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Abstract: Due to the rapid increase in electric vehicles (EVs) globally, new technologies have emerged
in recent years to meet the excess demand imposed on the power systems by EV charging. Among
these technologies, a mobile energy storage system (MESS), which is a transportable storage system
that provides various utility services, was used in this study to support several charging stations,
in addition to supplying power to the grid during overload and on-peak hours. Thus, this paper
proposes a new day-ahead optimal operation of a single MESS unit that serves several charging
stations that share the same geographical area. The operational problem is formulated as a mixed-
integer non-linear programming (MINLP), where the objective is to minimize the total operating cost
of the parking lots (PLs). Two different case studies are simulated to highlight the effectiveness of the
proposed system compared to the current approach.

Keywords: battery energy storage; electric vehicles; mobile energy storage unit; optimization;
parking lots

1. Introduction

The distribution grid faces various challenges and obstacles due to the increase in
the number of distributed generation (DG) units, such as wind and solar, in addition to
the failure to meet growing demand for electric power, especially in urban areas. Future
power grids in urban areas will focus on integrating energy storage systems (ESSs) to meet
the increasing demand without compromising its CO2 emission reduction advantage [1].
In particular, due to falls in the price of the lithium-ion batteries, the most common type
of batteries used in ESS [2], it is more attractive for utilities to use such technologies in
their systems. The need for ESS units is clearly evident at locations that rely on renewable
energy sources (RESs) due to their intermittent nature. The ubiquitous nature of electric
vehicles (EVs) globally places stress on distribution systems, which might result in a failure
to supply the required power in some cases [3,4]. This scenario affects the stability and
reliability of the system [5]. The mobile energy storage system (MESS) has been the focus
of numerous studies as a solution that supplies power to the grid during on-peak periods,
ensuring that the required power is available at each time interval. This concept is known
as vehicle-to-grid (V2G).

ESS units have been investigated to maximize their benefits; however, they have been
used as a stationary solution either to coordinate EV charging or to be used with DGs
to store power, especially in tandem with intermittent wind or solar to provide a more
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predictable power supply. EV charging coordination using optimal pricing algorithms
is presented in [6–8]. Contemporary researchers have presented various approaches to
integrating these technologies, such as the use of EVs as a bidirectional power source to
supply power at peak hours, as discussed in [9,10]. A mobile energy generation and storage
system (MEGSS) is proposed in [11], and is able serve several industrial customers using an
optimal dispatch approach. The aim is to maximize profit by selecting the best customers
to be served. An optimization algorithm that solves for the optimal size and location of an
MESS to be used in a distribution network is proposed in [12], which takes load variation
and market price fluctuations into account. The aim is to find the best location to connect
the MESS to ensure minimum losses. EV mobility is used to balance the demand in [13],
taking advantage of the fact that EVs travel to multiple destinations; however, there is no
guarantee that EV owners are willing to participate. A study on the control strategy of
the MESS for overload elimination is presented in [14]. The authors deployed an MESS
to eliminate the seasonal short-term overload of distribution transformers in rural areas.
In [15], an MESS is designed and utilized in Iran to act as a mobile generation unit. It can
store energy from the grid and return the energy when required. Reducing operational
costs and enhancing power grid resilience using an MESS is presented in [16]. The MESS is
used to avoid the expected load shedding caused by disasters, i.e., it is used when extra
backup capacity is necessary.

The ability of the MESS to move between different locations and supply multiple
loads at different times helps to reduce the power drawn from the grid. Furthermore, it
can be used in serving EV charging stations due to the uncontrolled peak demand period.
EVs cannot be easily controlled because customers can require power at different times
with different daily profiles. MESSs can be used to serve multiple EV charging stations,
especially if these PLs share the same geographical area and have short peak demand
periods. This paper proposes a scheduling approach of an MESS to help multiple EV
charging stations meet their daily power requirements, address the extra demand, and
reduce the operational costs. The MESS is used in this work to reduce demand peak charges
because it serves the PLs at the peak time to help to meet the demand. It also provides a fast
and reliable backup power source for the integrated PLs during unexpected grid outages.

The remainder of the paper is organized as follows: Section 2 presents the proposed
approach. Section 3 introduces the problem formulation and the proposed MESS model.
Different case studies and simulations are represented in Section 4. Finally, the conclusions
are drawn in Section 5.

2. Proposed Approach
2.1. Problem Statement

The purpose of this paper is to model a mobile energy storage system shared by
multiple EV charging stations that are located in the same geographical area, as shown
in Figure 1. These PLs have different peak times, which justifies the application of an
MESS to defer a network upgrade and meet the PL demand. Another solution that
provides grid services similar to that of the MESS is aggregated EVs, which does not
require any initial investment; however, the time availability of the aggregated EVs in PLs
is uncontrollable [17], which raises questions about the reliability of the model. Moreover,
not all EV owners are willing to participate in such a process. In addition, a large number
of EVs are required in order to supply the same quantity of power as a single MESS.

2.2. Assumptions

The following assumptions were considered when modeling and designing the system:

• Customers’ requirements are received day-ahead.
• Visiting order of the charging station is known based on the forecasted load profile.
• The time segment is hourly and changes within the hour are averaged.
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3. Problem Formulation

To model the problem, the time horizon is defined as 24 time slots per day, for which
each slot has a span of one hour and is represented as a set t = {1, 2, 3 . . . , 24}. The
objective function is defined in Equation (1), which aims to minimize the total drained
power by the PLs to charge the arrival EVs, as follows:

min ∑
i

(
∑

t

(
Cgrid

t PEV−Total
i,t ∆T

))
+ CDEG (1)

where Cgrid
t is the grid cost that varies at each time interval and the total power consumed

by PL at each bus, and each time interval is represented by PEV−Total
i,t . i is the number of

the bus where PL is loaded. CDEG is the degredation cost.

3.1. Power Flow Constraints

Equations (2) and (3) represent the well-known nonlinear power flow equations, in
which PEV−Total

i,t is added as a load of the specified buses, as follows:

PG
i,t − PL

i,t

Vi,t
= ∑

j
Vj,t
(
Gi,j cos δi,j + Bi,j sin δi

)
, ∀i, t (2)

QG
i,t −QL

i,t

Vi,t
= ∑

j
Vj,t
(
Gi,j cos δi,j + Bi,j sin δi

)
, ∀i, t (3)

where i and j denote bus indexes; PL
i,t and QL

i,t represent the real and reactive load powers,
respectively; PG

i,t and QG
i,t are the real and reactive generated power, respectively; Gi,j

and Bi,j represent conductance and susceptance between buses i and j; and Vi,t and δi
represent the voltage and angle level, respectively.

The voltage levels must be maintained within the acceptable limits as expressed in
Equation (4). In addition, the thermal line limits impose an upper limit on the line current
magnitude as in Equation (5), as follows:

Vmin ≤ Vi,t ≤ Vmax ∀ i, t (4)

Ii,j,t ≤ Imax
i,j (5)
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where Vmin and Vmax are the minimum and maximum permissible voltage levels in p.u.,
respectively; Imax

i,j and Ii,j,t is the maximum allowable current and the actual current at
time t through the line between buses i and j, respectively.

3.2. EVs Charging Constraints

The EV charging process is modeled using Equation (6) for each PL. The power
delivered to each EV at each time slot depends on the initial availability of the car, which
is indicated by Logicn,t, i.e., if Logicn,t = 1, then the car is available in the PL at time t as
illustrated in Equation (7). Equation (8) ensures that every EV receives the pre-required
demand, and Equation (9) computes the total demand of each charging station, as follows:

PEV
n,t ≤ Logicn,t × PMAX

CH , ∀ n, t (6)

Logicn,t =

{
1 , Arrival ≤ t ≤ Departure

0 , otherwise.
(7)

EEV−req
n = ∑

t
PEV

n,t , ∀ n (8)

PEV−Total
i,t =

(
∑
n

PEV
n,t

)
− P DCH−T

i,t , ∀ i ∈ Iev, t (9)

where PMAX
CH is the maximum available charging rate and n is the total number of arrival

cars in each PL. PEV
n,t is the total power delivered to each car n at each time slot t. EEV−req

n

denotes the demand for each EV. PEV−Total
i,t denotes the total consumed power in each PL.

The state of charge (SOC) of each EV is updated with the charging energy as in
Equations (10) and (11):

SOCn,t = SOCn,t−1 + ∆SOCn,t (10)

∆SOCn,t =
PEV

n,t × ∆T
EBAT

n
(11)

where SOCn,t is the SOC at time t for each EV; ∆SOCn,t the change in the SOC due to
charging; ∆T is the time segments in hours; EBAT

n is the battery capacity in kWh.

3.3. Mobile Storage Modeling

The MESS will supply power only if it is available at the PL; it should visit each
location only once. A binary variable is introduced to represent the location of the MESS
at each time slot; xm,t as shown in Equation (12), where m = {1, 2, . . . , Nm} and Nm is the
total number of charging stations. Tt is another binary variable representing the traveling
period. If it is equal to 1, then the MESS is moving from one spot to another; otherwise, it
should be zero. The MESS should be available at a PL or traveling between PLs at each
time segment.

xm,t =

{
1 : i f EV is availabe at PLm at time t

0 , otherwise.
(12)

Equation (13) ensures that the MESS will be available at one location at a time and
Equation (14) signifies that the MESS should visit all the PLs during the day.

∑
m

xm,t + Tt = 1, ∀ t (13)

∑
t

xm,t + Tt ≥ 1, ∀ m (14)

A new binary variable ym,t is introduced to capture the change in the state of xm,t.
As illustrated in Equation (15), the variable y computes the change of the present state
of variable x from the previous one. By allowing only two changes for each PL as pre-
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sented in Equation (16), we ensure only two state changes take place and, as a result,
only one rising edge and one falling edge appear in the model as illustrated in Figure 2.
Equations (15) and (16) ensure that variable xm,t has a rectangular pulse; however, the
width of the rectangle (time spent at each PL) is to be optimized based on each PL demand.

ym,t = (xm,t − xm,t−1)
2, ∀ m, t (15)

∑
t

ym,t = 2 , ∀ m (16)
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After the departure of the first PL (first falling edge), the MESS should travel to the
next station. A gap of the required traveling time between the falling edge of the first PL
and the rising edge of the next PL should be considered to present a real logical scenario.
Two binary variables called fm,t and rm,t are proposed to denote the timing of the fall and
rise edges of each PL.

Equation (17) ensures that fm,t = 1 only at the falling edge of xm,t. The term (xm,t − xm,t−1)
has three different possibilities, which are [−1, 0, and 1]. Constraint (17) guarantees that fm,t = 1
if the value of (xm,t − xm,t−1) is [−1], which is the falling edge. Equation (18) ensures that
fm,t should have a value of 1 at least once, which is at the falling edge. At this stage, the
falling edge timing is captured in fm,t.

− 1× fm,t = fm,t × (xm,t − xm,t−1) , ∀ m, t (17)

∑
t

fm,t = 1 , ∀ m (18)

To force the rise of the second PL (being available at the second station), the rising
edge should take place after the falling edge of the previous station, considering the traffic,
transportation time, and connecting/disconnecting time. This time is represented in the
formulation as traveling time (TT). Equations (19) and (20) ensure that fm,t and the next
rm,t are separated by a time interval equal to TT, as illustrated in Figure 2. At this stage,
rm,t = 1 after the previous falling edge timing plus the TT. The next step is to force the
rising edge to take place at this captured time.

rm+1,t = fm,t−TT , ∀ m where t > TT (19)

∑
t

rm+1, t = 0 , ∀ m where t < TT (20)
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The truck is considered to be available at the next station by forcing the rising edge
to take place at the specified t in rm,t. This can be performed using Equation (21), which
defines the rising time. Equation (22) ensures that only one rising edge can take place.

rm+1,t = rm+1,t × (xm+1,t − xm+1,t−1) , ∀ m, t (21)

∑
t

rm+1,t = 1 , ∀ m (22)

The MESS is considered to be a battery-based truck; Equations (23) and (24) represent
the state-of-charge of the battery inside the truck, as follows:

SOCT
t = SOCT

t−1 + ∆SOCT
t (23)

∆SOCT
t =

(
PCH−T

t −∑i P DCH−T
i,t − PTT

t

)
∆T

EMESS (24)

where SOCT
t is the SOC of the MESS battery at time t; ∆SOCT

t is the change in the SOC
due to charging, discharging, and transportation; PCH−T and PDCH−T are the charging
and discharging rates at each time segment, respectively; PTT

t is the power consumed for
traveling between locations; EMESS is the battery capacity in kWh.

The MESS is owned by multiple PLs, which contribute different percentages to the
capital cost of the MESS. This percentage can vary according to each PL demand. According
to this contribution, each PL should receive an amount of energy equivalent to its share,
which is maintained using Equations (25) and (26), as follows:

∑
t

P DCH−T
i,t ∆T ≤ γi ∑

i

(
∑

t
P DCH−T

i,t ∆T

)
(25)

∑
i

γi = 1 (26)

where γi is the percentage share of each PL i. The MESS’s battery degradation cost is
calculated by dividing the total cost of the battery pack by the energy throughput, which is
the total amount of energy a battery can be expected to store and deliver over its lifetime [18]
using Equations (27) and (28), as follows:

CDEG = CDEG
kWh ∑

i

(
∑

t
P DCH−T

i,t ∆T

)
(27)

CDEG
kWh =

CBAT
tot

EBAT
TP

+ CBAT
O&M (28)

where CDEG
kWh is the degradation cost in $/kWh; CBAT

tot is the total cost of the battery pack; ET
is the energy throughput in kWh; CBAT

O&M is the operation and maintenance (O&M) variable
cost in $/kWh.

The total cost and energy throughput are calculated as in Equations (29) and (30),
respectively, as follows:

CBAT
tot = CBAT

kWh × EBAT
nom + CBAT

kW × PMAX
CH − CBAT

EoL(PV) (29)

EBAT
TP = EBAT

nom × DoD× ηround × λ (30)

where CBAT
kWh is the capital cost of the energy capacity in $/kWh; EBAT

nom is the nominal energy
in kWh; CBAT

kW is the battery system cost per kW including the power conversion system in
$/kW; CBAT

EoL(PV) is the present value of the selling price at the end of the project lifetime;
DoD is the depth of discharge; ηround is the round trip efficiency; λ is the cycle life in cycles.
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The present value of the second-life battery cost, which is the selling price of the
battery pack at the end of the cycle life, is calculated in Equation (31), as follows:

CBAT
EoL(PV) =

CBAT
EoL × NE
(1 + d)n (31)

where CBAT
EoL is the cost of the battery at the end of the life cycles in $/kWh; d is the discount

rate; n is lifetime in years.

3.4. Decision Variables Constraints

All decision variable constraints are mentioned in Equations (32)–(34), where MDOD
is the maximum depth of discharge for each battery.

PEV
n,t , PEV−Total

i,t , P DCH−T
i,t , PTT

t ≥ 0 , ∀ n, i, t (32)

(1−MDOD) ≤ SOCn,t, SOCT
t ≤ 1 (33)

xm,t, ym,t, fm,t , rm,t ∈ {0, 1}, ∀ m, t (34)

The previously mentioned set of constraints can be generalized to model any number
of charging stations while taking the computational time and complexity of the model
into consideration.

4. Case Studies

The case study is modeled as a mixed-integer-nonlinear programming (MINLP) prob-
lem to highlight its effectiveness and the possible contribution of the system. Simulation
was conducted on the known IEEE-38 bus system, which can be seen in Figure 3. The
system contains 38 buses represented as a set i = {1, 2, 3, . . . , 38}. Each EV is assumed to
visit the PL once per day and the required energy for each car is provided day-ahead. The
maximum battery capacity is set to be 40 kWh for simplicity, but this might be different for
each EV. Each EV may require less than or up to this value. The problem was solved using
a deterministic approach under the General Algebraic Modeling Software (GAMS) envi-
ronment(Version 30.3, City Frechen, Country Germany), which is a powerful platform for
power system optimization. For the proposed model, the KNITRO solver was used, which
includes several algorithms for dealing with continuous problems, such as interior-point
and active-set algorithms. The solver uses branch and bound techniques for problems with
discrete variables [19].

Energies 2021, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. The 38-bus power distribution system under study. 

Three different PLs were examined in the study with the specification illustrated in 
Table 1. The first PL is supplied from bus 9, whereas the second and third PLs are loaded 
on buses 18 and 36, respectively. The TT and the traveling energy consumption, which is 
assumed to be 1 kWh/km, between each PL is calculated offline based on the distance 
between the buses and average truck speed. Figure 4 represents the variant grid price over 
the day. The capital cost of the MESS is shared among the three PLs with different per-
centages of each PL according to its requirements and demand, which is assumed to be 
equal in this case study. Each PL can receive up to 33% of the available energy. The cost-
sharing concept highlights the efficiency of the MESS compared to the multiple stationary 
ESS to serve each PL separately, because they need to optimally decide for each ESS size 
considering both capital and operational costs. Because the capital costs are shared (truck 
cost, battery packs’ costs, driver wage, and annual maintenance costs), the discharged 
power at each PL is limited according to its share of the capital cost. The economic analysis 
of the aforementioned costs is part of the long-term research, and is outside the scope of 
this work. 

 
Figure 4. Grid price per hour for one day. 

Table 1. Model parameters. 

PLs Specifications  Value 
EVs battery capacity 40 kWh 

Figure 3. The 38-bus power distribution system under study.



Energies 2021, 14, 2969 8 of 13

Three different PLs were examined in the study with the specification illustrated in
Table 1. The first PL is supplied from bus 9, whereas the second and third PLs are loaded
on buses 18 and 36, respectively. The TT and the traveling energy consumption, which
is assumed to be 1 kWh/km, between each PL is calculated offline based on the distance
between the buses and average truck speed. Figure 4 represents the variant grid price
over the day. The capital cost of the MESS is shared among the three PLs with different
percentages of each PL according to its requirements and demand, which is assumed to be
equal in this case study. Each PL can receive up to 33% of the available energy. The cost-
sharing concept highlights the efficiency of the MESS compared to the multiple stationary
ESS to serve each PL separately, because they need to optimally decide for each ESS size
considering both capital and operational costs. Because the capital costs are shared (truck
cost, battery packs’ costs, driver wage, and annual maintenance costs), the discharged
power at each PL is limited according to its share of the capital cost. The economic analysis
of the aforementioned costs is part of the long-term research, and is outside the scope of
this work.

Table 1. Model parameters.

PLs Specifications Value

EVs battery capacity 40 kWh

Maximum charging rate 9.6 kW

Maximum depth of discharge (MDOD) 80%

Chargers Available in PL1 121

Chargers Available in PL2 144

Chargers Available in PL3 168

TT between PL1 and PL2 1 h

TT between PL2 and PL3 2 h

TT between PL1 and PL3 1 h
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In this work, two cases were investigated. CASE-1 represents the base case with no
MESS unit integrated into the system. CASE-2 represents the proposed approach with
MESS dispatching. The EV arrival profiles considered in the study are taken from real park-
ing lots data based in Toronto, Canada [20]; however, many forecasting methods can use
historical data to predict the EV arrivals over a period of time, such as the long short-term
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memory (LSTM) neural network discussed in [21]. This uses a recurrent neural network to
forecast time series. The application of such methods considers the EV arrival uncertainties
while optimizing the size and location of the MESS for long-term studies, which is outside
the scope of this research. In the following subsections, comparisons between the power
demand and the costs associated with each PL of each case are presented.

4.1. Case Study-1

Case Study 1 represents the EVs’ demand from each PL without the integration of
the MESS. Charging is uncontrolled and once the car is available at the station it starts
charging (i.e., first-come-first-served basis).

As shown in Figure 5, the total power demand of each PL is presented, noting that
different peaks at different times take place in this scenario. PL1 reports a peak load of
1.03 MW at 4:00 AM, PL2 has a peak load of 0.96 at 5:00 PM, and PL3 has 0.97 MW at
10:00 AM. The results exceed the historical peak by 0.13, 0.11, and 0.17 MW for PL1, PL2,
and PL3, respectively. This will reflect higher monthly demand charges as discussed in the
next subsection.
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4.2. Case Study-2

The MESS is dispatched to serve the associated PLs. It is expected to visit PL1, followed
by PL3 and then, finally, PL2, according to the peak times as per Figure 5.

Figure 6 shows the availability of the truck at each PL, in addition to the traveling
time, which is mentioned between each PL in Table 1, i.e., one means MESS is available at a
PL. The expected visiting order takes place, which proves the functionality of the proposed
model. The MESS is available at PL1 from 11:00 AM until 8:00 AM, then travels to PL3
which takes 2 h, and stays at PL3 until 1:00 PM. Finally, it arrives at PL2 at 2:00 PM and
stays until 11:00 PM.

The power drained from the system by each charging station after the visit of the
MESS is presented in Figure 7, which is, overall, less than the power consumed in the
first case study. Each PL has successfully maintained the historical peak, which represents
significant monthly savings. The discharging rate and time at each PL are illustrated in
Figure 8; this indicates the decision to discharge at the maximum discharging rate because
the demand is high and there is available energy in the MESS’s battery, i.e., taking the
maximum depth-of-charge into consideration.
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Finally, Figure 9 represents the state-of-charge (SOC) of the battery, noting that at the
end of the day, 20% of the battery is maintained, which achieves the MDOD limit. The
Nikola One truck [22] was selected and used because it has a payload capacity of more
than 29,000 kg, which can accommodate the battery packs with a total capacity of 4 MWh
and a total weight of approximately 26,000 kg, according to [23]. According to the average
speed assumed in Table 2 and the approximate energy consumption rate presented in [23],
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the traveling consumption is reflected in the SOC level reduction during the traveling time,
as shown in Figure 9. The battery degradation cost of the MESS’s battery is calculated
considering a capital cost of energy capacity of $271/kWh, power conversion system cost of
$288/kW (taken from [24]), an O&M cost of 0.03 cents/kWh [24], and a second-life battery
selling price of $50/kWh [25]. This results in a charge/discharge cost of $0.050616/kWh.
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Table 2. MESS parameters.

MESS Specifications Value

Maximum discharge rate of MESS 200 kW

Total batteries capacity 4 MWh

Battery packs weights 26,000 kg

Truck payload capacity >29,000 kg

Average speed assumption 60 km/h

A summary of the total cost of all case studies is shown in Table 3. In case 1, the
energy cost for PL1, PL2, and PL3 is $89.97, $205.512, and $214.88, respectively, resulting in
a total energy cost of $510.307. By comparison, case 2 reports $60.847, $139.869, and $156.13
for PL1, PL2, and PL3, respectively, with a total energy cost of $356.846. The energy cost
saving is $153.461, which represents a saving of 30%. The degradation cost is $151.848,
resulting in a total operational cost of $508.694. The historical peaks are assumed to be
0.9, 0.85, and 0.8 MW, which represent 92%, 88%, and 83% of the peak load for PL1, PL2,
and PL3, respectively. These peak powers reflect extra demand charges of $533, $450,
and $697 for PL1, PL2, and PL3, respectively. The demand charge rate is assumed to be
$4.1/kW. It is important to mention that the demand charges are paid monthly, i.e., extra
demand charge savings are monthly savings, whereas the operational energy consumption
is daily savings. With the help of the MESS, the PLs maintained the historical peak demand
level, which completely removed the extra peak demand charges, in addition to providing
daily operational savings and a marginal profit that could be applied on the energy sold to
the EVs.
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Table 3. Summary of simulation results.

Label Historical Peaks Demand Charge
Rate

Case Study-1 Case Study-2

Energy Cost Extra Demand
Charges Energy Cost Extra Demand

Charges

Battery
Degredation

Cost

Parking lot 1 0.9 MW

$4.1/kW

$89.97 $533 $60.847 0

$151.848Parking lot 2 0.85 MW $205.512 $450 $139.869 0

Parking lot 3 0.8 MW $214.88 $697 $156.13 0

Total - - $510.307 $1680 $356.846 0 $151.848

$2190.307 $508.694

5. Conclusions

Distribution networks will face a number of challenges due to the rapid increase in the
number of EVs and the increasing load demand to charge these EVs. Due to the uncertainty
of these loads, many technical issues will arise, such as congestion on the distribution side
and voltage drops. The technology of storage systems has gained significant attention
and has been the focus of rigorous study. This paper proposes a scheduling algorithm
for an MESS to address the increased demand for charging stations within a specific area.
Two case studies were discussed to illustrate the contribution of the proposed algorithm.
The proposed algorithm successfully reduced the total operational cost of each of the three
PLs associated with the case study, as shown by a 30% reduction in the aforementioned
costs in the simulation results. Additionally, if demand exceeds the generation limit,
excess energy is required to fulfill this unmet demand, which can be readily supplied
using the MESS; it would not be possible to meet this demand without the proposed
system. Furthermore, the monthly demand charges are reduced because the peak demand
maintained the historical peak level with the help of the MESS.
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