabolic rate, or that it does not
require heat production or heat loss to maintain the core temperature [46].

In all three concepts, the physical parameters can be measured using sensors. Sub-
jective parameters, however, are more diverse and different methods are used to collect
human responses, from complaint analyses, online surveys [14] and/or self-report. While
the subjective measurement has improved greatly across several disciplines over the years,
the soft data still pose problems in regard to being statistically significant, reproducible [56],
or scalable.

3.1.3. Visual IEQ

Visual IEQ is affected by parameters such as daylight (in both amount and quality), the
quality of views (indoors, towards the outside, introspection) and the user’s opportunities
to adjust these [133].

• Light

Visual comfort is generally the primary aspect considered by designers when planning
the indoor light conditions and is in many cases the only aspect measured to determine
visual IEQ. Visual comfort is determined by daylighting and artificial lighting levels in
both amount and quality: overall luminance levels, daylight to artificial light ratio, direct
sunlight, glare index, etc. It additionally depends on the type of activity performed, as
different activities require different lighting levels [150].

Exposure to natural daylight is however important for more than its optical proper-
ties [44]. The intensity of the light affects human health as well as exposure to specific
wavelengths, the timing, and the duration of exposure [151]. Humans have evolved by
being exposed to specific amounts of natural sunlight. Spending more time indoors can
therefore result in too low exposure, especially as window glasses tend to block part of the
natural light spectrum [152]. Indoor sunlight can therefore not entirely substitute outdoor
natural light. In terms of intensity, natural light in a minimum of 1000 lux is required
for the biological rhythms of the human body to work efficiently [14], while most indoor
office lighting levels for instance are around 300–500 lux [44]. In terms of wavelength,
spending too much time indoors can lead to low exposure to ultraviolet (UV) radiation,
which involves vitamin D3 deficiency [10]. In terms of timing, longer exposures to artificial
light enriched in blue, typically irradiated from electronic screens, have been shown to
affect sleep structure, particularly when exposed before bedtime [153]. Ill-timed light expo-
sure due to the use of electrical light during periods of the day with local environmental
darkness (i.e., late evening, night, early morning) has been shown to result in melatonin
suppression even in settings with low light levels such as in households [10]. Melatonin
is a hormone responsible for regulating the body’s circadian rhythm [154,155] on which
human physiological and performance aspects depend [154,156]. A multitude of disorders
can emerge from the disruption of the circadian rhythm, such as sleep [153] and mood dis-
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orders [157], seasonal affective disorder (SAD) [10] and shift work disorder (SWD), which
create issues such as insomnia, difficulty in falling asleep, and experiencing sleepiness
when it is important to be alert and productive [157].

Indoor lighting levels are mostly measured using sensors, while the glare index is
mostly assessed through calculations [14]. Preferred indoor lighting settings can be assessed
by comparing the lighting level and glare with occupant survey data [152].

In summary, relevant light-connected parameters to ensure good IEQ include daylight
and artificial parameters in terms of quantity and quality: overall luminance levels, day-
light/artificial light ratio, direct sunlight, glare index, wavelength, timing and the duration
of exposure.

• Views

The quality of views impacts occupants’ health and productivity in a number of
ways [52]. Within the indoor environment, aesthetics and color schemes have been shown
to affect human performance and productivity [14,158]. Greenery, whether in direct con-
tact with the users [159], or indirectly spotted through windows [39,160] has therapeutic
psychological and physiological restorative effects such as stress reduction, development
cognitive and social skills [79]. Viewing the outdoors does not only provide contextual
information such as weather, nature and surrounding activities [14].

3.1.4. Acoustic IEQ

Acoustic IEQ has high relevance in building design, and especially in offices as many
tasks require noise to be kept within certain limits to enable occupants to work efficiently.
Bad acoustic conditions produce psychological annoyance [161,162], fatigue and negative
impact on motivation [31], anxiety with increased stress levels [163], ultimately affecting
users’ performance [32] and creating long term health issues [14].

Any unwanted sound is referred to as “noise” [164]. Sources of noise include external
sources (traffic, the public, air traffic, machinery), internal sources such as machinery
(fax machines, telephones, air conditioning systems) or from human origin (co-worker
conversations, one-minute requests, etc.) [133,161].

Sound (or noise) is measured on a logarithmic arithmetic scale of decibels (dB), sound
power (SWL) and sound pressure levels (SPL) [14]. The effect of variations in acoustic
sensations in users’ productivity has been directly compared to those of changes in thermal
sensation, whereas a temperature change of 1 ◦C supposedly has the same effect as a
change in noise of 2.6 dB [61]. The typical sound range in an air-conditioned office is
between 45 dB and 70 dB [165,166].

Reducing acoustic discomfort can be achieved in a number of ways depending on
the source of noise and the context: adding external (building envelope) [14] or inter-
nal building elements (internal partitions, sound absorbing materials, modifying sound
reverberation time) [167], modifying the internal layout (from open office plans to cubi-
cle/cellular office arrangements) [14], using a white noise generator [168] and introducing
vegetation to promote reflection, dispersal, absorption or interference with the sound
waves [78,169].

3.2. Biosignals
3.2.1. Definitions and Classifications

Living organisms, depending on their complexities, are made of several dynamic
biologic systems. In human beings, some of these systems can be listed as the nervous
system, cardiovascular system, musculoskeletal system, or the immune system [170]. These
systems are responsible for dedicated physiological processes, such as blood circulation,
breathing, digesting, etc. These processes result in changes within themselves, their
immediate environment and/or their input/outputs in forms of voltage, pressure, chemical
concentration, temperature, etc. These physical attributes can be measured by several
means and are collectively called biosignals.
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Biosignals (short for biologic signals or biomedical signals) are signals that are used to
extract information on a biologic system to be examined [171]. In biomedical applications,
they are a critical part of diagnosis [172]. The signal source can be at the molecular, cell,
systemic or organ level. Extraction of a biosignal can go from something as simple as
a physician feeling the pulse of a patient to understand the heart rate, to the use of an
electrocardiogram or to measure the electrical activity of the heart more precisely and
continuously, with the help of electrodes placed on the chest, arms, and legs. Overall,
biosignals can be:

1. Spatial (mono-dimensional biosignals, e.g., electrocardiogram (ECG) associated with
heart muscle contractions measures heart activity by detecting changes);

2. Temporal (two-dimensional biosignals, e.g., functional magnetic resonance changes
associated with blood flow imaging (fMRI, functional magnetic resonance imaging
measures brain activity by detecting); or

3. Spatio-temporal (three-dimensional biosignals, e.g., a medical ultrasound movement
by detecting changes in the reflection of measured surfaces or internal organs struc-
tural sound waves on the tissues) records of a biological event [173].

Biosignals can be categorized in several ways: by their existence (permanent, i.e.,
EEG, ECG vs. induced, i.e., plethysmography, where an artificial current is induced in the
tissue), by the observed time-frame changes (dynamic, i.e., heart rate or static, i.e., core
temperature) or by their physical nature [174]. The latest is the most frequent classification
method, categorized and elaborated as follows:

1. Bioelectric signals: Bioelectric signals are the most common and well-known biosig-
nals. Bioelectric phenomena have had scientific value for the past 200 years in terms
of modern medicine [175]. They convey the electrical activity created by nerve and
muscle cells. Well known examples can be listed as electroencephalogram (EEG),
electrocardiogram (ECG), electroretinogram (ERG), electrooculogram (EOG), electro-
gastrogram (EGG), electroneurogram (ENG), electromyogram (EMG), galvanic skin
response (GSR) [176].

2. Bioimpedance signals: Bioimpedance signals are useful for estimating body compo-
sition through the amount of electric impedance passing through the body. Using
bioimpedance signals, parameters can be figured such as: body cell mass, extracellular
mass, fat-free mass, fat mass or total body water [177,178].

3. Biomagnetic signals: Several organs produce weak magnetic fields, as a result of
their electric activity. For instance, the source for the magnetocardiogram (MCG) or
magnetoencephalogram (MEG) is the electric activity of the cardiac muscle or nerve
cells, respectively, as it is the source of the electrocardiogram (ECG) and electroen-
cephalogram (EEG) [175].

4. Biomechanical signals: Results from the mechanical functions of the body, such as
pressure, tension, motion. Examples can be listed as blood pressure data, human
movement data via accelerometer sensors in Parkinson’s disease patients, gait, balance
and pose (Parkinson’s disease, mobile applications, fitness). Biomechanical signals
are particularly of interest in sports science, or physical rehabilitation processes [179].

5. Bioacoustic signals: Several physiological activities make noise and can be captured
as acoustic data when amplified. Examples are cardiac sounds (phonocardiography)
to examine heart valves’ closure strength and stiffness, recording snoring in order to
investigate sleep apnea, listening to respiratory sounds to detect pulmonary disorders.
Apart from the medical field, use of bioacoustic data had been an important tool for
animal researchers, identifying animal behavioral patterns [180,181].

6. Biochemical signals: Provide information about concentration of various chemical
agents in the body. Common examples are glucose level data for diabetes control,
blood oxygen level data for asthma, obstructive pulmonary disease, or heart and
kidney failure detection. Biochemical signals, in general, are deemed as amongst the
highest accuracy signals to detect stress levels in the human body, particularly via
urine, saliva, or blood samples [182].
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7. Bio-optical signals: Bio-optical signals are naturally occurring or induced optical
functions of the examined biologic system. Examples of use include estimating blood
oxygenation by measuring transmitted vs. backscattered light from a tissue, using
dye dilution and monitoring the bloodstream to observe cardiac output, or controlling
fluorescence characteristics of the amniotic fluid to acquire information about the
health of the fetus [171].

All of these types of biosignals have different levels of sensitivity, accuracy, timescale,
and types of dedicated sensors [183]. The use of these sensors suggests another important
classification relevant to the focus of this research: the level of invasiveness. This factor is
mainly critical in order to eliminate any psychological bias on one hand, by ensuring that
the test subjects are not aware of the experiment, but also relevant due to the applicability
of the biosensing experiments outside laboratory environments on the other.

The level of invasiveness is a direct correlation between the biosignal sensor and its
relation to its biologic host; naturally, the least invasive biomedical data collection methods
would be through the use of no contact sensors at all (i.e., thermal infrared imaging).
Minimally invasive methods can be directly in contact with the skin (i.e., measurements
obtained through biopotential electrodes such as electrocardiogram, electroencephalogra-
phy, electrodermal activity), whereas the most invasive methods would implement sensors
within the body (i.e., rectal, oral thermometers), puncturing the skin (i.e., use of needle
electrodes for electromyographic signal acquisition) or even surgically placing the sensor
(i.e., a blood pressure sensor placed in an artery, vein, or in the heart) [29].

3.2.2. Use of Biosignals in the Field of Building Engineering

The human body constantly tries to self-regulate against environmental changes,
trying to keep the state of homeostasis and, as defined by Selye [184], stress is “a state of
biological activation triggered by the person interacting with external agents that force
her or his capacity to adapt”. According to Schneiderman et al. [130], following a stressful
event, a cascade of changes in the nervous, cardiovascular, endocrine, and immune systems
take place. As previously discussed, these changes are traceable and quantifiable through
sensing of biosignals.

Stress literature is well researched and has a long history. From a medical point of
view, it goes back to the beginning of the 20th century [185] and gained even more traction
in fundamental and clinical neuroscience research in the 50s, after Hans Selye’s stress
theory [186]. Since then, stress has been a research topic in many specific fields such as
psychology, economics, ergonomics, sociology, endocrinology, complementary medicine,
animal breeding, etc. It has been a research topic in the domain of building physics as well,
regarding occupant stress (mental or physical, in terms of thermal stress, heat stress or cold
stress), as reviewed in the first chapter.

However, the use of biosignals as part of stress-research is relatively new, even more
so in the field of building engineering. As indicated in Section 2, Materials and Methods,
the list of publications researched for this review mostly tried to correlate IEQ parameters
to comfort sensation and mental workload, while none, to our knowledge, investigated a
long-term effect.

3.2.3. Limitations

Albeit promising, the use of biosignals in the field of building engineering has still
several limitations, most of which pose setbacks for robust real-world applications so
far. The majority of the studies using biosignals have been conducted in test chambers,
laboratories or well-controlled environments, and the gap in research to transfer the know-
how from the lab setting to real-world conditions still exists [120]. While this approach
is beneficial in establishing working protocols with minimal noise and more comparable
data, it is also well-known that people’s tolerance limits may drastically vary from test
environments to real-world settings in which there will be many unforeseen stressors,
influencing the overall stress [122,187]. However, both the sensing and data analysis
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technologies are rapidly developing, and the possibility of the use of biosignals to further
develop our know-how in realistic settings does not seem unrealistic.

The following are the most critical obstacles, according to our literature review.

1. Technical problems

a. Noise:
The physiological processes that produce biosignals, most of the time, cannot be

reduced to an unequivocal course of events. Motion of the entire body, or parts of it, creates
noise in the data. While there are several methods to improve signal-to-noise ratio, and
higher performing sensors already eliminate noise to a certain degree, this still poses a
problem. While de Santos et al. [188] remarks that “the subjects were strongly indicated not
to move during the experiment procedure, in order to avoid noise in physiological signal
acquisition”, it significantly deviates from a realistic setting, ergo realistic conclusions,
since it not only is irrational to expect test subjects to be that restricted while doing their
mundane tasks, it is also effective on the strain this command causes on the subjects,
meaning the results will not be representative for real-world settings.

Similarly, Schmidt et al. [189] states that certain biosignals, such as electrooculography
or electromyogram, are prone to producing a lot of noise in real world settings, and
therefore are not very suitable for any use outside the laboratory conditions.

b. Level of invasiveness, mobility, or wearability of sensors:
The last decade has seen a great development in wearable technologies. The wearables

used in the field can be watch-like, chest-belt, stationary devices, or recently flexible sensor
patches and sensors that can be integrated into fabric. These technologies offer an increased
wearing comfort, potential new measurement positions, and are less intrusive [189]. Even
biochemical signals such as saliva and sweat, which are sought after as direct stress
measurements, can be analyzed non-invasively through recently developed wearable
electrochemical sensors [190].

However, there are still problems associated with mobile technologies: once stationary
devices, EEGs now have mobile alternatives with wearable headsets, with wireless data
transfer technology. Nevertheless, they are still not fully unobtrusive; in some experiments,
it was reported that continuous wearing of said headset caused headaches [2], making it
less suitable for prospective long-term experiments in real settings.

c. Accuracy of sensors:
Another topic with mobile and wearable sensors as an emerging concern has been

the level of accuracy that can be obtained during the testing period [191]. Continuing with
the example of mobile EEGs, mechanical setbacks still exist; several studies [192,193] have
explored the drop in signal quality and accuracy after a certain time of usage, due to sweat
on the skin changing the bioimpedance of electrodes.

2. Problems with data acquisition:

Depending on country-specific regulations, data privacy is strictly controlled and
regulated. This means that data collection methods, particularly when video and/or speech
recording is involved, might have to be modified or restricted accordingly [29].

3. Need for self-reporting:

Sharma and Gedeon [194] and Hernandez et al. [195] state that most methods that use
biosensing techniques (alone or in combination) still use questionnaires to validate induced
stressors. This eliminates the potential avoidance of psychological bias in the resulting
data. On the other hand, Hernandez et al. [196] suggests that self-reports, when used as
ground-truths, result in more accurate stress detection in person-specific models.

4. Need for multi-modal biosignals for better insight:

Generally speaking, multimodal systems perform better when compared to the accu-
racy reached by unimodal systems [197]. However, Kyriakou et al. [120] make a critical
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point by stressing the importance of combining the appropriate signals and signal pro-
cessing algorithms. A multimodal data collection is also practical in order to study the
cross-modal effects that one can expect to observe in a real-world setting [198].

Thereby also increasing the applicability problems parabolically, making it even more
complicated under the real-world conditions.

3.2.4. State of the Art

In this chapter, relevant biosignals used to assess environmental stressors in the built
environment are reviewed and classified. While there is a plethora of biosignals, the ones
presented in this chapter are selected on the basis of their occurrence in stress studies
directly related to IEQ parameters.

The presented biosignals are simply classified regarding their position in the human
body.

• Brain: Electroencephalogram (EEG)

Since the early 20th century [199,200], brain activities can be recorded by electrodes.
The system is called electroencephalogram, or EEG for short; by “electro = electrical”,
“encephalo = brain” and “gram = record” and used for brain function study [201]. EEG
is the electrical recording of brain activity, represented as voltage fluctuations resulting
from ionic current flows within the neurons of the brain [202]. EEG records brain activity
at the millisecond level, and therefore is considered to be a strong tool to provide a direct
measure of the dynamic interaction between the brain and other stimuli in real-time [203].
It is considered to be a non-invasive method as it can be recorded by electrodes of varying
numbers placed on the scalp. However, the level of obtrusiveness can be discussed.

The amplitude of the EEG signals ranges between 10–200 V, with a frequency falling
in the range 0.5–40 Hz. There are five frequency bands:

1. Delta (γ): 0.5–4 Hz in frequency. Delta waves are the slowest EEG waves, normally
detected during deep and unconscious sleep.

2. Theta (θ): 4–8 Hz in frequency. Theta waves are observed during some states of sleep
and quiet focus.

3. Alpha (α): 8–12 Hz in frequency. Alpha waves originate during periods of relaxation
with eyes closed but still awake.

4. Beta (β): 12–25 Hz in frequency. Beta waves originate during normal consciousness
and active concentration and are associated with increase in alertness and arousal.

5. Gamma (γ): above 25 Hz in frequency. Gamma waves are known to have stronger
electrical signals in response to visual stimulation [202,204,205].

It is also important to note that the precise range assigned to these bands can vary
across studies [206] but apart from the exact thresholds, the classification stands.

The importance of these bands is that they are associated with particular cognitive
processes. For example, Nyhus and Curran [207] states that theta and gamma bands
are correlated to memory processes such as retrieval and encoding, Jensen et al. [208]
mentions the connection between alpha and gamma waves and visual processing and
Doesburg et al. [209] addresses the whole scalp gamma frequency synchronization in asso-
ciation with consciousness. According to Hamid et al. [210], the presence of stress has been
considered to be responsible for an increase in the EEG beta band power.

EEG is a spatio-temporal biosignal, meaning the data not only vary with time but
also in location. Where the signal originates at or the comparison of activities in different
hemispheres can carry valuable information. An example relevant to stress studies is
frontal alpha asymmetry (FAA), which is defined as “the difference between right and left
alpha activity over frontal regions of the brain” [211]. It is speculated that the greater left
frontal activity is associated with reacting to positive stimuli while the greater right frontal
activity is associated with the tendency to withdraw from responding to negative stimuli.
The extent of asymmetry has been suggested to vary under conditions of chronic stress
and alpha asymmetry is suggested as a potential biomarker for stress classification [212].
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Another use of spatial EEG data is when mental workload or performance are pre-
sented as evaluation parameters. In task-based experiments, the researchers look at the
frontal lobe since as mental demand increases, so does the theta band activity [105]. By
recording and comparing the rise in activity, it is possible to quantify the physiological
impact of the stressor on the human body. The use of EEG signal to identify attention
and distraction is relatively common, as seen in distraction studies in the automotive
industry [89,98].

There are methods reported quantifying human acute stress in response to induced
stressors (such as impromptu speech, examination, mental task, public speaking, and the
cold pressor test) using EEG signal recordings, but the literature lacks a classification of
long-term stress using EEG [212]. Even more so, very few of the acute stressors in the
literature are related to IEQ parameters (i.e., [2]).

However, studies exist outside the realm of building physics, as [213] study the
EEG signals of cold and warm sensation on skin, using 15 healthy subjects. During the
experiments, subjects were partially exposed to a temperature range of 14 to 48 ◦C, with
different intervals and intensities. While the temperatures, particularly in the warmer
range, are not usual from an IEQ point of view, the study provides valuable insight as to
how brain activities react to thermal stimuli.

Finally, it is worth mentioning that EEGs, similar to many other biosensing methods,
are prone to noise and artefacts that may obscure the data and their interpretation. These
artefacts may be caused by the test subjects’ movement (eye movements, shivering, cough-
ing, hiccupping, breathing) or due to the faults in the equipment (electrode popping, cable
movements, electrical or electromagnetic interferences) [214].

• Heart: Electrocardiogram (ECG) and Heart Rate Variability (HRV)

An electrocardiogram (ECG) measures the electrical manifestation of the ionic poten-
tial of the heart, via numerous electrodes placed on the body surface near to the particular
organ (e.g., chest, hands, and legs) [215].

Each cardiac cycle in the ECG is characterized by successive waveforms, known as P
wave, QRS complex (including Q, R and S waves occurring in rapid succession) and T wave
(Figure 5). These waveforms represent the depolarization and repolarization activities in
the heart’s cells of atrium and ventricle [216].

Figure 5. A typical electrocardiogram (ECG) signal that includes three heartbeats and the information lying in the P, Q, R, S,
and T waves [after 215].

Studies using the heart as a biosignal data source either use heart rate, or heart rate
variability. Heart rate is the measurement of heart beats per minute (bpm), while heart
rate variability is the fluctuation of the length of consecutive heartbeat intervals [217], also
known as R-R intervals [218] or N-N intervals.
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These intervals are not periodic; however, the variation is not random either. The
oscillations of a healthy heart are deemed complex and dynamically changing, depending
on the “extrinsic protocols imposed on the heart” [219], since the cardiovascular system
plays a vital role in reacting to stressors and maintaining the state of homeostasis [220].
Due to this reason, HRV is not only a factor of the heart, but also a rich data source with
information on actions of the nervous system in response to stress factors [221].

Accordingly, the use of HRV signals plays a vital role in stress assessment research [183],
with several studies being published not only generally in stress literature, but also in
the field of building engineering, since the actions of the nervous system in the control of
cardiac activities are sensitive to changes in temperature.

As Yao et al. [201] explains, environmental temperature can have an impact on the
vagal and sympathetic nerve activity; as under thermally uncomfortable situations, sympa-
thetic activity prevails, while in comfortable situations, the vagal activity overcomes. In
humans, the vagus nerve is for the protection of the body, while the sympathetic nerve is
triggered for stress response, including thermal stress. Thermoregulation of the human
body as a system is controlled by the sympathetic nerve.

The way activities of vagal or sympathetic nerves are presented in HRV are via high or
low frequency components. The vagus nerve is thought to excite the high frequency (HF)
component of HRV while the low frequency (LF) is thought to be of both. As a result, any
physiological reaction concerning thermoregulation triggers the use of a sympathetic nerve,
resulting in a higher LF power and lower HF power, and the ratio of LF/HF increases. For
this reason, studying the LF/HF ratio data becomes a reliable parameter to understand
thermal sensation and physiological comfort in humans [222].

Studies conducted by [201,222–224] have all come up with similar results, contributing
to the findings that “higher LF/HF yields unpleasant thermal sensation and discomfort”.
In Nkurikiyeyezu et al. [225], the researchers had 17 subjects doing light office work under
cold, neutral, and hot environments while collecting data on statistical, spectral, and
nonlinear HRV indices. With help from machine learning classification algorithms, the
study concludes that it is possible to predict people’s thermal states in a reliable manner,
which was found to be up to 93.7% accuracy. There are no real-world studies on IEQ
parameters so far; however, experiments focusing on mental stress using HRV data exist
with varying success rates [226,227].

• Skin: Skin Temperature (SKT), Thermal Infrared Imaging (TII), Electrodermal activity
(EDA)/Galvanic Skin Response (GSR)

Human skin is a significant source of data when it comes to understanding physiolog-
ical reactions of the body in relation to its environment. It is the primary sensory organ and
anatomical interface the humans have with their immediate environments. The sensations
on the skin reflect both the biological processes happening intrinsically, or how the body is
impacted by the outer stimuli [228]. To illustrate the skin’s adaptability, the operational
temperature ranges can be compared. As previously mentioned, the core of the human
body requires a rather narrow temperature range, between ~36 to ~40 ◦C, with normal
core temperature being ~37 ◦C, and it has been established that the skin temperature can
vary between ~15 to ~42 ◦C without sensation of pain [228].

Similar to HRV, skin is part of the thermoregulation system, which is part of the
autonomic nervous system (ANS). Therefore, skin-originating biosignals (skin temperature,
electrodermal activity or galvanic skin response, photoplethysmograms) can provide
variable insights on ANS activity [229].

Amongst these biosignals, skin temperature has been the one investigated most ex-
tensively, as it provides a direct understanding in human thermal sensation and comfort
estimation, while the sensors are quite inexpensive [230]. Use of contact thermometers
to acquire skin temperature has proven successful as seen in [231–235], constant thermo-
couples in different forms and both in real-world and laboratory settings seem to function
and the results seem to be good indicators in predicting thermal sensation. However,
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thermocouple sensors require electrodes on the skin, making the data collection process
slightly obtrusive [188,230].

As an alternative, sensing skin temperature remotely is a method being utilized by
several researchers. Infrared imaging technologies are widely available today, and med-
ical infrared has utilized the heat signature of skin to map skin temperature since the
1960s [171]. Current technology presents low-cost no-contact and non-intrusive sensors;
however, there are reported application problems: Li et al. [230] states infrared thermome-
ters have a handicap of having such narrow field of views, meaning the thermometers
need to be placed very close (few centimeters) to the test subjects. Alternatively, the use of
thermographic (thermal) cameras can be placed away from test subjects, while in that case,
data accuracy significantly drops in comparison to thermocouple sensors or even infrared
thermometers. Nevertheless, with correct data analysis methods, improved data still seem
to have been proven to be a robust alternative for real-time thermal comfort detection and
even prediction.

One final biosignal of interest uses the skin’s thermoregulatory response as the data
source. Electrodermal activity (EDA), also known as galvanic skin response (GSR), mea-
sures the changes in electrical properties of the skin caused by eccrine sweat gland activity,
which is a key factor in the thermoregulatory process [236]. The idea dates back to the very
beginning of the 20th century to Carl Jung, who for the first time mentioned electrodermal
activity in connection to emotions in a psychoanalysis book [237].

Several studies successfully link EDA data to stress detection and quantification [238–240].
Recently, the use of wearables is becoming more reliable in the field, leading the way to
long-term EDA monitoring as well [240].

• Chemical: Cortisol

There are two main pathways in the human body to relay the stress from the brain to
the body. The first way is via the sympathetic nervous system, through which cardiovascu-
lar and skin-related biosignals were used as stress signifiers. The second way is through the
hypothalamic–pituitary–adrenal (HPA) axis, the hormonal route. Stress triggers the HPA
axis, a neuroendocrine system that regulates central and peripheral homeostatic adaptive
responses to stress [126,129,241,242].

Biochemical samples, primarily urine, saliva, and blood samples, and particularly anal-
ysis of hormones such as cortisol and alpha-amylase, are amongst the primary measures
used to identify the impacts of stress on the body in conventional psychology methods and
long-term stress studies [183,212,243].

While these analyses are deemed to provide high accuracy in stress detection, data
collection can pose difficulties in regard to the intrusiveness of obtaining the samples, or the
time interval of the data acquisition. Additionally, Lee et al. [244] stress the importance of
the timing of the sampling, as cortisol levels in blood also vary diurnally, increasing during
early morning and decreasing towards the night. Another important aspect is that while
the biochemical signals from fluid analysis may correlate with acute stress, to understand
the long-term chronic stress impacts some researchers have suggested looking at extraction
of cortisol from hair fibers [245]. In order to overcome the limitations of the intrusive
nature of data collection, the use of wearables in the forms of sweat patches, wristbands,
or epidermal sensors is becoming more available. As Seshadri et al. [190] remark, while
this enables researchers to collect biologic data continuously and is truly non-intrusive, the
majority of these devices are only available as market products and have not been clinically
tested and validated yet.

4. Discussion
4.1. Summary and Research Gap

Our understanding of indoor environmental quality is as good as the methods we
use to assess it. A brief review of the state-of-the-art has highlighted how little consensus
there is concerning the actual measures used, both between radically different fields and
within fields of research. Recurrent criticisms are mostly focused on two main aspects:
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(i) the effect against which quality (or lack thereof) is measured; (ii) the reliability of the
collected data. In the first case, human health and wellbeing are commonly implied to be
the end-objective, whether the effects measured vary broadly and include self-selection,
performance-oriented or physiological metrics. The use of different measures raises on
one hand questions concerning their relevance and appropriateness in reflecting health
parameters; on the other, it makes comparisons between studies very difficult. In the
second case, the importance of taking into account psychological and individual factors
in the equation is on one hand underlined by many researchers as not being adequately
considered; on the other hand, these components are widely accepted as having a strong
potential for data bias.

This gap in terms of measuring efficiency substantially affects the mental framework
of all professionals dealing with the built environment, from designers to policymakers,
with end effects not only on human health and wellbeing, but also on the overall energetic
and environmental building performance.

Within this context, recent advancements in sensing technology and time-sensitive
biomedical data acquisition have opened up new possibilities to use biomedical signals as
an increasingly reliable objective methodology to measure environmental stressors. The
promise of parsing physiologically relevant data is so that the impacts of additional variables,
such as adaptive behavior, tolerance, psychology, exposure time, can be studied against
a constant, in a situation where, as previously explained, almost all other parameters
vary. The use of these methods is however relatively new to the field of building and
climate engineering, where the established scientific practice largely uses self-selection or
performance-based assessments (questionnaires and interviews) to measure the quality
range of measured indoor conditions.

The main hypothesis supported by this paper is that introducing data collection based
on biomedical signals to measure human stress in indoor environments has the potential
to give new insights, more data reliability and enable comparisons between studies in
the field of building physics. Hence, the review aims to contribute with a systematic and
comprehensive insight on the current capacity to detect stress from the built environment
using biosignal measures, in order to set a foundation for the development of this method
of data collection in the field of building physics.

4.2. Approach

This paper reviews the state-of-the-art knowledge concerning (i) indoor environmen-
tal parameters affecting humans in terms of IEQ and (ii) human biosignals that respond to
the environmental IEQ stressors and the physiological response they activate, and then
maps the interaction and interdependence between the two. More than 240 scientific publi-
cations were analyzed, published between 1906 and 2021, dealing with topics ranging from
built indoor environment, medicine and neuroscience, biomedical engineering, sensing
technology, psychology, ecology, and economy.

4.3. Main Findings

Indoor environmental parameters commonly used in building engineering and in-
door climate research were reviewed. Indoor environmental quality (IEQ) is determined
by assessing air quality, thermal, visual, and acoustic parameters. Although the use of
these parameters is well-established throughout the reviewed literature, this brief review
was necessary in order to establish a common ground between current practice and the
introduction of biosignal measures. This will allow bridging the new methods introduced
and the state-of-art knowledge on the features of the indoor environment affecting humans,
but also to set a basis for comparison with the existing research in the field.

Moreover, discussing IEQ from a health-oriented rather than a comfort-oriented per-
spective, relevant sub-parameters were identified, which are, in the current state of research,
not taken into consideration. This is the case of visual IEQ, where the range of the natural
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light spectrum should be taken into consideration also for its health-related properties (as
to trigger the production of vitamin D) rather than only for its optical properties.

Parallelly, human biosignals were reviewed. Biosignal definitions and classifications
were introduced in order to provide a systematic framework for professionals dealing
with the built environment. The physical nature as well as the level of invasiveness of
the biosignals are discussed. The physical nature of biosignals directly relates to the
physical IEQ aspects of the indoor environments, while the invasiveness of the technology
enables an easy and unbiased data collection that does not interfere with the study subjects’
behavior patterns or awareness of being observed.

Successively, the review reported on the main limitations connected to the use of
biosignal measures, being mainly of technical nature (noise, wearability, and accuracy),
country-specific legal issues involved with data collection and storage and the use in
some contexts of self-reporting as validation. The necessity of relying on multimodal data
acquisition is also highlighted as a possible limit; however, if systematically integrated
in the research method, it remains a valid method for cross validating the acquired data.
The possibility of performing this kind of analysis can therefore also be seen as a strength,
yielding potentially high quality and complete sets of data.

Finally, the review reports on the specific biosignals that relate to the IEQ parameters.
These are classified into four categories depending on the biophysical aspect measured:
brain, heart, skin and chemical.

4.4. Limitations

The introduction of biosignals as measures of indoor environmental quality still
appears to have a number of limitations, in spite of the potential benefits highlighted by
this review.

Defining the metrics of environmental quality remains a complex task due to a number
of intrinsic complexities:

a. Multifaceted conditions of the indoor environment (temperature, light, air quality,
humidity, etc.);

b. Elaborate human psychophysiological reactions affecting the regulation of envi-
ronmental conditions for conditioned buildings (individual preferences, personal
methods of adaptive behavior, i.e., different levels of clothing, different body mass
index (BMIs), different sense of comfort, etc.);

c. Complex human psychophysiological reactions to the environmental conditions
(stress, health, wellbeing, etc.);

d. The many-to-many relationships between the factors mentioned above, and finally;
e. The above-mentioned relationships being dependent on time factors (expectations

changing together with the outdoor conditions and changing of the seasons, history
of individual acclimatization, time of exposure to certain climatic conditions, etc.).

Additionally, a lack of knowledge and training from the side of building professionals
in terms of the medical and technical background necessary to correctly use some biosensor
measures, to collect and to interpret the data is a main limit to the effective use of these
technologies. This problem is especially evident with some biosignals, such as the EEG,
where possibly specialists from other fields need to be involved. Although the interdisci-
plinarity of these types of studies has the potential to contribute with innovative practices
and relevant findings, it poses important limits in terms of time and resources that can
discourage the use of these methods in regular ordinary research.

Finally, the study has addressed “indoor environments” as a whole, not distinguishing
further between the type of environments, in the aim of presenting the method as an
overarching tool that can be successively adapted to more specific case-studies. From the
analysis of the reviewed literature, a great majority of the research has up to today focused
on office spaces, a few on housing indoors and another few on healthcare contexts.

Intrinsic limitations of the review itself, in spite of the high interdisciplinarity of the
sources reviewed, might come from the authors having similar cultural and professional



Energies 2021, 14, 232 27 of 40

backgrounds. Additionally, the studies reviewed were exclusively written in the English
language, with the potential exclusion of relevant sources published in other languages.

4.5. Future Directions

This review aims to set a foundation for the introduction of biosignals for the assess-
ment of environmental parameters in the built environment, but is in that sense only a first
step within a long process. Follow-up studies to effectively establish the biosignal data
collection methods into current practice include:

1. The application of the identified biosignal measures in indoor environmental research,
specifically starting with their use in test chamber lab experiments before staging
exploratory studies in real-life indoor contexts and outdoor environments;

2. Parallels with the existing research in the field of comfort studies need to be further
deepened, both in order to use stress research with biosignals to support comfort
studies and to build up knowledge concerning stress related biosignals supported by
the existing knowledge from comfort studies;

3. Implications in terms of building energy efficiency and indoor health are other parallel
lines of research that open up, aiming to update the existing design practice as well as
building regulations.

4.6. Conclusions

This review has highlighted how the relationship between daily human indoor habitats
and human health needs to be researched further. While in current practice, comfort studies
prioritize optimizing building energy use and user satisfaction, and studies on productivity
bring a more direct economic impact, both constellations forgo the health implications as
they are not visible at the same timescales. In other words, a balance needs to be found
between the right dose of a higher overall human resilience and building resilience [246].

The use of biosignal measures to detect environment-related stress conditions is put
forward as a promising and reliable method to effectively focus on short and long-term
human health aspects. The review is a first stage within a longer process of translation of
a method that is already established in other fields of study using stress research in the
context of the built environment.
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Abbreviations
AH absolute humidity
ANS autonomic nervous system
APH air-phase petroleum hydrocarbon
BMI body mass index
BRI building-related illnesses
BVP blood volume pressure
ECG electrocardiogram
EDA electrodermal activity
EEG electroencephalogram
EGG electrogastrogram
EMG electromyogram
ENG electroneurogram
EOG electrooculogram
ERG electroretinogram
GSR galvanic skin response
HF high frequency
HPA hypothalamic–pituitary–adrenal
HR heart rate
HRV heart rate variability
IAQ indoor air quality
IEQ indoor environmental quality
IP air pollutants in indoor air
LW low frequency
MCG magnetocardiogram
MEG magnetoencephalogram
MVOC microbiological volatile organic compounds
NO nitrogen oxides
PAH polycyclic aromatic hydrocarbons
PCB polychlorinated biphenyls
PMV predicted mean vote
PPD predicted percentage of dissatisfied occupants
RH relative humidity
SAD seasonal affective disorder
SBS sick building syndrome
SKT skin temperature
SPL sound pressure levels
SWB subjective wellbeing
SWD shift work disorder
SWL sound power
TNZ thermoneutral zone
TO toxic organic
TTI thermal infrared imaging
VOC volatile organic compounds

Appendix A

Table A1. Sources based on their main research fields.

Origin Number
(Total: 246) References

Building physics 42
[9,11,13,21,32,39,48,53,61,71,72,112,132–

137,140,141,143,144,146–148,150,153,154,156,161–
199,201,226,230,246].

Medicine 41
[3–5,7,10,19,20,31,38,40,62,65–70,73,79,90,98,107,114–
116,121,122,124,127,142,149,151,152,155,162,184,219,

222,241–245].
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Table A1. Cont.

Origin Number
(Total: 246) References

Neurosciences 36
[21,28,86,88,91,92,101,102,104–

106,108,125,126,128,129,157,185–
188,192,193,196,198,200,203,205–209,214,216,220,221].

Built environment 34 [1,2,6,14–17,30,42–47,49–52,57–60,64,74–
77,81,82,85,103,111,131,145].

Biomedical
engineering, biology 28 [24,29,95,138,170–

183,195,204,215,217,218,223,227,228,231,232].
Computer sciences,

engineering 27 [56,89,93,94,96,97,110,120,189–
191,194,197,202,210,212–225,229,233–236,238–240].

Psychology 18 [8,22,25,37,38,63,87,99,100,109,117,118,123,125,126,
130,158,160,211,237].

Economy, business 4 [35,36,55,80].
Ecology, botanics 6 [12,27,33,78,159,169].

Ergonomics 4 [34,83,84,113].
Others 4 [18,26,54,119].

Table A2. Sources about comfort, wellbeing, stress, and other definitions, based on their main
research fields.

Origin Number
(Total: 157) References

Built environment 28 [2,6,14–17,30,42,43,46,47,49–51,57,59,60,64,74–
77,81,82,85,103,111,131].

Medicine 27 [3,7,19,20,31,38,40,62,65,66,73,79,90,98,107,114–
116,121,122,124,127,149,151,184,222,241–243].

Building physics 24 [9,11,13,32,39,48,53,61,71,72,112,134,141,147,148,150,156,161,
166–168,199,201,246].

Neurosciences 24 [21,28,86,88,91,92,101,102,104–
106,108,125,126,128,129,157,185,186,188,189,196,205,206].

Computer sciences,
engineering 17 [56,89,93,94,96,97,110,120,190,191,194,210,224,234,235,238,240].

Psychology 13 [8,22,25,37,38,63,87,100,117,118,123,125,126,130,158].
Biomedical engineering,

biology 9 [24,29,95,183,195,223,227,228,231].

Economy, business 4 [35,36,55,80].
Ergonomics 4 [34,83,84,113].

Others 3 [26,54,119].
Ecology, botanic 2 [33,159].

Table A3. Sources about human aspects, categorized based on their focus.

Terms Number (Total: 157) References

Stress 38 [29,56,65,110,120–130,183–186,188–191,194–
196,210,224,227,234,235,238,240–243].

Comfort 36 [15,16,30,34,35,42,43,46–51,57,59,61,62,66,71,72,111–
119,131,147–149,159,201,222,223,231,246].

Health 36
[3,8,9,13,15–17,19,38,39,48,53,66,79,82,114–

116,121,124,126–
130,134,151,156,157,168,190,199,241–243,246].

Performance 21 [2,31,53,74–77,82–84,103–
107,111,120,122,161,190,206].

Behaviour 17 [16,23,24,28,49–
51,55,71,112,113,117,125,131,147,150,246].

Attention 16 [86–98,100–102,206].
Productivity 14 [13,14,33,35,36,76,77,79–81,85,89,158,168].

Wellness, wellbeing 13 [19,20,22,37,38,40,82,84,118,158,187,205,243].
Preference 8 [6,7,55,60,61,63,111,166].
Satisfaction 3 [30,32,64].
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Table A4. Sources about indoor environmental quality (IEQ), based on their publication types.

Type Number (Total: 90) References

Books, book chapters, theses 6 [36,52,74,76,146,156].
Conference paper 5 [50,51,77,110,226].

Journal paper 72

[2,4,5,8,9,11–16,21,31–33,35,42,44–
49,53,60–62,66–71,75,78,79,81–

83,108,111,131–135,137–139,141–
144,150,152–155,158,159,161,162,165–

167,169,199,225,228,230,232,233].
Standards, guides, reports 6 [10,58,136,148,149,164].

Website 1 [145].

Table A5. Sources about IEQ, based on their main research fields.

Origin Number (Total: 90) References

Building physics 34

[9,11,13,21,32,48,53,61,71,132–
137,139–141,143,144,146,148,

150,153,154,156,161,164–
167,199,226,230].

Built environment 24
[2,14–16,42,44–47,49–

52,58,60,74–
77,81,82,111,131,145].

Medicine 15 [4,5,10,31,62,66–
70,79,142,152,155,162].

Ecology, botanics 5 [12,33,78,159,169].
Biomedical engineering,

biology 3 [138,228,232].

Computer sciences,
engineering 3 [110,225,233].

Psychology 2 [8,158].
Economy, business 2 [35,36].

Neurosciences 1 [108].
Ergonomics 1 [83].

Table A6. Focus points of the publications on IEQ.

Terms Number (Total: 90) References

Health 33

[4,8–
10,12,13,15,16,21,48,53,66–70,
78,79,82,134,135,138,139,142–

144,153–156,162,164,199].

Comfort 25
[15,16,35,42,44–

51,58,61,62,66,71,111,131,148,
159,165,225,226,230].

Productivity 12 [13,14,33,35,36,52,76–
79,81,158].

Performance 11 [2,31,53,74–77,82,83,111,161].
Behaviour 8 [16,49–51,71,78,131,150].
Preference 5 [60,61,111,132,166].

Wellness, wellbeing 2 [82,158].
Stress 1 [110].

Satisfaction 1 [32].
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Table A7. Types of IEQ parameters in publications on IEQ.

Parameter Number (Total: 90) References

Thermal 26
[2,42,45,46,48,50,51,58,62,66–
71,83,111,131,146,148,199,225,

226,228,230,232,233].

Indoor air quality 19 [5,9,11,12,42,45,50,53,77,135,
137–144,165].

IEQ 18 [13–16,21,32,36,47,49,52,60,75,
76,78,79,82,132,133].

Visual 12 [8,33,44,150,152–
156,158,159,199].

Acoustic 9 [31,61,161,162,164–167,169].

Table A8. Sources about physiologic signatures, based on their publication types.

Type Number (Total: 110) References

Books, book chapters, theses 13 [116,170,171,173–
176,180,182,196,198,203,237].

Conference paper 17
[29,95,98,110,121,172,179,181,

194,195,210,226,234–
236,238,239].

Journal paper 78

[7,8,17,28,56,65–70,86–
88,91,99,101,102,104,105,108,
109,120,122,142,149,151,163,

177,178,183,185,187–
193,197,199–202,204–209,211–

225,227–233,240–245].
Standards, guides, reports 2 [10,107].

Table A9. Sources about physiologic signatures, based on their main research fields.

Origin Number (Total: 110) References

Neurosciences 27

[28,86,88,91,101,102,104,105,
108,185,187,188,192,193,196,

198,200,203,205–
209,214,216,220,221].

Biomedical engineering, biology 26 [29,95,170–183,195,204,215,
217,218,223,227,228,231,232].

Medicine 23 [7,10,65–70,98,107,116,121,122,
142,149,151,219,222,241–245].

Computer sciences, engineering 22
[56,110,120,189–

191,194,197,202,210,212,213,
224,225,229,233–236,238–240].

Psychology 6 [8,87,99,109,211,237].
Building physics 5 [163,199,201,226,230].

Built environment 1 [17].
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