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Abstract: An effective remaining useful life (RUL) estimation method is of great concern in industrial
machinery to ensure system reliability and reduce the risk of unexpected failures. Anticipation of an
electric motor’s future state can improve the yield of a system and warrant the reuse of the industrial
asset. In this paper, we present an effective RUL estimation framework of brushless DC (BLDC) motor
using third harmonic analysis and output apparent power monitoring. In this work, the mechanical
output of the BLDC motor is monitored through a coupled generator. To emphasize the total power
generation, we have analyzed the trend of apparent power, which preserves the characteristics of
real power and reactive power in an AC power system. A normalized modal current (NMC) is
used to extract the current features from the BLDC motor. Fault characteristics of motor current
and generator power are fused using a Kalman filter to estimate the RUL. Degradation patterns for
the BLDC motor have been monitored for three different scenarios and for future predictions, an
attention layer optimized bidirectional long short-term memory (ABLSTM) neural network model is
trained. ABLSTM model’s performance is evaluated based on several metrics and compared with
other state-of-the-art deep learning models.

Keywords: apparent power; BLDC motor; deep learning; harmonics; RUL

1. Introduction
1.1. Motivation

Condition-based maintenance (CBM) is a crucial activity in industrial systems to
maximize system uptime and minimize the risk of catastrophic failures. The concept
of different maintenance techniques has been in the literature for many years, however,
recent advances in technology and the industry 4.0 revolution have made CBM a major
concern among researchers [1]. Prognostics and health management (PHM) has become
a key technology in the condition monitoring of electrical components. A robust PHM
framework can reduce the risk of failure, reduce the sustainable cost, and improve mainte-
nance decision-making. Thus, PHM increases the reliability, operational availability, and
maintainability of engineering systems [1,2].

In the literature, there are mainly two approaches of PHM: (a) Physics-based, (b)
Data-driven [2]. In physics-based approaches, a mathematical model of the system is
required with a physics of failure model. A mathematical model is not often available
for every system and designing such a model is time-consuming. On the other hand, a
data-driven approach does not require rigorous mathematical modeling. Sensor acquired
data are processed and analyzed in a data-driven framework to make a maintenance deci-
sion [3]. Given the diverse range of industrial operations, data-driven PHM frameworks
are more suitable to engineering systems as these do not require a complex physics of
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failure modeling. Also, the availability to sense, acquire, and analyze big data has given
rise to data-driven PHM approaches. Deep learning algorithms have become quite popular
nowadays to learn fault patterns from different sensor acquired data with high accuracy.

Two key elements of PHM are fault diagnosis and prognostics. Finding the anomaly
in system behavior and detecting the root cause of that anomaly are associated with fault
diagnosis. In prognostics, the system’s remaining useful life (RUL) is predicted based
on the historical data. In the case of electric motors, it is expected to deliver the desired
output for a fixed input by converting electrical energy into mechanical energy. This energy
conversion is the backbone of many industrial applications and any failure in electric
motors can lead to a catastrophe [4]. Therefore, to ensure maximum yield of a system,
reduce maintenance-related cost, and improve system decision making, a robust PHM
framework is necessary.

1.2. State-of-the-Art

Electric motors are considered both rotary machinery and electric machines. In the
literature, data-driven PHM techniques for rotary machinery have been extensively studied
with a wide range of machine learning (ML) algorithms. Loutas et al. proposed an e-
support vector regression technique for the RUL estimation of rolling-element bearing [5].
Medjaher et al. established a mixture of Gaussian hidden Markov models (MoG-HMMs)
to represent the evolution of bearing health conditions [6]. Peng et al. used a hybrid
Gaussian process regression with wavelet-based denoising to estimate Lithium-Ion battery
RUL [7]. Further detail on the data-driven RUL estimation approaches can be found at
references [8,9].

Vibration signal has been a widely used item in rotary machinery fault diagnosis
and prognostics [10]. Several signal processing and machine learning-based techniques
have been used to detect and isolate faults in rotary machinery. Most of these approaches
function based on the fundamental theory that torsional vibration of a mechanical com-
ponent is necessarily random and follows the Gaussian distribution [11]. The presence
of any non-Gaussian characteristics or deviation from the randomness is considered a
failure. In the case of electric motors, rotor-related faults can be detected using vibration-
based techniques [12]. However, in the presence of a stator-related fault or other electrical
faults, vibration signals cannot capture the fault at the incipient stage. Motor’s electrical
parameters such as phase currents, input impedance, torque, etc. can come in handy for
fault detection at an early stage. Several studies in the literature describe rotor and stator-
related fault isolation and prognostics using motor’s electrical parameter analysis [13,14].
Thus, modeling an RUL framework using the electrical parameters will provide a robust
framework for dynamic operating conditions.

Several data-driven studies are performed on permanent magnet synchronous ma-
chines (PMSMs) too. For example, Yang et al. has proposed a data-driven health index
construction method for the RUL estimation of electric machines [15]. Strangas et al.
combined four methods (short-time Fourier transform, undecimated-wavelet analysis,
and Wigner and Choi-Williams distributions) for fault diagnosis and prognostics of per-
manent magnet AC motors [16]. Artificial neural network (ANN) and recurrent neural
network (RNN) based fault prognostics approach for brushless DC (BLDC) motor have
been proposed in [17,18]. Motor current signature analysis (MCSA) through third harmonic
monitoring has been quite effective in PMSM condition monitoring as it can detect failures
at the earliest point of degradation. In electric motors, third harmonic analysis is a valuable
tool for detecting and isolating different fault characteristics and fault thresholds. In litera-
ture, MCSA has been widely adopted among researchers for fault detection and isolation
of electric motors. For example, Krichen et al. presented a uniform and partial demagne-
tization study of permanent magnet motor using MCSA [19], T.A. Shifat et al. proposed
an improved fault diagnosis framework based on motor current and vibrations [20], Cruz
et al. proposed an extended Park’s vector approach for fault diagnosis of large induction
motors [21], etc. A comprehensive review of PMSMs can be found in reference [22].
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In the case of power monitoring for electric machine’s fault diagnosis, Cruz et al. used
reactive and real power signature analysis for the fault diagnosis in a three-phase squirrel
cage induction motor [23]. Jawad et al. proposed a reactive power spectrum analysis for
induction machine eccentricity-related fault detection [24]. Ali et al. investigated active
power loss and reactive power in no load condition for transformer inter-turn winding
fault detection [25]. Reactive power is proven to be quite effective in electric machine’s
condition monitoring. However, study on modeling fault prognostics framework and
estimating RUL using the historical power degradation has been very limited. This took
keen interest of the authors of this paper to study fault prognostics of electric motor using
the reactive power.

1.3. Proposed Method

In this study, we proposed a fusion of degradation data to estimate the RUL of
permanent magnet BLDC motors. Unlike other state-of-the-art techniques, we have taken
into consideration two different crucial measurement points of the BLDC motor to estimate
and predict its health states. These are phase currents (IA, IB, IC) and output apparent
power (Q) of a coupled generator. 3-phase motor currents are acquired which are basically
the inputs of motor. Apparent power computed from the coupled generator is considered
as the output of the motor. A flowchart of the proposed method is presented in Figure 1.
The proposed RUL estimation framework contains both the input characteristics as well as
output characteristics of the motor, ensuring the highest form of reliability. This framework
consists of mainly three steps.
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Figure 1. Graphical illustration of the proposed RUL estimation method.

Step 1: Degradation data: Four performance indices are computed from the motor
phase currents which are selected based on a sensitivity score. Apparent power is computed
from the three-phase generator currents and voltages through a moving average (MA)
smoother function to acquire an observable degradation trend.

Step 2: RUL fusion: Degradation data from the two datasets are fused together using
a Kalman filter (KF).

Step 3: RUL prediction: RUL prediction: A BiLSTM neural network model with an
attention layer (ABLSTM) is trained using the degradation fusion from Step-2. The trained
model is saved and tested using a different dataset containing different fault characteristics.
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Several performance measures are computed to validate the effectiveness of the RUL
estimation.

2. Theoretical Overview
2.1. Electrical Signature Analysis (ESA)

In permanent magnet synchronous machines (PMSMs), electrical signatures hold
a significant amount of fault related information. Usually, electrical waveforms contain
phase, frequency, and amplitude related information of the system. Any form of deviation
from these parameters will create an anomaly in the system, for example, excessive heat,
sudden raise/drop in voltage, etc. Therefore, analyzing the electrical signals of the motor
is necessary. Since we are focused on the SOH estimation of the BLDC motor, we have
analyzed the electrical signatures of motor input currents. In the case of generator voltage,
since it is driven by the motor’s output, total power generation is computed. Theoretical
overview of ESA done in this study is presented below.

2.1.1. Normalized Modal Current Signature Analysis (NMCSA)

Electric motor’s phase currents carry significant fault-related information in presence
of stator and rotor-related faults. Third harmonic (H3) analysis provides fault magnitude
and fault frequency-related information in each motor phase. Practically, PMSMs have
three-phase input currents where each current component is affected in the presence of
a fault. Therefore, H3 analysis for all three current components needs to be done. This is
time-consuming and computationally expensive. To overcome this drawback and make the
FDI technique faster, we have used a normalized modal current (NMC) through a linear
combination of 3-phase currents. Due to the linear combination, phase and frequency-
related information of the original 3-phase currents are preserved. NMC computation is a
two-step process as described below.

Step 1: The amplitude normalization is the first step in calculating the modal current.
The magnitude of motor current varies greatly depending on the loads connected to it.
Therefore, all three-phase currents should be expressed in a common normalized unit. As
mentioned in [26], a simple signal processing technique is used to convert motor currents
into a per unit (pu) form.

Ipu, (i) =
Ii

Imax
(1)

where, Ipu is the normalized phase current, I is the sensor acquired phase current, and
i = A, B, C, which stands for the phase current A, B, and C.

Step 2: Later, the normalized signals are linearized using (2) to obtain the modal
current equation.

IM = αINA + βINB + γINC (2)

where, IM is the computed NMC, INA, INB, INC are normalized phase currents for Phase
A, Phase B, and Phase C, respectively. Also, α, β, and γ are the modal current coefficients
considered as 1, 2, and −3 [26,27].

The most significant aspect of NMC computation is that the original phase current
characteristics (phase difference, frequencies, etc.) are preserved in the modal current due
to the linear relationship. This will enable us to investigate the fault characteristics of each
motor phase current without having to separately compute each phase signal.

Later, the NMCSA is performed in the frequency domain (F-D) and time-frequency
domain (T-F-D) to observe the third harmonic components. Traditional fast Fourier trans-
form (FFT) is used for the F-D analysis. For the T-F-D analysis, the continuous wavelet
transform (CWT) method is used where the frequency is represented as a function of time.
In the CWT method, the original time-series signal is convoluted with a short-duration
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wave-like function called a “mother wavelet” [28]. A generalized form of a mother wavelet
function can be expressed as (3):

Ψb,a(t) =
1√
a

Ψ
(

t− b
a

)
, bεR, a > 0 (3)

where, Ψ is the mother wavelet, and a and b are the scaling and translating parameters.
For a motor current signal, i(t), CWT transformation is done as shown in (4) [29]:

Iω(a, b) =
1√
a

∞∫
−∞

i(t)Ψ
(

t− b
a

)
dt (4)

where, Iω is the CWT representation of original current signal, i(t). In this study, i(t) = IM,
computed using Equations (1) and (2).

2.1.2. Apparent Power

Fundamentally, apparent power is the combination of real power and reactive power
in AC power systems. Real power is the power dissipation from the resistive components
in a circuit, usually a DC circuit or an AC circuit where the impedance component is
absent [30]. Reactive power is the power generated due to the presence of inductive or
reactive load in an electrical circuit. Current and voltage of an AC circuit can be expressed
as (5) and (6).

i(t) = Ipsin(ωt + θ) (5)

v(t) = Vpsin(ωt) (6)

p(t) = i(t)v(t) = Vp Ipsin(ωt)sin(ωt + θ) (7)

where, Ip and Vp are the peak current and peak voltage, respectively. ω is the angular
frequency and θ is the phase difference. p(t) is the instantaneous power, computed using
the instantaneous current, i(t) and instantaneous voltage, v(t).

Using the trigonometric formula, sinAsinB = {cos(A + B) + cos(A− B)}/2, (7) can
be re-written as:

p(t) =
Vp Ip

2
[cos(2ωt + θ) + cosθ] (8)

where, Vp Ip/2 is the part determines amplitude of the power, cos(2ωt + θ) is the oscillating
element and cosθ is the offset that indicates the phase difference between the current and
voltage signals. If i(t) and v(t) are in phase, then cosθ = 0, and the power becomes
entirely resistive. Likewise, when the phase difference is maximum, then cosθ = 1, and the
power becomes entirely reactive [31]. Also, using the trigonometric formula, sin(A + B) =
sinAcosB + cosAsinB, (5) can be re-written as:

i(t) = sin(ωt)cosθ + cos(ωt)sinθ (9)

In that case, the power equation with the new current becomes:

p(t) = Vp Ipsin(ωt)[sin(ωt)cosθ + cos(ωt)sinθ] (10)

p(t) =
Vp Ip

2
[1− cos(2ωt)]cosθ +

Vp Ip

2
[sin(2ωt)]sinθ (11)

First part of (11) is known as real power, P. And the second part is known as reactive
power, Q. Combination of these two powers is called apparent power, S, which can be
expressed as (12).

S =
√

P2 + Q2 (12)

P, Q, and S can be expressed as a right-angle triangle where P and Q lie perpendicular
to one another. A power triangle of P, Q, and S is shown in Figure 2.
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2.2. Attention LSTM

Recurrent neural networks (RNNs) are evidently quite efficient in sequence modeling.
Long short-term memory (LSTM) unit is a type of improved RNN with a long-term
dependency that overcomes the vanishing gradient drawback of traditional RNNs [32].
Bidirectional LSTM (BiLSTM) cells create a network among the neurons of the previous
layer as well as the next layer, enabling the flow of information in both directions [33].
From previous research, it is found out that BiLSTM algorithms have demonstrated better
performance than the unidirectional LSTM models in sequence modeling.

An LSTM cell is made up of three gates that control the information flow throughout
the network. Input, forget, and output gates are the three types of gates. The working theory
of the LSTM is depicted in Figure 3. When the input gate is closed, inward information
flow is disabled. Similarly, no information can come out of the cell if the output gate
is turned off. Thus, by switching the gate operation, an LSTM can be activated and
deactivated allowing the backpropagation algorithm to reach a long way without affecting
the previously computed weights of LSTM cells [34]. BiLSTM network is a two-way LSTM
information flow, therefore, the basic computation of the LSTM network remains the same
in the BiLSTM network too. Some of the terminologies and mathematical computation of
LSTM weights are:

ct = ReLU
(

Wc

[
a(t−1), xt

]
+ bc

)
(13)

it = σ
(

Wu

[
a(t−1), xt

]
+ bi

)
(14)

f t = σ
(

W f

[
a(t−1), xt

]
+ b f

)
(15)

ot = σ
(

Wo

[
a(t−1), xt

]
+ bo

)
(16)

ct = Γu ∗ ct + G f ∗ c(t−1) (17)

at = Go ∗ ct (18)

here,

ct = used for updating ct

it = input gate, f t = forget gate, ot = output gate
W∗ = weights. [* = input, forget, and output.]
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Weights computed from the BiLSTM layer are fed into the attention layer for further com-
putation. The weight vector of BiLSTM layer can be expressed as H = {h1, h2, h3 . . . . . . hN}.
Then, the attention weights and vectors are computed using Equations (19) and (20) [35,36].

Watt = ϕ
(

WT
x xi + batt

)
(19)

ai = so f tmax((Watt)N) =
(Watt)N

∑N
i=0 (Watt)N

(20)

Here, Wx is the weighted matrix obtained from LSTM layer output with associated
bias vector, batt. Watt is the attention weight vector and ai is the vector used for Watt normal-
ization. ϕ(*) is the activation function similar to the LSTM architecture [35–37]. Weighted
time-step, ct is computed according to Equation (21) and output vector as Equation (22):

ct = ∑
s

ai(s)× hs(s) (21)

C =
N

∑
i=1

HT ⊗ A (22)

where A = {a1, a2, a3 . . . . . . aN}. HT indicates the transpose of LSTM weight vector, H.

2.3. Kalman Filter

In the engineering field, the Kalman filter (KF) uses a set of numerical computations,
usually for a linear system, to provide an effective recursive solution using a series of
measurements data. Based on the input and output response, KF can estimate the internal
state through the comparison of analytical solution and predicted solution. The powerful
aspect of this filter is to produce estimations future states, and it can also evaluate the
precise nature of the modeled system when it is unknown [38]. The Kalman filter estimates
a process by stating some time and obtaining the noisy measurements’ feedback to compare
with the approximated time step. As a result, an update function for time and a prediction
function for measurement are formed in a typical KF model. The time update functions are
used to forecast the forward state which is known as predictor functions while the mea-
surement update functions are responsible for the approximated historical state. Figure 4
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shows the time update with approximated current state and the measurement update
equation is used to update the previously approximated state ahead of current time [39].
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The Kalman filter addresses the process by using the following framework and the
model assumes the true state at time k is progressed from the previous state at (k − 1)
according to Equation (23):

Xk = FkXk−1 + Bkuk + wk (23)

where, Fk is the state transition model, Xk−1 is the previous state, Bk is the control-input
model, uk is the control vector; wk is the process noise. Equation (24) shows that an
observation zk can be made at time K using the true state Xk,

zk = HkXk + Vk (24)

where Hk is the observation model and Vk is the observation noise. Both wk and Vk are said
to follow the Gaussian distribution [38–40].

Thus, a KF model can be used to obtain a fused degradation pattern by combining
two or more degradation data with same measurement points. To combine the data, one of
the series should be considered a time function and based on the rest of the data, a new
state is estimated through continuous multiple updating. A noise matrix can be formed
based on the type of problem and data structure. Typically, variance of the signal can be
multiplied with its data points to obtain a noisy measurement. Or, Gaussian white noise
can be used directly to obtain a noisy measurement that follows the Gaussian distribution.

3. Test Rig and Data Description
3.1. Experiment Setup

To acquire data for this study, BLDC motors are used with generators to create a
generator-motor (G-M) test rig. A motor is connected to a generator through a spider-type
coupling where the shafts of the motor and generator are coupled. A picture of the original
test bench is presented in Figure 5a and a schematic with component blocks is shown in
Figure 5b. The reason we selected a G-M setup is the simplicity in building, controlling, and
acquiring experimental data [41]. In G-M set operation, generator’s shaft rotation is driven
by the torque applied by the coupled BLDC motor. Therefore, the electrical energy induced
in the generator phase is a result of the motor’s output, which can be used to analyze the
motor’s health state efficiently. Motor and generator used in this study are of the same
type (BLDC) and purchased from the same manufacturer (DNJ Korea) to minimize the
inconsistency in energy conversion. A detailed listing of the motor parameters is presented
in Table 1. A generator with higher power rating (40 W) is used with the motor (26 W) to
make sure there is no power loss of disturbances through the generator when the motor
operates at maximum speed.
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Table 1. BLDC motor parameters.

Parameter Measurement

Motor model BLS-24026N
Generator model BLS-24040N
Input Parameters 24.0 VDC & 7.0 A (max)
Current module NI 9246
Voltage module NI 9203, NI 9205

Temperature module NI 9214
Electrical load 10 MΩ DELTA

Motor’s Power(rated) 26 W
Generator Power(rated) 40 W

Shaft Speed (rated) 4000 RPM
Sampling Frequency (Voltage, Current) 5 kHz

The major feature that distinguishes a BLDC motor from a conventional DC motor is the
lack of a mechanical commutator or brush. Thus, a BLDC motor can deliver higher torque
than that of a brushed or conventional DC motor. Also, BLDC motor is prioritized over
conventiona DC motor due to its precise control, high efficacy, silent operation, higher torque-
to-body ratio, and prolonged lifespan [42]. Nevertheless, BLDC motor control phenomenon
is complicated and often requires an external driver to control electromagnetic induction.
In literature there are number of studies on the control strategies of BLDC motors such
as—external driver, sensorless control, proportional integral derivative (PID) tuned control,
comparator assisted control, etc. [42–44]. We have used an LBD-V4 motor driver to control
the BLDC motor. The motor driver receieves a 24.0 V constant DC voltage and converts it
into a pulse width modulation (PWM) signal with a 50% duty cycle. The Pole position of the
permanent magnet (rotor) is identified using a set of hall effect sensors (HES). A temporary
magnet with N pole and S pole are created using phase current flow through the stoator
coils. These pole positions are continously altereted by changing the polarity of motor’s phase
current. Thus, the rotor never aligns with the staotor position and keeps on rotating.

Data acquisition (DAQ) environment is set up using an apparatus from national
instruments (NI). A DAQ chassis, NI cDAQ-9178, is used with different modules to ac-
quire different sensor data such as NI-9246, NI-9205, and NI-9214 for current, voltage,
and temperature, respectively. In this study, four different sensor data were monitored
continuously during the motor test. These are motor current, generator voltage, stator
temperature, and motor speed. The sampling rate for current and voltage acquisition was
set to be 5.0 kHz and for temperature it was 100 Hz. LabVIEW software is used to set
different DAQ parameters, control the sensor sensitivity, and store the data in a computer.
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3.2. Failure Modes

Electromagnetic induction of the BLDC motor is mainly done by changing the polarity
and magnitude of current passing through the stator coils. From the signals of HES, the motor
driver converts the stator coils into temporary electromagnets with different pole position based
on current polarity. A circuit of transistors controls the PWM output of the motor driver through
a fast switching between ON and OFF states. The commutation logic for the BLDC motor
operation is shown in Table 2. It is understandable that an irregularity in stator operation will
largely affect the entire operation of the BLDC motor. Therefore, in this study, we have focused
on two most commonly occurring faults in stator coil with three different datasets. These are:

(1) Dataset-1: An inter-turn short-circuit is created at the stator coil winding as shown
in the B2’ winding in Figure 6a. This fault generates two different impedances on
the coil winding creating a disturbance in current flow. It is also called a turn-to-turn
fault where a short-circuit is produced in two sections of the stator coil. This type of
fault is labeled “ITF fault” which is illustrated in Figure 6a.

(2) Dataset-2: In this type of fault, two adjacent windings are shorted. This type of fault
is labeled as a winding short-circuit (WSC) fault. Figure 6b shows a winding short-
circuit fault where Phase A and Phase C are shorted together through the windings
A1 and C2′. In this paper, this type of setting is labeled “WSC fault”.

(3) Dataset-3: This dataset consists of data from a motor with both ITF and WSC fault
generated on the stator at the same time. This type of scenario is labeled “Hybrid fault”.

Table 2. Commutation of BLDC Motor.

Motor Phase Commutation Logic

Step A B C AH AL BH BL CH CL

01 + - OFF 1 0 0 1 0 0
02 + OFF - 1 0 0 0 0 1
03 OFF + - 0 0 1 0 0 1
04 - + OFF 0 1 1 0 0 0
05 - OFF + 0 1 0 0 1 0
06 OFF - + 0 0 0 1 1 0
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4. RUL Prediction
4.1. ESA

Two different electrical data are acquired from the G-M test setup. The first one is the
input phase current (I) of the BLDC motor. This measurement is conducted through the motor
driver to BLDC motor stator connections which is the three-phase input of the motor. Another
current is measured from the three-phase output terminals of the generator. The second
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sensor data acquired is the voltage (V). Like the current measurement, voltage is measured
from the input phases of the motor and output phases of the generator. Sensor acquired I-V
signals are shown in Figure 7. Input voltage is a PWM-type signal with a 50% duty cycle
and the input voltage is distorted due to the failure in the motor and loads connected to
the generator. On the other hand, output voltages and currents acquired from the generator
follow a three-phase sinusoidal waveform shape. As mentioned in previous sections, motor
current signature analysis (MCSA) is an effective method for fault detection and isolation in
PMSMs. Stator coils are arranged in a STAR configuration where all the phase connections
have a common terminal. According to Kirchhoff’s current law (KCL), no current should flow
through this common terminal. Using the harmonic analysis of the motor current, we can
understand if there is any current flowing through that common node. Every third harmonic
presented in the current signature indicates the deviation from the KCL. Therefore, through
the fast Fourier transform (FFT) analysis we can isolate the magnitude of the third harmonic
component as well as the harmonic frequency range. However, analyzing all the three-phase
currents is time-consuming and computationally expensive. This is why, in this study we
have used a normalized modal current analysis (NMCA) approach for fast decision making.
Computation of normalized modal current (NMC) is mathematically shown in Equation (2)
and the representation of three-phase currents and corresponding NMC is shown in Figure 8.
Three-phase current is expressed in Amperes (A) and NMC is expressed per unit (pu) due
to the linear conversion. Third harmonic analysis using the NMC is presented in Figure 9.
The first column is the NMC signals in time domain, and the second and third columns are
the frequency domain and time-frequency domain, representations, respectively. From the
top, each row represents NMC in healthy state, ITF fault state, WSC fault state, and hybrid
fault state, subsequently. It can be seen that a larger peak is present for all types of NMC
at around 250 Hz which is the fundamental frequency (fn) of the signals. Apart from these,
other frequency components are denoted as first, second, and third harmonics. In this paper,
each third sequence harmonic component (i.e., third, sixth, ninth . . . . . . etc.) is referred to
as first, second, third . . . . . . etc. orders. For example, in case of healthy current NMC, no
third harmonic component is seen. However, in case of all the fault cases, two third harmonic
components at the third sequence and sixth sequence are observed. CWT analysis shows a
better representation of the third harmonic component with abrupt changes in time-frequency
scalogram. A list of NMCSA result is presented in Table 3.

Sensor acquired signals as well as the NMC are necessarily time-series data and
analysis from multiple domains is necessary to make a decision. Therefore, we have
extracted a range of statistical features from the NMC. A list of features is presented in Table
4 and a detailed description of the features can be found in reference [17,29,41]. Working
with all these features can lead to overfitting phenomena in deep learning algorithms. To
avoid the curse of higher dimensions, we have selected two best features from the time
domain and two best features from the frequency domain. Feature selection approach
consists of building a sensitivity index called σ.

This index is computed from three different factors named analysis of variance test,
monotonicity, and Kruskal-Wallis variance test scores as expressed in Equation (25):

σ =
Fscore + MON + KWscore

3
(25)

where:

Fscore = The ratio of the variance calculated among the means to the variance within the
features, which is computed using the analysis of variance (ANOVA) test.
MON = A measure of feature’s prognostibility.
KWscore = Measures the stochastic dominance of to one another.
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Table 3. NMCSA results.

NMC
Parameters

Amplitudes and Frequency Band

Healthy ITF Fault WSC Fault Hybrid Fault

f(Hz) |INMC| f(Hz) |INMC| f(Hz) |INMC| f(Hz) |INMC|
fn 238 4.21 330 3.20 275 2.71 210 2.08

First H3 - - 1118 0.92 1009 0.71 997 0.43
Second H3 - - 1580 0.23 1630 0.20 1610 0.23

Table 4. Features computed in different dimensions.

Domains Feature Names

Time Domain

Peak-to-Peak (P2P), Root Sum of Squares (RSSQ), Variance (VAR),FM4,
FM8, M6A, Skewness (SKEW), L1 Norm (L1), L2 Norm (L2), Peak to
RMS (P2RMS), Crest Factor (CF), Shape Factor (SF), Margin Factor

(MF), Clearance Factor (CLF).

Frequency Domain
Peak Frequency (PF), Total Harmonic Distortion (THD), Spectral

Skewness (SS), Mean frequency (MF), 3rd harmonic magnitude (H3),
Entropy, Root Variance Frequency (RVF).
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Figure 9. Third harmonic (H3) analysis of the motor currents in healthy state (row A), ITF fault state (row B), WSC fault state
(row C), hybrid fault state (row D). Column X is the sensor acquired time series signal, column Y is the FFT transformation,
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The standing of the features with individual index scores is shown in Figure 10. As
the fault becomes severe, these features show variable trends in its characteristics. For the
three fault scenarios analyzed in this study, the BLDC motor lasted for 1750 h in case of ITF
fault, 2230 h for WSC fault, and 1450 for hybrid fault. Feature trends for the entire lifecycle
of the BLDC motor are shown in Figure 11. It is seen that RSSQ, VAR, and H3 have an
increasing trend as the fault propagates, whereas RVF has a degradation trend as the motor
reaches a more severe condition.
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4.2. Apparent Power Degradation Data

Generator output signals are acquired through a resistive-inductive-capacitive (RLC)
circuit. Due to the presence of resistive and inductive loads, generator power consists of
both the real power (P) and reactive power (Q). After acquiring the I-V signals, we have
computed the apparent power of the generator using Equation (11). As the motor degrades
through time, its torque reduces, and power generated at the generator end also drops
down. The power trend for different fault states is shown in Figure 12. Sensor acquired
signals consist of noise and undiscernible degradation trend. To get a noiseless observable
trend, we have used a moving-average (MA) filter. MA performed on power data can be
expressed mathematically in Equation (26).

S1 =
s1 + s2 + s3 + · · · sm

m
(26)

Here, s1 + s2 + s3 + · · · sm is the sum of voltages at t1, t2, t3 · · · tm instances, respec-
tively. m is the number of order MA computations.

4.3. RUL Fusion and Prediction

After acquiring and filtering the power degradation data, ITF fault data (Dataset-1)
and WSC fault data (Dataset-2) are fused using a Kalman filter. The output of fused RUL is
shown in Figure 13. The fused RUL has a service time of 2004 h after filtering. This fused
RUL is used to train the proposed attention-based bidirectional LSTM (ABLSTM) model.
Raw data normalization is a common method used in machine learning for improving
model accuracy. According to their needs, many researchers have used this method to scale
data within a boundary with a defined set of ranges. Normalization suppresses the outliers
and reduces standard deviation in train data making it suitable for the algorithm to learn
in a faster way. We have used a min-max scaler and scaled the power data in a range of 0–1.
Since the RUL is mainly concerned with estimating the beginning of life (BOL) and end of
life (EOL), a percent scale of power data with 0% represents EOL and 100% represents the
BOL. Apparent power normalization using min-max scaler is shown in Equation (27):

Ssc =
Si − Smin

Smax − Smin
× 100% (27)

Ssc is the scaled apparent power after min-max scaling. Smax and Smin refers to the
maximum and minimum power, respectively. Si is the voltage at ith instance.

ABLSTM model consists of an attention layer with BiLSTM cells. The number of
hidden layers selected for the model is two, with each layer containing 512 neurons. Since
we used a large number of neurons, the model may become overfitted, which is a normal
occurrence in neural networks. To prevent overfitting, we used a regularization approach
called “Dropout,” which removes some activations of the previous layer neurons from
the network and ignores them during the training stage. During testing, these randomly
dropped neurons reactivate and contribute to model learning. A list of model parameters
is presented in Table 5.

Table 5. Model Parameters used for RUL Prediction.

Parameter Value

RNN Cell BiLSTM
Hidden Layers 2

Optimizer Adam
Dropout 0.15
Neurons 512, 512

Loss Function MAE
Epochs 1000

Activation ReLU
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Fused RUL from the KF algorithm is used as the training data of the model. After
the training, the model was saved in the computer with associated weights. Later, the
trained model is used to predict the RUL of hybrid fault data. To compare the efficacy of
the ABLSTM model, two other DL models are trained and tested using the same datasets.
The other two models are artificial neural networks (ANN) and regular LSTM networks.
RUL prediction results for all the NN models are shown in Figure 14.
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4.4. Validation

As seen in Figure 13, all the models perform quite well in predicting hybrid fault RUL.
However, because of the attention mechanism in the abruptly changing power degradation
trend, ABLSTM shows a better prediction result compared to others. Even for a very
small degradation trend, ABLSTM has attained the variation and predict appropriately. To
better understand the model performance, two regression metrics are obtained which are
root mean squared error (RMSE) and mean absolute error (MAE). These metrics can be
described mathematically as Equations (28) and (29). Another metric named ERi is further
computed from the model’s predicted RUL and actual RUL to compute the RUL prediction
error. Mathematical expression of ERi is shown in Equation (30) and computed ERi for
RULs are presented in Table 6.

RMSE =

√√√√√∑N
i=1

(
Si −

ˆ
Si

)2

N
(28)
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MAE =
1
N

N

∑
i=1

∣∣∣∣Si −
ˆ
Si

∣∣∣∣ (29)

ERi =
RULtrue(i)− RULpredicted(i)

RULtrue(i)
(30)

here:

Si = actual power data
ˆ
Si = predicted power data by the models
N = The total number of data

Table 6. Standard Deviation of RUL Prediction Errors.

Dataset Size ANN LSTM BiLSTM ABLSTM

25% 0.037 0.025 0.021 0.016
50% 0.033 0.018 0.019 0.011
75% 0.027 0.193 0.18 0.012

100% 0.031 0.24 0.20 0.014

Computed RMSE and MAE scores of the models are represented in a percentage scale
as shown in Figure 15. The proposed ABLSTM model has a lower error compared to regular
LSTM, BiLSTM, and ANN models. However, the computational time for the ABLSTM
model is higher compared to other models due to the attention mechanism. Therefore, for
a dataset with no abruptly changing behavior, the BiLSTM model can be used instead of
the ABLSTM model to reduce the computation time. These deep learning models were
trained on a computer with an AMD Ryzen 7 2700 octa-core CPU and 32 GB of RAM. An
NVIDIA GTX 970 GPU with 4 GB VRAM is used for accelerated computation. Python
language is used with open-source deep learning platform, Tensorflow and Keras for the
deep neural networks.
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5. Conclusions

A data-driven RUL estimation framework of the BLDC motor is presented in this
paper using the electrical I-V characteristics. Input current signals from the BLDC motor
and coupled generator’s output apparent power are analyzed and fused to estimate the
RUL. Instead of a three-phase motor current analysis, a normalized modal current (NMC)
is used for the fault detection and feature extraction. Due to the presence of reactive load on
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the generator side, a reactive power (Q) is produced along with the real power (P). Using
the I-V characteristics of the generator output, apparent power (S) is computed which is the
combination of P and Q. Three different failure cases are analyzed which are obtained from
three different accelerated life tests. Three faults are: inter-turn short-circuit (ITF), winding
short-circuit (WSC), and hybrid (combination of ITF and WSC). ITF and WSC degradation
data are fused using a Kalman filter to acquire a fused RUL. This fused RUL is trained in an
attention-based bidirectional LSTM (ABLSTM) neural network. Later, the trained ABLSTM
was used to predict the trend of hybrid RUL along with three other neural networks (NN)
models. The performance of the NN models is evaluated using different metrics. It is
found out that ABLSTM outperforms other NN models in terms of RUL prediction.

Adoption of electrical parameters for maintenance decision making is quite efficient
compared to other traditional methods as in electric motors, I-V characteristics changes at
the incipient stage of a failure. Analysis of I-V characteristics will provide a robust PHM
framework of BLDC motor as well as other PMSMs. This study can be further extended
for a real-time updating method to enable online RUL estimation of electric motors. Also,
physics-of-failure models can be combined with the proposed method to establish a hybrid
PHM framework of electric motors.
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