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Abstract: The rapid urbanization in Northwest China highlights the mismatch of increasing energy
demand and limited local energy supply. Nevertheless, the remote areas in Northwest China
are abundant with rich solar energy resources and land space resource. Therefore, establishing
a distributed solar energy system (DSES) is a feasible solution to the energy supply problem in
remote Northwest China. Due to the strong fluctuations in the availability of solar energy, operation
strategies based on fixed parameters may not ensure optimal operation of DSESs. In this study,
dynamic operation strategies that allocate surplus power from photovoltaic panels according to
variable ratios were developed in both grid-connected and off-grid scenarios, a joint optimization
model for optimizing the design and operation of a DSES was established based on the dynamic
operation strategies, and a DSES of a residential building in Shaanxi Province was used as a case
study. The analysis results indicate that: (1) The dynamic operation strategy can effectively reduce
the operating cost of the DSES in both the grid-connected and off-grid scenarios, and the efficiency of
the proposed strategy can be further enhanced by increasing the difference between peak and valley
time-of-use electricity prices in the grid-connected scenario; (2) the difference between peak and
valley time-of-use electricity prices has a significant impact on the optimal capacity of the batteries
in the grid-connected scenario when the dynamic operation strategy is implemented. The greater
the difference between peak and valley time-of-use electricity prices, the greater the configured
capacity of the batteries; (3) in terms of abandoned photovoltaic power in the off-grid scenario,
the three operation strategies considered in this study can be arranged in an ascending order (i.e.,
strategy B, strategy A, and the dynamic operation strategy). The dynamic operation strategy achieves
a reduction of 12.4% in abandoned photovoltaic power compared with strategy A and a reduction of
45.4% compared with strategy B.

Keywords: distributed solar energy system; design and operation optimization; dynamic operation
strategy; genetic algorithm (GA); multi-energy complementary

1. Introduction

The rapid urbanization in Northwest China highlights the mismatch of increasing
energy demand and limited local energy supply. As to the remote areas in Northwest
China, the problems are even worse due to the poor energy infrastructure [1]. Nevertheless,
the remote areas in Northwest China are abundant in rich solar energy resources and land
space resources. According to [2], the annual total solar radiation range in Northwest
China is 5850~8400 MJ/m2, and the daily radiation range is 4.5~6.4 kWh/m2. In compar-
ison with other regions, the climate in Northwest China is colder and drier, resulting in
great heating demands in winter [3]. As the most widely used renewable energy, solar
energy is safe, clean, and convenient to exploit. Thus, developing distributed solar energy
systems (DSESs) [4] could be a feasible solution to the local energy supply problem in
remote Northwest China. However, solar energy also has some prominent shortcomings
such as randomness, intermittency, and volatility [5]. By building a distributed energy
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system that integrates solar energy and other energy sources, it is possible to overcome
the instability of solar energy and increase the flexibility and reliability of energy systems
through complementation between different forms of energy sources [6]. This opens a
promising path to use local abundant solar energy to achieve energy self-sufficiency in
Northwest China.

The design and operation of DSESs play important roles in determining whether the
DSES can achieve the expected economic, environmental, and efficiency goals [7–9]. For
multi-energy complementary systems, the design and operation optimization methods can
be divided into two types. The methods of the first type optimize the system design by
performing full-cycle timing simulation according to predefined operation strategies. For
example, Kneiske et al. [10] proposed a new optimization control algorithm which included
five system control strategies for a thermo-electric storage system. Compared with the
traditional control algorithms, this algorithm has the advantage of being able to achieve
optimal control of the system in case of any inaccurate weather forecast and load forecast.
Wang et al. [11] established a combined cooling, heating, and power (CCHP) system which
integrated multiple energy sources including photovoltaic, solar thermal, and natural gas;
used the particle swarm optimization (PSO) algorithm to optimize equipment capacities
and operation under different operation strategies; and analyzed the impact of the opera-
tion strategy on the overall performance of the system. Nouri et al. [12] proposed a mode
in which wind power participated in the energy supply of a gas turbine CCHP system in
two ways (i.e., heating and power supply), and optimized the operation strategy of the
integrated wind power cogeneration system. Taking minimizing the annual total cost as
the optimization goal, Jayasekara et al. [13] used a two-stage PSO algorithm to optimize
the capacity of the equipment. Gao et al. [14] established a model of a distributed energy
system incorporating solar energy and fuel panels and analyzed the system operation strat-
egy using the example of a typical building in Fukuoka, Japan. Zhang et al. [15] proposed
a decentralized optimization strategy for distributed generators power allocation. The
authors improved the strategy through replacing information of load demand by predicted
power output. Meanwhile, the uncertainty and forecasting errors of renewable generation
were taken into account. Aimed at optimizing the design of a stand-alone micro-grid
(PV/wind/battery/diesel) system, Yoshida et al. [16] took into account the variation of the
weather parameters and used the least-cost perspective approach to optimize the configu-
ration of the proposed system. Berardi et al. [17] presented a smart hybrid energy system,
aiming towards reducing the amount of fuel needed and minimizing the transportation
logistics. The system combines the existing diesel generators with solar power generation,
energy storage, and waste heat recovery technologies. All components are controlled by an
energy management system that prioritizes output and switches between different power
generators, ensuring operation at optimum efficiencies.

The above studies mainly deal with the optimization of multi-energy complementary
systems under certain operation strategies. In the absence of operation strategy, some
researchers adopted the approach of combining the optimization of system design with
the optimization of system operation. For example, Luo et al. [18] proposed a bi-level
optimization methodology to optimize a combined desalination and standalone CCHP
system, which is assumed as installed on a remote South China Sea island. The traversing
method and branch-and-bound method are used for solving the mixed-integer linear
programming (MILP) optimization problem at the design and operation stages, respectively.
From the perspectives of energy saving, environment protection, and investment payback
period, Jing et al. [19] used the life cycle method to optimize the capacity design and
operation strategy of a distributed multi-energy system incorporating photovoltaic power
generation. Weeratunge et al. [20] proposed a mixed-integer linear programming (MILP)
method to optimize the configuration of solar-assisted ground source heat pump systems
which combined solar and geothermal energy. The results show that the integrated heat
storage system can improve the peak shaving effect, reduce the peak power demand of
the grid, and reduce the operating cost. Ren et al. [21] proposed a distributed energy
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system incorporating photovoltaic arrays, gas internal combustion engines, and fuel panels.
They analyzed the multi-goal operation optimization of the system using the example
of an ecological campus in Japan. In order to quantify the influence of the uncertainty
in the energy demand and supply on the optimization of a distributed energy supply
system, Zhou et al. [22] proposed a two-level stochastic programming model to convert the
influence of this uncertainty into a two-level stochastic programming problem, which can
be solved using a genetic algorithm (GA) in conjunction with the Monte Carlo method. They
applied this model to optimize the design of a distributed energy system which supplied
energy to a hotel. Mariaud et al. [23] proposed a comprehensive optimization model of the
equipment selection and operation for distributed energy systems in commercial buildings.
Using the example of a distribution center in London, UK, they used the steady-state MILP
method to optimize the equipment selection, capacity configuration, and operation of a
photovoltaic system with batteries as back-up. Ren et al. [24] applied the mathematical
programming theory to construct a configuration optimization model that can be used to
facilitate simultaneous optimization of the system structure, the number and capacities of
devices, and the operation strategy for distributed multi-energy complementary systems.
Luo et al. [25] proposed a bi–level optimization model to obtain optimal design, operation,
and subsidies for a standalone multi-generation energy system situated on a remote island;
the system incorporates solar energy, fossil energy, and storage. Herein, the social cost to
the society is set as the upper-level objective, and the private cost to the residents is set as
the lower-level objective. Production-based incentives of solar electrical energy and solar
thermal energy jointly impact the design and operation of the energy system to minimize
the social and private costs simultaneously.

Although joint optimization using the linearization method to approximate a non-
linear model can significantly improve the performance of the system, and it is the most
appropriate from the viewpoint of accuracy, on-line operation optimization problems
involving a large number of variables result in significantly increased requirements on
the optimization algorithms and calculation tools. As a result, design optimization under
predefined operation strategies is still a common practice. A compromise approach is to
use flexible operation strategies. In the studies on the system optimization under flexible
operation strategies, the operation strategies that follow the electric load (FEL) and the ther-
mal load (FTL) strategies are more commonly seen. For example, Liu et al. [26] established
a comprehensive evaluation index for a CCHP system combined with solar energy. The
system was set to operate in FTL and FEL operating modes. Mago et al. [27] used the life
cycle method to analyze the optimization of the FEL and FTL strategies of the distributed
energy systems in high-rise buildings. Jing et al. [28] proposed an optimized operation
strategy that responded to the changes in electricity–heating mixed load for improving
the performance of the CHP system. Liu et al. [29] optimized the running strategy of a
residential cogeneration system by introducing and discussing the effect of a hypothetical
CHP system for a detached house. Based on the seasonally electricity and thermal load
characteristics, several annual running strategies were established, considering the cogen-
eration equipment efficiency (electricity generation and thermal recover efficiencies). Then,
the effect of the running strategy was evaluated from the perspective of energy saving,
energy cost, and environmental effects. Considering the regular change trend of renewable
energy output and user energy demand during the simulation cycle, it is also common
to research on improving the overall performance of the system by switching operating
strategies under different conditions. For example, Qiu et al. [30] designed day-time and
night-time operation strategies for the distributed CCHP incorporating renewable energy.
Hamdullahpur et al. [31] analyzed and evaluated three operating modes (solar energy
direct heating mode, solar energy heating and storage mode, and solar energy heat storage
mode) of a new type of distributed CCHP system incorporating a parabolic trough solar
energy heat collector and an organic Rankine cycle system. The analysis results show that
the maximum overall efficiency of the CCHP system is 94%, 47%, and 42% when the system
operates in the above three modes, respectively. Moghadam et al. [32] studied the per-
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formance of three operation strategies of the micro CHP system (satisfying the minimum
annual power consumption, satisfying the maximum annual power consumption, and
maintaining constant power output) incorporating solar energy and dish Stirling engine
in five cities in Iran with different climatic conditions, and evaluated the performance
of each operation strategy in the context of energy, environment, and economy. Under
the condition of varying load and energy price, Facci et al. [33] used the dynamic pro-
gramming method to solve the daily optimal operating conditions of gas turbines, which
effectively reduced the operating cost of the system compared with the basic operating
modes of FTL and TEL. Zhao et al. [34] proposed a micro-grid optimization strategy that
considered demand response. The strategy took into account the uncertainty of distributed
renewable energy generation, power load, and daytime market prices. Liu et al. [35] pro-
posed a structural configuration of the CCHP system with hybrid chillers, consisting of
a combined electric and absorption chiller. A new operation strategy based on the ratio
of the variational electric cooling to cool load was investigated. In addition, a case study
was conducted to verify the feasibility of the proposed CCHP system structure and the
corresponding optimal operation strategy.

The comparison between the above energy system design optimization methods is
shown in Table 1. In real applications, the operation of most multi-energy complementary
systems is still based on relatively fixed operation strategies in which the control logic
remains unchanged during a long operation period, resulting in a large gap between the
actual system design and the optimal system design. Although the switching of operation
strategies can improve the operating accuracy of the system to a certain extent, there
is still a large scope for improvement in the switching mechanism. For economically
underdeveloped areas (e.g., the remote areas in Northwest China), the economics of the
energy system is of great importance to the local government and residents. Thus, the
reasonable and precise design is vital to the promotion and application of DSES, and the
gap between the actual system design and optimal design cannot be ignored. In order to
solve this problem, a joint optimization method for the design and operation of a DSES
based on dynamic operation strategies is proposed in this study. The choice of dynamic
operation strategies is based on the strong fluctuations of power output and complex energy
coupling in such energy systems. A simulation is conducted to verify the effectiveness
of the proposed method. This method can automatically adjust the operation strategy
parameters in real-time according to the supply-demand situation of the system, thereby
realizing the joint optimization of the design and operation of the system.

Table 1. Comparison between design optimization methods for hybrid energy systems.

Number Optimization Method Pros and Cons Literature

1 Design optimization under predefined
operation strategy

Most widely used in actual engineering due to
reliability and economy, but the operating

strategy is not optimized [36].
[12–16,26–29]

2 Design optimization under combined
operation strategies

Set a variety of conditions to optimize the design,
but the capacity allocation methods under other

uncertain conditions are lacking [37]
[11,17,30–35]

3 Design and operation joint optimization Most appropriate from the viewpoint of
accuracy, but need more computing time [38] [18–25]

2. System Overview
2.1. System Configurations

The DSES in this study can be either grid-connected or off-grid. The grid-connected
system consists of solar heat collectors, solar photovoltaic panels, air source heat pumps,
water tank, and batteries. The off-grid system consists of solar heat collectors, solar
photovoltaic panels, air source heat pumps, diesel generator, water tank (with electric
heater inside), and batteries. The solar photovoltaic panels and auxiliary power systems
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work together to meet the electricity demand; the solar collectors, air source heat pumps,
and electric heater meet the heating demand; and the water tank and batteries serve as
energy storage devices. The grid-connected system (Figure 1a) is connected to the power
grid. When the system’s power output is greater than the power demand, the surplus
power is sold to the grid; when the system’s power output is less than the power demand,
the gap is filled by the power grid. The off-grid system is separated from the power grid
(Figure 1b). When the system’s power output is greater than the power demand, the
surplus power is stored in the batteries; when the system’s power output is less than the
power demand, the gap is filled by the batteries and diesel generator.
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2.2. Operation Strategies

This study assumed that the system’s water supply temperature is 43 ◦C [39]. The
control methods of solar thermal system include constant temperature control, temperature
difference control, photoelectric control, timer control, etc. The most common are constant
temperature control and temperature difference control, in which temperature and temper-
ature difference are, respectively, used as driving signals to control the system valve ports
and circulating pumps. Compared with constant temperature control, which is usually
used in direct current systems, temperature difference control is more widely used in forced
circulation systems [40,41]. The proposed system in this paper assumed that the circulating
pump is a forced circulation system; thus, temperature difference control is adopted. The
on and off of the circulating pump are controlled by the temperature difference between
the outlet water temperature of the solar collector and the water temperature in the water
tank. This study set this control strategy: when the temperature difference is greater than 5
◦C, the solar circulating pump is turned on; when the temperature difference is less than
2 ◦C, the solar circulating pump will automatically shut down [42–44]. The air source
heat pump adopted fixed temperature control. When the water temperature of the water
tank is lower than the lower limit of 43 ◦C, the heat pump is turned on; when the water
temperature is higher than the upper limit of 53 ◦C, the heat pump is turned off. According
to the above operation strategy, there may exist surplus photovoltaic power, DetaP, after a
part of the power generated by the photovoltaic panels is used to meet the power demand,
Pload. In this study, DetaP will be allocated via different paths under grid-connected and
off-grid scenarios:

2.2.1. Grid-Connected Scenario

In the grid-connected scenario, DetaP can be distributed in two ways: The first is to
be sold to the power grid, and the second is to be stored in batteries. Figure 2 shows the
flowchart of the operation strategy of a grid-connected DSES. In the dynamic operation
strategy, γ was defined as the proportion of the surplus photovoltaic power, Pba, being
stored to the batteries in the total surplus photovoltaic power, DetaP, at a certain time. The
mathematical expression to calculate γ is shown as follows:

γ(t) =
Pba(t)

DetaP(t)
(1)

As the photovoltaic power output, user energy demand, and cost of electricity of the
system vary with time, dynamic allocation of surplus photovoltaic power can be achieved
by optimizing the parameter γ in real-time; thus, improving the economic performance
of the system. For comparison, this study chose two other operation strategies, namely
strategy A and strategy B. Affected by the characteristics of photovoltaic power generation,
photovoltaic output varies greatly and voltage control is difficult, which will cause a certain
degree of harmonic pollution to the grid. Under the premise of large-scale photovoltaic
grid-connected, the grid’s capacity to absorb large-scale photovoltaic power is seriously
insufficient. Considering the grid stability limit, the interaction between photovoltaics and
the grid should be lower than the upper limit to maintain grid stability [45]. In strategy A,
when the electricity sold to the grid exceeds the upper limit of system–grid interaction, the
remaining DetaP will be stored into the batteries. In strategy B, DetaP will be stored to the
batteries at first. When the batteries are fully charged, the remaining DetaP will be sold to
the grid. When the photovoltaic power output in the system is insufficient, and the SOC of
the batteries reaches the lower limit, the gap will be filled by the power purchased from the
grid. Since the interaction power between the system and the grid is much smaller than
the upper limit of the system–grid interaction, there is no power shortage in the system.
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2.2.2. Off-Grid Scenario

In the off-grid scenario, DetaP can be distributed in two ways (i.e., storage directly in
the batteries or conversion into heat energy before being stored in the water tank). When
there is surplus power in the DSES, the air source heat pump will convert the electric
energy into heat energy and store it into the water tank, if the water tank temperature Tst is
lower than 53 ◦C and the surplus power meets the rated power Php of the heat pump. If
the surplus power is less than the rated power, Php, of the heat pump, the electric heating
device will convert electric energy into heat energy and transfer it to the water tank for
storage. Here, γ was defined as the proportion of the surplus photovoltaic power Pp being
converted into heat energy which is stored in the water tank at a certain time in the total
surplus photovoltaic power DetaP. The mathematical expression is as follows:

γ(t) =
Pp(t)

DetaP(t)
(2)

This study chose the fixed-parameter strategies C and D to serve as comparison
control strategies. In strategy C, the surplus power will be stored in the batteries first.
When the batteries are fully charged, the surplus power will be disposed of in different
ways depending on the water tank temperature. If the Tst is higher than 53 ◦C, the surplus
photovoltaic power will be abandoned. If the Tst is lower than 53 ◦C, the surplus power
will be converted into heat by either heat pump or electric heater and stored in the water
tank. In strategy D, the surplus power is converted into heat by either a heat pump or
electric heater and stored in the water tank first. When the Tst is higher than 53 ◦C, the
surplus power will be stored in the batteries. When the batteries are fully charged, the
photovoltaic power will be abandoned. In this study, the Tst is not allowed to be higher
than 80 ◦C. The control flowcharts of the three operation strategies are shown in Figure 3.
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Figure 3. System operation strategy in the off-grid scenario.

3. System Equipment Model
3.1. Solar Collector

The energy balance equation representing the amount of effective heat collection of
the solar collector is as follows [46]:

QCo,h(t) = ACo[FR(τα)e Ih(t)− FRUL(TCi,h(t)− Ta,h(t))] (3)

QCo,h(t) = cfmJR(TCo,h(t)− TCi,h(t)) (4)

where QCo,h is the amount of effective heat collection of the solar collector, ACo is the solar
heat collection area, FR(τα)e is the product of the heat transfer factor of the solar heat collec-
tor and the effective projected absorption product (set to 0.7843), Ih is the solar irradiance,
FRUL is the total heat loss coefficient of the solar heat collector (set to 5.5024 W/(m2·◦C)),
TCi,h is the inlet temperature of the heat transfer medium, Ta,h is the ambient temperature of
the solar heat collector, TCo,h is the outlet temperature of the heat transfer medium, Cf is the
specific heat of the heat transfer medium, and mJR is the mass flow rate of solar collector.
(The solar collector used in this study is the P-Y/0.6-T/L/YH−1.86 reference flat plate
collector of Siji Muge.)

3.2. Water Tank

In this study, it was assumed that the water temperature in the water tank is uniformly
distributed. The energy balance equation is shown in Equation (5), where the heat loss of
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the water tank is determined by the tank’s loss coefficient and the heat storage temperature
difference [46,47]:

Tst(t + ∆t)− Tst(t) =
∆t

(ρVstc)

(
Qhx(t) + Qhp(t) + Qdjr(t)− QL(t)− QE(t)

)
(5)

QE(t)− UstVst(Tst(t)− Tb) = 0 (6)

where Tst is the water temperature of the water tank, Vst is the capacity of the water tank,
Qhx is the amount of effective heat exchange between the heat collection system and the
water tank, Qhp is the amount of heat supplied by the air source heat pump, QL is the heat
required by the building, QE is the heat loss of the water tank, Ust is the loss coefficient of
the water tank, and Tb is the ambient temperature of the water tank. In the study, ∆t is the
time step and set to 0.5 h.

3.3. Solar Photovoltaic Panels

The power output of a solar photovoltaic panel is [48]:

Ppv(t) =
PSTC · G(t) · [1 + k(T(t)− Tr )]

GSTC
(7)

T(t) =
Ta,h(t) + 30G(t)

1000
(8)

where Ppv is the power output of the photovoltaic module (kW), PSTC is the rated pho-
tovoltaic power under the standard test conditions, G is the solar irradiance, T is the
working temperature of the photovoltaic module, Tr is the ambient temperature under
the standard test conditions (set to 25 ◦C), and k is the temperature coefficient of power
(set to −0.47%/h) [47], GSTC is the solar irradiance under standard test conditions (set to
1 kW/m2).

3.4. Batteries

The SOC of the batteries is determined by the remaining battery power at the previous
moment and the charging and discharging power at the adjacent moment [49,50].

SOC(t + ∆t) = (1 − δ× ∆t)× SOC(t) + Pc ×
∆t × ηc

Ec
(9)

SOC(t + ∆t) = (1 − δ× ∆t)× SOC(t)− Pd ×
∆t

Ec × ηd
(10)

where SOC is the state of charge of the batteries, δ is the self-discharge rate of the batteries
(set to 0.01%/h), Pc is the charging power of the batteries, Pd is the discharge power of the
batteries, ηc and ηd are the charging and discharging efficiencies of the batteries (set to
0.9) [49], Ec is the rated capacity of the batteries, ∆t is the time step and equal to 0.5 h.

3.5. Air Source Heat Pump

The performance curve of a certain type of air source heat pump is fitted according to
its dynamic parameters [51]. The heating capacity of the air source heat pump is determined
by the ambient temperature and the power of the heat pump. The mathematical model is
as follows:

COP(t) = 4.593 × 10−4Tal(t)2 + 0.04489Tal(t) + 3.18 (11)

Qhp(t) = COP(t) · Php · β (12)

where COP is the coefficient of performance of the air source heat pump, Php is the input
power of the air source heat pump, β is the loss coefficient of frosting-defrosting [52].
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3.6. Diesel Generator

The fuel consumption of a diesel generator is determined by the generator’s rated
power and actual operating power, which can be estimated using the following formula [53]:

fc(t) = c · Pdie(t) + d · Prdie (13)

where fc is the fuel consumption of diesel generator, Prdie is the rated capacity of the diesel
generator, and Pdie is the actual output power of the diesel generator, c and d are the
coefficients of fuel consumption curve (c= 0.2461 L/(kWh)), d = 0.081451 L/(kWh)) [53].

3.7. Electric Heater

The relationship of electric heater’s input power and output heat power can be simply
described as the following formula [54]:

Qdir = m · Pdjr (14)

where Qdjr is output heat power of the electric heater, Pdjr is the actual input power of the
electric heater, m is the denotes the electric-thermal conversion efficiency of the electric
heater efficiency.

4. System Optimization Model
4.1. Objective Function

In the system optimization model, the optimization goal is minimizing the annualized
total cost (ATC) of the DSES, and its function is expressed as the sum of the capital
expenditure (CAPEX) cost and operating expenditure (OPEX) [55]:

min C = Cr + Co

∣∣∣∣ i · (1 + i)n

(1 + i)n−1

∣∣∣∣ (15)

where i is the real interest rate (set to 4.35%, China’s current real interest rate), and n is the
service life of the equipment (set to 20 years).

CAPEX is calculated as follows:

Co = Cco · Aco + Cst · Vst + Chp · Php + Crfj + Cpv · Ppv + Cba · Ec + Cdie · Prdie (16)

where Cco is the equipment cost per unit area of the collector; Cst is the equipment cost per
unit capacity of the water tank; Chp is the equipment cost per unit heating capacity of the
air source heat pump; Crfj is the cost of system piping accessories, water pumps, etc.; Cpv is
the equipment cost of photovoltaic panels per unit power; and Cdie is the equipment cost
of diesel generator per unit power.

OPEX includes the annual maintenance cost, annualized equipment replacement
cost, grid interaction cost, photovoltaic subsidies, fuel cost, and annual environmental
governance cost. The calculation formula is as follows:

Cr = Cw + Cc + Cg − Cb + C f + Ce (17)

where Cw is the system maintenance cost, Cc is the equipment replacement cost of the
system, Cg is the annual cost of interaction between the system and grid, Cb is the pho-
tovoltaic subsidy, Cf is the fuel cost of the diesel generator, and Ce is the environmental
governance cost.

The annual maintenance cost of the system includes the daily maintenance costs of
solar photovoltaic panels, batteries, power distribution equipment, and diesel generator.
The calculation formula is as follows:

Cw = Cyxpv

∫ τ

0
Ppv(t)dt + Cyxbw

∫ τ

0
Pbw(t)dt + CyxbaEC + Cyxdie

∫ τ

0
Pdie(t)dt (18)
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where Cyxpv is the maintenance cost coefficient of photovoltaic panels, Cyxbw is the daily
maintenance cost coefficient of power distribution equipment, Pbw is the interaction amount
between the system and the grid, Cyxba is the maintenance cost coefficient of the batteries,
and Cyxdie is the maintenance cost coefficient of the diesel generator. τ is the upper limit of
the annual operating time, the value is 8760.

The annual equipment replacement cost of the system is the average annual replace-
ment cost of the batteries [56]. The calculation formula is as follows:

Cc =
i

(1 + i)n − 1
· Cba · Prba · L (19)

where Prba is the rated power of the batteries, L is the number of replacements of the energy
storage device during the service life of the system (set to four times), and Cba is the battery
capacity cost coefficient.

In China, the power generated by solar panels is subsided by the government. The
formula to calculate the annual grid interaction cost are as follows:

Cg = Cdj ·
∫ τ

0
Pbw1(t)dt + Cst ·

∫ τ

0
Pbw2(t)dt (20)

Cb = Cdt ·
∫ τ

0
Ppv(t)dt (21)

where Cdj is the purchase cost per unit electricity, Pbw1 is the input power of the system
from the grid, Cts is the benchmark price of on-grid electricity that is generated by burning
desulfurized coal and sold to the grid, Pbw2 is the output power to the grid from the system,
and Cdt is the state subsidy per unit electricity generated by photovoltaic panels.

By introducing the terms of emission governance, the environmental polluting effects
of the carbon dioxide, sulfur dioxide, nitric oxide, and other gases emitted during the
operation of a diesel generator can be converted into economic costs [57], as shown in
Table 2. The corresponding formula is shown as follows:

Ce =
∫ τ

0

3

∑
j=1

ke
j · kp

j · Pdie(t)dt (22)

where kp represents the treatment cost coefficients of different pollutants, ke corresponds
to the discharge coefficients of different pollutants, and j indicates the pollutant type
(corresponding to CO2, SO2, and NO).

Table 2. Pollutant emissions and charges of diesel generators [57].

Species Emission Coefficient (g·kWh−1) Governance Cost Coefficient (¥·kg−1)

CO2 679 0.21
SO2 0.206 14.842
NO 9.89 62.946

The formula for calculating the annual fuel cost [57] incurred by the operation of a
diesel generator is shown as follows:

C f = C f ul ·
∫ τ

0
fc(t)dt (23)

where Cful is the fuel cost per unit electricity generated by diesel generator.

4.2. Optimization Variables

The system optimization model contained two types of optimization variables: design
optimization variables and the operation optimization variable. The design optimization
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variables included the solar heat collection area (Aco), rated input power of air source heat
pump (Php), water tank capacity (Vst), rated power of solar photovoltaic panels (PSTC),
rated capacity of batteries (Ec), and rate power of diesel generator (Prdie) in the off-grid
scenario. The operation optimization variable was the real-time distribution coefficient
(γ) of surplus photovoltaic power. The real-time dynamic optimization of this coefficient
enables real-time and reasonable distribution of surplus photovoltaic power of the system.

4.3. Constraints

The rated power of the air source heat pump and the capacity of the water tank should
be within a certain reasonable range. The interaction power between the system and the
grid should not exceed the upper limit of the interaction. The maximum available land area
should be considered when determining the parameter value ranges of the grid-connected
systems. The area limitation is not applicable to the off-grid systems because more land
can be used. The batteries have the constraint of maximum charge (discharge) power Pc.max
(Pd.max). In addition, the SOC of batteries should be subject to a certain constraint so as to
guarantee service life (in this study, the upper limit and lower limit were set to 0.9 and
0.1, respectively). The output power of a diesel generator should be less than their rated
powers. The capacities and operation constraints of related equipment are as follows:

0 ≤ Php ≤ QL.max
COP·β ; 0 ≤ Vst ≤ Vmax; 0 ≤ Pbw ≤ Pbw.max; 0 ≤ Aco ≤ Amax;
SOCmin ≤ SOC(t) ≤ SOCmax; 0 ≤ Pdie ≤ Prdie

(24)

At the initial moment, the water temperature of the water tank was 45 ◦C, the temper-
ature of the heat transfer medium inside the solar heat collector was 10 ◦C, and the battery
SOC was 0.5.

Tst(t = 1) = 45; SOC(t = 1)= 0.5; Tco,h(t = 1) = Tci,h(t = 1) = 10; (25)

4.4. Optimization Algorithm

The optimization algorithm in this paper uses the genetic algorithm (GA), which
is a random search algorithm that draws on the natural selection and natural genetic
mechanism of the biological world. It does not rely on gradient information and searches
for the optimal solution by simulating the natural evolution process [58]. First, a binary
code is used to randomly generate an initial population, which contains several individuals,
and each individual is represented by a set optimization variable (Aco, Php, Vst, PSTC, Ec,
Prdie, γ). The genetic optimization algorithm substitutes each individual into the fitness
function to calculate its fitness value, and judges whether it meets the optimization criteria.
If it meets the criteria, the best individual and the corresponding optimal solution are
output, and the optimization process is ended; otherwise, it performs according to the
fitness value selection that weeds out individuals with low adaptability, selects excellent
individuals with high adaptability, and obtains a new generation of individuals through
crossover and mutation operations. Then use the fitness function to calculate the fitness of
the new individual until it meets the optimization criterion [59]. The flow chart of genetic
algorithm is shown in Figure 4.
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5. Results and Discussion
5.1. Case Study

In this study, a DSES of a two-story residential building in Shaanxi Province was used
as a case study. As shown in Figure 5, the total building area is 178.2 m2, and the total
heating area of the building is 136.8 m2. The main building has a length of 10.8 m, a width
of 7.6 m, and a height of 7.4 m. The roof area is 82.1 m2. The building faces south. The
calculation temperature of indoor heating is 18 ◦C. The Cts is 0.35 ¥/kWh, the subsidy per
kWh of solar electricity is ¥ 0.08, and the maintenance cost is 0.009 ¥/kWh. The hourly
heating load during the heating season was calculated using the Energy Plus software, and
the daily electricity load of the residential building was obtained through a site survey. For
the convenience of calculation, three typical weeks in the heating season (15 November to
15 March of the following year), transition season (16 March to 20 June; 22 September to 14
November), and summer season (21 June to 21 September) are chosen. Figure 6 shows the
hourly heating and electrical load of the building in the three typical weeks.
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In this study, the GA was used to optimize the DSES through the MATLAB software. 
The optimization variables and their value ranges are shown in Table 3, and the equip-
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arranged directly south. The azimuth angle of photovoltaic and heat collector is 0°, and 
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In this study, the GA was used to optimize the DSES through the MATLAB software.
The optimization variables and their value ranges are shown in Table 3, and the equipment
costs are shown in Table 4. The photovoltaic and solar collectors in this study are arranged
directly south. The azimuth angle of photovoltaic and heat collector is 0◦, and the tilt angle
is 34.1◦.

Table 3. Ranges of optimization variables.

Optimization Variable Grid-Connected Scenario Off-Grid Scenario

Aco/m2 0~50 0~167
Vst/m3 0.5~14 0.5~14
Php/kW 0~15 0~15

PSTC/kW 0~12 0~20
Ec/(kW·h) 0~12 0~20
Prdie/kW / 0~10

γ 0~1 0~1

Table 4. Cost of each device.

System Components Unit Cost Maintenance Cost (¥·kWh−1)

Solar collector 800 ¥·m−2 /
Air source heat pump 5400 ¥·kW−1 /

Water tank 500 ¥·m−3 /
Batteries 2000 ¥·kWh−1 0.008

Diesel generators 3000 ¥·kW−1 0.088
Solar photovoltaic panels 5000 ¥·kW−1 0.0096

Water pump and other accessories 2000 ¥ /

5.2. Optimization Results in the Grid-Connected Scenario
5.2.1. System Equipment Capacities and Economic Analysis

When the system is connected to the grid, it is assumed that there are three time-based
electricity pricing schemes (see Table 5). Table 5 shows the results of optimal system
equipment capacities under different time-based pricing schemes and operation strategies.
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Table 5. Time-of-use rate.

Scenario Time Period Electricity Price/¥·(kWh)−1

1
7:00~11:00; 19:00~24:00 0.77

11:00~19:00 0.58
1:00~7:00 0.40

2
7:00~11:00; 19:00~24:00 0.87

11:00~19:00 0.58
1:00~7:00 0.30

3
7:00~11:00; 19:00~24:00 0.97

11:00~19:00 0.58
1:00~7:00 0.20

It can be seen from Table 6 that, under different operation strategies, the differences
between the system equipment capacities in scenario 1 and those in scenario 2 are not
significantly different. Compared with scenario 1 and scenario 2, the three strategies of
heat pump rated power in scenario 3 have slightly increased. Compared with the control
operation strategies, the implementation of the dynamic operation strategy in scenario 3
introduces the following differences: the system uses more solar energy to meet the heating
demand of the building, it needs larger solar heat collection area and water tank capacity.
In addition, the rated power of photovoltaic panels reaches the maximum value of the
allowable range in all scenarios, which means the system can generate as much revenue
from electricity sales as possible while meeting the electricity demand of the building and
the system equipment.

It can also be seen from Table 6 that the difference between peak and valley time-of-use
electricity prices has a significant impact on the configuration of the battery capacity in the
system. In scenarios 1 and 2, the battery capacity is zero under all operation strategies. In
scenario 3, the battery capacity is not zero under the dynamic operation strategy. This can
be attributed to the fact that the difference between peak and valley time-of-use electricity
prices is larger in scenario 3 than in scenarios 1 and 2. When the electricity price is at a valley,
the system purchases electricity from the grid, and the surplus energy is used to charge
the batteries; when the electricity price is at a peak, the batteries discharge if the power
supply in the system is insufficient, reducing the power purchase from the grid. When the
difference between peak and valley time-of-use electricity prices increases, the utilization
of batteries in the system also increases, which necessitates larger battery capacity.

Table 6. Optimal equipment capacity.

Scenario Capacity Dynamic Strategy Strategy A Strategy B

1

Aco/m2 44 43 41
Php/kW 2.5 2.7 2.8
Vst/m3 10.6 10.5 10.5

PSTC/kW 12.0 12.0 11.9
Ec/kWh 0 0 0

2

Aco/m2 42 44 41
Php/kW 2.6 2.7 2.8
Vst/m3 10.5 10.4 10.7

PSTC/kW 12.0 12.0 12.0
Ec/kWh 0 0 0

3

Aco/m2 43 38 37
Php/kW 2.9 3.1 3.0
Vst/m3 11.2 10.4 10.1

PSTC/kW 12.0 12.0 12.0
Ec/kWh 1.36 0 0
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Since the equipment capacities and operation strategy of the DSES in scenario 1 are
roughly consistent with those in scenario 2, this study mainly analyzes the different effects
of the three operation strategies on the system operation in scenario 3. Figure 7 shows the
results of ATC after system optimization in scenario 3. It can be seen that in scenario 3, in
which the difference between peak and valley time-of-use electricity prices is biggest, the
dynamic operation strategy achieves a cost saving of 5.61% compared with strategy A and
a saving of 3.94% compared with strategy B.
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capacity.  

Since the equipment capacities and operation strategy of the DSES in scenario 1 are 
roughly consistent with those in scenario 2, this study mainly analyzes the different effects 
of the three operation strategies on the system operation in scenario 3. Figure 7 shows the 
results of ATC after system optimization in scenario 3. It can be seen that in scenario 3, in 
which the difference between peak and valley time-of-use electricity prices is biggest, the 
dynamic operation strategy achieves a cost saving of 5.61% compared with strategy A and 
a saving of 3.94% compared with strategy B. 
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A detailed analysis was conducted on the optimal system operation in the heating
season, transition season, and summer season in scenario 3. Analysis results show that,
due to the battery discharge, the system’s power purchase under the dynamic operation
strategy is less than those under the comparison strategies. Compared with the comparison
strategy, due to the larger area of the collector and the smaller rated power of the heat
pump under the dynamic operation strategy, the system consumes less electricity and can
sell more electricity to the grid. Therefore, increase the economic benefits of the system
and improve the economic performance of the system. In addition, the depth of discharge
of the batteries under the dynamic operation strategy is smaller, which helps reduce the
loss of the batteries and prolong the service life of the batteries. In Figure 8, the quantity of
electricity is negative, which means the energy storage battery is discharged, and the system
purchases electricity from the grid. Ebba is the amount of remaining photovoltaic energy
allocated to the battery. Ebw is the amount of remaining photovoltaic energy allocated to
the grad.
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5.2.2. Sensitivity Analysis

The fact that the subsidy (Cdt) for photovoltaic electricity has been decreasing gradu-
ally in recent years has a greater impact on the economics of DSESs. Under the assumption
that other factors remain unchanged, this study used Cdt as a variable to conduct a single-
factor sensitivity analysis of the system. Since the equipment capacities and operation
strategy of DSES in scenario 1 are roughly consistent with those in scenario 2, under all
three operation strategies, this study conducted a sensitivity analysis based on scenario 3.
The analysis results, shown in Figure 9, indicate that when Cdt fluctuates in the range of
0~0.16 ¥/kWh, the ATC under the dynamic operation strategy has the largest variation
range, while the strategy A yields the smallest variation range. In terms of the impact of
Cdt on the ATC, the three operation strategies can be arranged in the descending order
as dynamic operation strategy, strategy B, and strategy A. Taking Cdt = 0.08 ¥/kWh as a
reference, the sensitivity analysis shows that when Cdt fluctuates 25% upwards (down-
wards), the ATC of the system fluctuates 7.5%, 6.7%, and 5.3% downwards (upwards)
under dynamic strategy, strategy B, and strategy A, respectively. When Cdt is less than
or equal to 0.04 ¥/kWh, the ATC yielded by the dynamic operation strategy is relatively
high. Under such circumstances, the most suitable operation strategy is strategy A rather
than the dynamic operation strategy. When Cdt is greater than 0.04 ¥/kWh, the dynamic
operation strategy yields an ATC much lower than that yielded by the other operation
strategies, which means better economic performance. Under such circumstances, the
dynamic operation strategy is the optimal strategy.
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5.3. Optimization Results in the Off-Grid Scenario
5.3.1. System Equipment Capacities and Economics

The goal of system design and operation optimization is minimizing the ATC regard-
less of whether the system is operating under the dynamic operation strategy, strategy C,
or strategy D. In terms of economic performance, dynamic operation strategy yields the
lowest ATC of ¥20,027, strategy D yields a slightly higher ATC of ¥20,246, and strategy C
yields the highest ATC of ¥21,824. The dynamic operation strategy achieves a cost saving
of 8.97% compared with strategy C and 1.10% compared with strategy D. Table 7 shows
that the OPEX of the system under the dynamic operation strategy is much lower than
those under the control strategies, indicating that the dynamic operation strategy delivers
better economic performance.
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Table 7. Optimized equipment capacities and system costs.

Equipment Capacity Dynamic Strategy Strategy C Strategy D

Aco/m2 81 76 82
Php/kW 1.8 2.5 1.9
Vst/m3 14 13 14

PSTC/kW 3.3 4.5 3.9
Ec/kWh 5 7.5 3.1
Prdie/kW 1.9 2.9 2.3
CAPEX/¥ 16,672 18,021 16,386
OPEX/¥ 3355 3803 3860
ATC/¥ 20,027 21,824 20,246

5.3.2. Analysis of Optimal System Operations

Since the system only needs to meet both the electricity and heating demand in the
heating season, this study chose to analyze the optimization results of the system operation
in the heating season. The water tank temperature (Tst), the distribution of the remaining
photovoltaic power (Ep indicates the power allocated to electric conversion equipment,
and Ebba is allocated to batteries), charging/discharging state of batteries (SOC) within
a week of operation (from 22 January to 28 January in heating season), and amount of
abandoned photovoltaic power (Edump) are shown in Figure 10.
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Figure 10. System operation optimization results under different operating strategies. (a) Strategy C; (b) strategy D; (c) 
dynamic operation strategy. 

In this case study, the variation patterns of the water temperature of the water tank 
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matter which operation strategy is implemented. During the one week operation period, 
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under the dynamic operation strategy is between the two. In the summer operation, the 
amount of photovoltaic power discarded by the system under strategy C is the largest, 
and the amount of photovoltaic power discarded under the dynamic operation strategy 
is the smallest. In the transition season, the smallest amount of photovoltaic power dis-
carded is under the dynamic operation strategy, and strategy D has the largest amount of 
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heating season, 13 weeks in the summer season, and 22 weeks in the transition season in 
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operation strategy.

Strategy C dictates that the surplus photovoltaic power is to be stored in the batteries
at first and then be converted to heat energy and stored in the water tank. The storage
of surplus photovoltaic power cannot proceed when the SOC of the batteries reaches
the upper limit, and the water temperature of the water tank exceeds 53 ◦C, resulting in
a large amount of abandoned photovoltaic power (see Figure 10a). Strategy D dictates
that the surplus photovoltaic power is to be converted into heat energy and stored in
the water tank until its temperature reaches 53 ◦C and then be stored in the batteries.
After the system is optimized under strategy D, the surplus photovoltaic power is to be
converted to heat energy and stored in water tank at first and then be stored in the batteries.
Some photovoltaic power may be abandoned after the battery is fully charged. The
dynamic operation strategy enables a reasonable distribution of the surplus photovoltaic
power. When the temperature of the water tank is higher than 53 ◦C, and the SOC of the
batteries reaches the upper limit, some photovoltaic power will be abandoned after system
optimization, but the amount of abandoned photovoltaic power is significantly lower than
that under the fixed strategies C and D (see Figure 10c).
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In this case study, the variation patterns of the water temperature of the water tank
under the three strategies are consistent. Under the limitations of the SOC of the batteries
and the temperature of the water tank, some photovoltaic power will be abandoned no
matter which operation strategy is implemented. During the one week operation period,
the amounts of abandoned photovoltaic power in heating season, summer season, and
transition season are shown in Table 8. During the heating season operation, strategy D
has the largest amount of abandoned photovoltaic power and strategy C has the smallest
amount of discarded photovoltaic power, the amount of abandoned photovoltaic power
under the dynamic operation strategy is between the two. In the summer operation, the
amount of photovoltaic power discarded by the system under strategy C is the largest,
and the amount of photovoltaic power discarded under the dynamic operation strategy
is the smallest. In the transition season, the smallest amount of photovoltaic power dis-
carded is under the dynamic operation strategy, and strategy D has the largest amount of
photovoltaic power discarded. In this study, it is assumed that there are 17 weeks in the
heating season, 13 weeks in the summer season, and 22 weeks in the transition season in
the whole year. Therefore, the three operation strategies can be arranged in the following
descending order in terms of the annual amount of abandoned photovoltaic power (i.e.,
strategy D, strategy C, and dynamic operation strategy). The dynamic operation strategy
achieves a reduction of 12.4% in the amount of abandoned photovoltaic power compared
with strategy C, and a reduction of 45.4% compared with strategy D.

Table 8. Abandoned photovoltaic energy during typical weeks.

Abandoned Photovoltaic Energy/kWh Dynamic Strategy Strategy C Strategy D

Heating season 35.02 25.33 44.10
Summer season 29.13 42.53 34.75

Transition season 24.92 32.89 45.98

6. Conclusions

In this study, this study constructed an optimization model of the DSES and developed
a dynamic operation strategy, based on surplus photovoltaic power distribution, to facilitate
joint optimization of the system design and operation. The proposed operation strategy
was applied to the energy system of a typical two-story residential building in Shaanxi
Province and was compared with comparison operation strategies with fixed operating
parameters. The main conclusions are as follows:

(1) The difference between peak and valley time-of-use electricity prices has a great
impact on the selection of the optimal operation strategy for the grid-connected system.
When the difference between peak and valley time-of-use electricity prices is large, the
economic performance of the system under the dynamic operation strategy is significantly
improved: In scenario 3, in which the difference between peak and valley time-of-use
electricity prices is 0.75 ¥/kWh, the dynamic operation strategy achieves a saving of 5.61%
in ATC compared with strategy A and a saving of 3.94% compared with strategy B.

(2) The difference between peak and valley time-of-use electricity prices has a great
impact on the battery capacity configuration of the grid-connected system under the
dynamic operation strategy. When the difference between peak and valley time-of-use
electricity prices is large, as in scenario 3, batteries should be included in the system optimal
capacity configuration so as to achieve the best economic performance of the system.

(3) In terms of the influence of the subsidy on the on-grid system cost under different
operation strategies, the ATC of the system decreases with the increase of Cdt. Taking
Cdt = 0.08 ¥/kWh as a reference, the sensitivity analysis shows that when Cdt fluctuates 25%
upwards (downwards), the ATC of the system fluctuates 7.5%, 6.7%, and 5.3% downwards
(upwards) under dynamic strategy, strategy B, and strategy A, respectively. The three
operation strategies of the grid-connected system can be arranged in descending order as
dynamic operation strategy, strategy B, and strategy A. When Cdt ≤ 0.04 ¥/kWh, strategy A
is the most suitable for the system; when Cdt > 0.04 ¥/kWh, the dynamic operation strategy
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yields an ATC much lower than those yielded by the control operation strategies, which
means it is the best operation strategy.

(4) In terms of the economic performance of the off-grid system, the annual net cost of
the three operating strategies, in increasing order, are dynamic operating strategy, strategy
B, and strategy A. Compared with strategy A and strategy B, the ATC under the dynamic
operating strategy saves 8.97% and 1.10%, respectively.

(5) In terms of the amount of photovoltaic power abandoned in the off-grid scenario,
the three operation strategies can be arranged in descending order as strategy D, strategy
C, and dynamic operation strategy. The dynamic operation strategy achieves a reduction
of 12.4% in the amount of photovoltaic power abandoned compared with strategy C, and a
reduction of 45.4% compared with strategy D.
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Nomenclature
Abbreviations
ATC annualized total cost CAPEX capital expenditure cost
CCHP combined cooling, heating, and power DES distributed energy system
DSES distributed solar energy system FTL follow the thermal load
FEL follow the electric load GA genetic algorithm
MILP mixed-integer linear programming OPEX operating expenditure
PSO particle swarm optimization SOC state of charge
Parameters
Aco solar collector area, m2 COP performance coefficient of air source heat pump
Cb photovoltaic subsidy, ¥ Cba battery initial cost, ¥/kWh
Cc battery replacement cost, ¥ Cco unit cost of collector equipment, ¥/m2

Cdj unit electricity purchase cost, ¥/kWh Cdt photovoltaic power subsidy, ¥/kWh
Cdie diesel generator initial cost, ¥/kW Ce environmental management fees, ¥
Cf cost of diesel generator fuel, ¥ Cful annual fuel cost diesel generator, ¥/kWh

Cg
annualized interaction cost between the system
and the grid, ¥

Chp unit cost of air source heat pump, ¥/kW

Cpv solar photovoltaic cell initial cost, ¥/kW Cst unit cost of heat storage tank, ¥/m3

Cw system operation and maintenance costs, ¥ Cyxbw
annual maintenance costs of distribution
equipment, ¥/kW

Cyxdie annual maintenance costs of diesel generator, ¥/kWh Cyxba annual maintenance costs of battery, ¥/kWh
Cyxpv annual maintenance costs of photovoltaic cell, ¥/kW Ec rated capacity of energy storage battery, kWh
FRUL total heat loss coefficient of collector, W/(m2·◦C) fc the fuel consumption of diesel generator, L
GSTC light intensity under standard test conditions, kW/m2 G illumination intensity, kW/m2

i real interest rate Ih solar radiation intensity, W/m2

j pollutant type k temperature coefficient of power
kp the treatment cost coefficients of different pollutants ke discharge coefficients of different pollutants
mJR heat collection flow, kg/m3 n lifetime of system, years

Pc(d)
charging and discharging power of energy storage
battery, kW

Pbw
power interaction between the system
and the grid, kW

Pdump dumped electricity, kW Pdie power output of the diesel generator, kW
Ppv photovoltaic power output, kW Php input power of air source heat pump, kW

PSTC
rated photovoltaic power under standard test
conditions, kW

Prba rated power of battery, kW
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QE heat loss in the heat storage tank, W QCo,h heat effectively collected by solar collectors, kW

Qhp output heat power of air source heat pump, kW Qhx
effective heat exchange between the collecting
system and the heat storage, kW

QL heating load of the building, W ∆t time step
T photovoltaic module operating temperature, ◦C Ta,h environment temperature, ◦C
TCi,h inlet temperature of collector working medium, ◦C Tb ambient temperature of the heat storage tank, ◦C
Tr ambient temperature under standard test conditions, ◦C TCo,h outlet temperature of collector working medium, ◦C
Tst water temperature of the regenerator tank, ◦C Ust loss coefficient of heat storage tank, W/(◦C·m3)

Vst volume of heat storage tank, m3 ηc(d)
charging and discharging efficiency of energy
storage battery

δ self-discharge rate of energy storage battery, %
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