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Abstract: This paper addresses the implementation and optimization of an Extended Kalman Filter
(EKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM
Cortex-M3 microcontroller. A various optimization levels based on arithmetic calculation reduction
was implemented in ARM Cortex-M3 microcontroller. The execution time of EKF estimator was
reduced from 260.4 µs to 37.7 µs without loss of accuracy. To further reduce EKF execution time, the
separation of a Kalman gain and covariance matrices calculation from prediction and measurement
state update, a novel method was proposed, and the performance of it an EKF estimator with
separation of a Kalman gain and covariance matrices calculation from prediction and measurement
state update was analyzed. Simulation and experiments results validate that the proposed technique
could provide the same accuracy with less computation time. A tendency of minimum Kalman gain
and covariance matrices calculation frequency from rotor electrical frequency was analyzed and are
presented in the paper.

Keywords: PMSM; sensorless; EKF; ARM; fast execution

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) technology has become attractive
thanks to its energy saving capabilities and high dynamic performance. PMSMs have
been increasingly used in autonomous electric vehicles, drones, smart buildings and many
automation processes [1].

In motor control applications requiring high efficiency, the information about the
rotor speed and position is essential to provide feedback for the control loops. The use of
mechanical position sensors in motor drives increases the drive’s cost and decreases the
system’s reliability. Therefore, sensorless control would be a practical alternative to the
motor control with mechanical sensors. Nowadays, the sensorless control is an essential
feature of commercial products in the field of electric motor drives. A popular and widely
used sensorless control algorithm is the Extended Kalman Filter (EKF). The EKF is an
optimal algorithm which minimizes the mean square error of the estimated quantities. It
takes into account the model inaccuracies and measurement noises, and comes up with
an accurate estimation result [2,3]. Because of heavy online computation, performed on
matrices, the EKF algorithm is a time-consuming process [4]. In order to address this
problem, various optimization algorithms which can lower the computational costs have
been reported. Computational cost of the full order EKF can be minimized by a reduced
order model [5–7]. The idea of these filters is to reduce the number of states of the model by
engineering approximation methods. Also, the order reduction simplifies the tuning of the
covariance matrices. However, the decrease of the state order can add accuracy damage.
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Similarly, the reduced order filter taken with the full model order is obtained by minimizing
the trace of the estimation error covariance [8]. However, this method is more practical
for systems with large number of states. A novel parallel computational mechanism by
defining “useful” data and subdividing computation process is proposed in [9]. In this
method, optimization is obtained based on exploiting the numerical characteristics of the
system. A various optimization methods for Kalman filter extensions is presented in [10].

Moreover, to provide with system superior robustness and good dynamic perfor-
mance, online tuning of the electrical parameters is necessary, leaving a small room for
the EKF [11]. Therefore, most of the researchers have chosen Digital Signal Processors
(DSPs) [12,13] or field programmable logic arrays (FPGAs) [14–17] for the EKF imple-
mentation. In a DSP example without simplification, EKF execution time was obtained
71.6 µs [4]. The impressive EKF implementation on DSP with 17 µs execution time of EKF
was achieved [18]. While the execution time is short, it is still long for direct torque control,
where much shorter sampling period is required compared with field oriented control. In
another DSP example, the total execution time of the EKF, matrix converter and all control
algorithms fit into 400 µs [19]. While the using FPGA, the EKF execution time 13.36 µs was
achieved [20].

However, in many applications the use of DSP processors is not a cost-effective
solution. While the cost of the FPGA is lower, the complete system will mostly still require
a DSP or another type of processor for the whole system to be implemented. An alternative
solution for low-cost and low-power systems are the ARM Cortex-M3 microcontrollers [21].
ARM Cortex-M3 are low-cost, low-power microcontrollers that can replace the existing
8-bit microcontrollers, while still offering 32-bit performance.

In this paper, a strategy is proposed to separate EKF matrices calculation from pre-
diction and measurement update steps, to minimize the overall time consumption of the
EKF algorithm. The strategy was simulated with Matlab programming language and
implemented on the ARM Cortex-M3 microcontroller.

2. State-Space PMSM Model

A dynamic model of a surface-mounted permanent magnet synchronous motor and
a sinusoidal flux distribution in a stationary reference frame (α, β) is expressed by the
following system of differential equations:

diα
dt

= −Rs

Ls
iα +

λm

Ls
ωe sin θe +

vα

Ls
diβ

dt
= −Rs

Ls
iβ −

λm

Ls
ωe cos θe +

vβ

Ls
dωe

dt
=

3
2

λm

J
(iβ cos θe − iα sin θe)−

B
J

ωe −
TL
J

dθe

dt
= ωe

(1)

where: iα and vα are the α axis current and voltage; iβ and vβ are the β axis current and
voltage; Rs is the stator resistance; Ls is the stator phase inductance; P is the number of the
pole pairs; we and θe are the rotor electrical angular speed and position respectively; J and B
are the rotor inertia and viscous damping coefficients respectively; TL is load the electrical
torque. The voltages vα, vβ and the load torque TL are the deterministic control inputs
of the system. Both the voltages vα, vβ and current iα, iβ components are the measurable
quantities (2). The stator phase currents ia, ib and ic are stator phase currents, which are
measured directly.

iα =
2
3
(ia −

ib
2
− ic

2
)

iβ =
(ib − ic)√

3
.

(2)
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The current components in the α - β reference frame are obtained from the three phase
stator components by a linear transformation [12]. Similar equations hold for the voltages.

3. EKF Estimator

The Kalman filter is a mathematical model that runs in parallel to the actual system
and provides the estimation of the states of linear systems. It provides a feedback as the
difference between the measured output and constantly corrects the model with the error
signal. The feedback gain is calculated so that the estimate of state is optimal. The block
diagram of Kalman filter are shown in Figure 1.

K

∫
˙̂x H˙̂x = Fx̂ + Bu

Plant

y

x̂

u

ŷ

e

+-

EKF

Figure 1. Block diagram of Kalman filter.

The state-space model for Kalman filter implementation is derived from (1) with the
assumption that the speed we is constant during the switching period [22,23].

diα
dt

= −Rs

Ls
iα +

λm

Ls
ωe sin θe +

vα

Ls
diβ

dt
= −Rs

Ls
iβ −

λm

Ls
ωe cos θe +

vβ

Ls
dωe

dt
= 0

dθe

dt
= ωe.

(3)

The α - β axes stator currents iα, iβ, the angular electrical rotor speed we and position
θe are treated as system states. The voltages vα, vβ as the input variables. A nonlinear
dynamic model accounting for the state transition w and measurement noise v can be
expressed generally as:

ẋ = f(x) + Bcu + w

y = Hx + v.
(4)

The Gaussian noises w and v are white, zero-mean and uncorrelated, and have known
covariance matrices Q and R respectively. For good EKF performance the choice of the
covariance matrices P, Q and R is crucial. The covariance matrices P, Q and R are sym-
metric and positive defined symmetric matrices. Covariance matrices give the statistical
description of the model inaccuracy. Matrix Q represents the statistical description of the
model, matrix R indicates the magnitude of measurement noise, matrix P0 contains the
information of variances at the initial conditions and mainly affects the convergence rate
of EKF in the transient condition [24]. Since these are usually unknown, in most cases the
EKF matrices are designed and tuned by trial-and-error procedures [25].The state vector x
is denoted as u is input vector and y is the output vector:

x =
[
iα iβ ωe θe

]T , u =
[
Vα Vβ

]T , y =
[
iα iβ

]T . (5)
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The model’s matrices are expressed as follows:

f(x) =


f1

f2

f3

f4

 =


− Rs

Ls
iα + λm

Ls
ωe sin θe

− Rs
Ls

iβ − λm
Ls

ωe cos θe

0

ωe

, (6)

Bc =


1
Ls

0
0 1

Ls
0 0
0 0

, H =


1 0
0 1
0 0
0 0

, (7)

B = TBc =


T
Ls

0
0 T

Ls
0 0
0 0

 (8)

where T is sampling time. The PMSM model described by (6) is nonlinear as products of
variables are involved. The nonlinear function f(x) is approximated by a linear set. The
continous time Jacobian matrix is expressed as:

Fc =
∂f(x)

∂x

∣∣∣∣∣
x=xk−1

=



∂f1
∂iα
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∂iβ

∂f1
∂we

∂f1
∂θe
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∂f2
∂iβ

∂f2
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∂f2
∂θe

∂f3
∂iα

∂f3
∂iβ

∂f3
∂we

∂f3
∂θe

∂f4
∂iα

∂f4
∂iβ

∂f4
∂we

∂f4
∂θe


=


− Rs

Ls
0 λm

Ls
sin θe

λm
Ls

ωe cos θe

0 − Rs
Ls
− λm

Ls
cos θe

λm
Ls

ωe sin θe

0 0 0 0

0 0 1 0

 (9)

where the previous estimate of x as a reference point is taken for discretization around this
point. For digital implementation the system model (4) has to be discretized. The discrete
nonlinear dynamic model is expressed as follows:

ẋk = Fk−1xk−1 + Buk−1 + wk−1

y = Hxk + vk
(10)

where in (11) the matrices xk, Fk−1, uk−1 are discrete matrices of x, Fc, u respectively, and
the matrices wk−1, vk are discrete matrices of w, v respectively, independent of the system
state. Based on Equation (9) after discretization of Fc the Jacobian matrix is:

Fk = F = eFcT ≈ I + FcT =


1− T Rs

Ls
0 T λm

Ls
sin θe T λm

Ls
ωe cos θe

0 1− T Rs
Ls
−T λm

Ls
cos θe T λm

Ls
ωe sin θe

0 0 1 0

0 0 T 1

 (11)

where the matrix F in (11) is a discrete, linearized Jacobian matrix.
The extended Kalman filter can be realized by the following steps. The first step is

a time update of the state vector and the error covariance matrix, in which a prediction
based on the previous estimates x̂k−1 is performed:

Fk−1 = F(x = x̂k−1) (12)

x̂−k = x̂k−1 + Tf(x̂k−1) + Buk−1 (13)

P−k = Pk−1Fk−1Pk−1
T + Q (14)
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where the Jacobian matrix (12) is computed too. Important to note is that the state prediction
is done by integrating Equation (13) with Runge-Kutta or other similar method. The second
step is a measurement update that corrects the predicted state estimate x̂−k and its error
covariance P−k matrix through a feedback correction:

Pk = (I−KkH)P−k (15)

x̂k = x̂−k + Kk(yk −Hx̂−k ) (16)

where the extended Kalman filter gain matrix Kk is:

Kk = P−k HT(HP−k HT + R)−1 (17)

Also the correction of the estimated rotor position (18) to limit the angle to a 2π
interval is added:

x̂k(4) = x̂k(4)− 2πk, k = bx̂k(4)/2πc. (18)

The estimation error covariance matrix P denotes the error of the state vector x̂ (19).

P = E[(x̂− x̂)(x̂− x̂)T ] =


P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

 (19)

where E[] is an operator computing the mean of the variable inside the brackets and x̂ is
the mean of the estimated variable. The error covariance matrix P is a degree of accuracy
of the estimate. If P is large the error of the estimate is large and if is small the error of
the estimate is small. The element P44 is the variance of the rotor position and it could
be an indicator of how well the Kalman filter estimate rotor position. The Kalman gain
matrix (20):

K =


K11 K12
K21 K22
K31 K32
K41 K42

 (20)

is used as weighting in the measurement update process. The measurement update
Equation (16) corrects the state, accounting for the measurements, and can be expressed as:

îαk = îα
−
k + K11(iαk − îα

−
k ) + K12(iβk − îβ

−
k )

îβk = îβ
−
k + K21(iαk − îα

−
k ) + K22(iβk − îβ

−
k )

ω̂ek = ω̂e
−
k + K31(iαk − îα

−
k ) + K32(iβk − îβ

−
k )

θ̂ek = θ̂e
−
k + K41(iαk − îα

−
k ) + K42(iβk − îβ

−
k ).

(21)

In Equation (21) the elements K41 and K42 are position correction gains. As only
the stator winding currents can be measured, the rotor position and velocity are mainly
estimated in measurement update steps.

EKF Technique with Parallel Calculation

The EKF calculation is separated into two different procedures. One is the control
procedure and the other the background procedure. The sequence of the EKF algorithm
implementation is shown in Figure 2 as a flow diagram.

The control procedure is executed on every PWM switching period and predicts
the new state vector using (13), updates the predicted state vector using (16). And also
corrects the estimated rotor position to a periodic function using (18). The background
procedure calculates the Kalman gain and all covariance matrices. The background is
executed on every time m. The majority of the EKF algorithm computation is performed
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in the background procedure and runs in a periodic cycle, just like the control procedure.
The calling rate of the background procedure is the same or smaller, compared to the
control procedure.

The reduced Kalman gain and all covariance matrices calculation ratio could be
treated like PMSM model are constant for period of time equal to background procedure
call period. While the Kalman gain and all covariance matrices calculation ratio is reduced
the prediction state (13) and measurement correction state (16) are executed on every
control cycle. The prediction state (13) is always updated with the newest input variables
in every control cycle. The measurement correction state (16) is also fed with the newest
measurements, but with the Kalman gains being constant for a period of time equal to
control period.

As shown in Figure 3 the background task period Tb is longer or the same compared
to Ts =

1
Fs

where Fs is PWM switching frequency. The background procedure is separated
from the control procedure and does not depend on the PWM switching frequency. The
switching frequency can be set to a very high value, while the background procedure
can run at a much lower frequency. The total process execution time of EKF could be
significantly reduced, because the heavy calculation are doing in background task with
period longer than control period.

Background Control

Init

Load state: x = x̂k

Compute matrix: Fm−1

Compute matrix: P−m

Compute gain: Km

Set Kalman gain: Kk = Km

Compute matrix: Pm

Predict state: x̂−k

Compute estimate: x̂k

Limit theta: x̂k(4)− 2πk

?

?

?

?

?

?

?

?

?

?

Figure 2. Flow diagram ot the EKF algorithm with parallel calculation.

The control procedure has a higher priority and interrupts the background procedure
when it is time to execute it. The synchronization is also performed in the background task,
the state vector is taken from the control procedure and the Kalman gain is provided to
the control procedure after it is computed. After Kalman gain has been computed in the
background procedure, it is important immediately to copy the new Kalman gain matrix
into the control procedure to allow control procedure more effectively, to use Kalman gain.
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k− 1 km m+ 1

Time

Background

Control

Ts =
1
fs

Tb = 1
fb

Figure 3. Time diagram showing the parallel run of the two EKF algorithm procedures. Ts—control
period time, Tb—background procedure period.

4. Simulation Results

Simulations have been performed with the Matlab programming language. To verify
the performance of the proposed EKF algorithm, the simulated PMSM parameters were set
for the same values as in the experimental setup and are presented in Table 1.

Table 1. Simulation parameters.

Stator resistance Rs 1.2 Ω
Synchronous inductance Ld 0.5 mH
Synchronous inductance Lq 0.5 mH

Flux linkage λm 0.007 Wb
Number of poles P 8

DC supply voltage Vdc 24 V
Switching frequency Fs 5 kHz

In order to make the simulation model consistent with further experimental veri-
fication, the space vector pulse width modulation (SVPWM) and overall field oriented
control system was simulated. In order to verify the effectiveness of the EKF algorithm
based on parallel computation, the simulation was carried out for different set point speed
values. The performance of sensorless control for various motor speeds is investigated in
simulation. The initial state covariance matrix P0 and covariance matrices accounting for
the model and measurement (Q and R respectively) are as follows:

P0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, Q =


1 0 0 0
0 1 0 0
0 0 500 0
0 0 0 0.1

, R =

[
1 0
0 1

]
. (22)

The EKF algorithm in Figure 2 was the main research object. There, the Kalman gain
matrix and its covariance matrices calculation is performed in the background procedure
while the prediction and update in the control procedure. The different frequency ratios of
the background to the control procedure of the EKF performance at various fundamental
motor speeds was researched.

The EKF performance, the Kalman gain and all covariance matrices calculated at the
same rate of 5 kHz, are shown in Figure 4. In Figure 5 the Kalman gain and all covariance
matrices are calculated at a five times slower rate of fb = 1 kHz, while the control procedure
execution rate is the same (5 kHz). Comparing Figure 4c with Figure 5c can be seen that
the position error did not increase. The position variance P44 in Figures 4b and 5b is
approximately equal too, only the discretization is different. The Kalman gains K41 and
K42 for position estimation in Figures 4d and 5d have the same amplitude peak values and
have similar sine waveform shapes, but the waveform in Figure 5d are more discretized.
The discretization is because of reduced calculation frequency of Kalman gain in simulation
is taken. From comparison of Figures 4 and 5 we can conclude that the magnitudes of
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Kalman gain for position estimation did not change, only it’s discretization. For a period of
time Kalman gain values are constant values, and they are used multiple time in correction
step. Even Kalman gains are constant values the prediction step and correction steps still
corrects state vector accounting new measurements.
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Figure 4. Simulated rotor position estimation performance at fb = 5 kHz fs = 5 kHz and we = 400 rads.
(a) real and estimated rotor positions, (b) estimated position error, (c) estimated position variance,
(d) position estimation Kalman gains.

Further simulation has shown, that slowing down the Kalman gain and covariance
matrices calculation frequency could cause a rise in the rotor position estimation error,
causing a loss of the synchronization and causing the rotor speed to drop to zero. The
relation between the minimum Kalman gain and covariance matrices calculation frequency
fbmin and the fundamental rotor electrical rotor frequency ( fe = we/2π) was investigated.
To found the relation fbmin

fe
the simulations were run by decreasing frequency fb for fixed

rotor speed reference set-point were f until control was lost. The loss of control was easily
determined from rotor speed not able to reach reference speed in simulation. For various
rotor reference speeds were f the minimum Kalman gain update frequency fbmin are shown
in Figure 6a. From Figure 6a we can conclude that the higher the reference speed was
set the higher Kalman gain update frequency was required. From Figure 6a we can see
linear trend of fbmin to fe. The steps in Figure 6a mainly are due to simulation strategy
when frequencie fb were selected in steps by dividing switching frequency by integer value
( fb = fs/ n, n = 1,2. . . ). The Figure 6b is obtained from figure Figure 6a by dividing each
fbmin by fe. While the data in Figure 6b are the same we can see how many times we have
to compute Kalman gain per rotor electrical frequency without lost control.
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Figure 5. Simulated rotor position performance at fb = 1 kHz fs = 5 kHz and we = 400 rads.
(a) real and estimated rotor positions, (b) estimated position error, (c) estimated position variance,
(d) position estimation Kalman gains.
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Figure 6. The relation between the minimum required Kalman matrices calculation frequency fbmin
and the rotor electrical frequency fe. (a) the relation between minimum required fbmin and fe, (b) the
relation between the ratio of fbmin to fe and the rotor electrical frequency fe.

5. Implementation

For the implementation of the EKF algorithm in a real experimental drive system
an NXP LPC1549 microcontroller was used. The LPC1549 microcontroller is a 32 bit
ARM Cortex-M3 based microcontroller operating at a frequency of up to 72 MHz. It is a
microcontroller characterized by a low cost and very low power consumption. It includes
two 2 Msamples ADCs, four voltage comparators and a PWM/timer subsystem with four
configurable multi-purpose state configurable timers. As the LPC1549 microcontroller does
not support of floating point operations, all calculation was performed on integer type
variables. Data type of the variables used in the implementation is 16 bit fixed point variable
with 32 bit long words. For the implementation in C language and code compilation the
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IAR compiler was used. Different optimization levels for speed comparison are given in
Table 2.

Table 2. Comparison of the EKF steps execution time.

Variable Defining
Equation

No
Optimization [µs] Compiler [µs] Compiler +

User [µs]

P−k Pk−1Fk−1Pk−1
T + Q 97.2 56.8 13.4

Kk P−k HT(HP−k HT + R)−1 56.0 34.0 5.4
Pk (I−KkH)P−k 78.0 48.8 9.6

F, B ∂f(x)
∂x 4.4 3.2 3.2

x̂−k x̂k−1 + Tf(x̂k−1) + Buk−1 7.2 4.4 4.4
x̂k x̂−k + Kk(yk −Hx̂−k ) 17.6 12.6 1.7

Total 260.4 159.8 37.7

The EKF algorithm implementation using common matrices calculation procedures,
with the IAR compiler and with no optimization, gave the longest total execution time
260.4 µs. Better results were obtained by setting the compiler optimization to a high level.
However, the total execution time is still too long for a practical application. A good
execution optimization could be achieved by discarding the common matrices calculation
procedures, replacing them with simple arithmetic expressions and accounting for all zero
elements and symmetry. In this case the total execution time drops to 37.7 µs and could be
used for some practical applications.

However, in situations where very high switching frequency is desired, or other
heavy calculations need to be performed, the execution time could still be too long. By
implementing the EKF algorithm given in Figure 2 the total execution time could be reduced
further. In experimental implementation the switching frequency is selected as 5 kHz and
the background procedure call frequency is 1 kHz. In this case the total microcontroller
usage for the EKF algorithm calculation is 6.21%. However, if the entire EKF calculation is
performed in one switching period, the microcontroller uses as much as is 18.85% of its
computational power. With these settings the total microcontroller processing time for EKF
is reduced more than 3 times.

6. Experimental Setup and Results

The experimental test platform is shown in Figure 7. The test setup mainly consists of:
a 30 W PMSM motor driven by an NXP inverter FRDM-MC-LVPMSM; other PMSM as a
load; the NXP board Xpresso-LPC1549; DC voltage power supply 24V; 360P photoelectric
incremental rotary encoder; personal computer (PC).

The PMSM parameters used in experimental setup are defined in Table 3. All measure-
ments are done in real time by an LPC1549 microcontroller and data are transferred into a
personal computer. The phase current was sampled by sensors while the phase voltages
taken from control algorithm. The rotor position estimated by the EKF was compared
to the signal obtained from a photoelectric incremental rotary encoder. In Figure 8a the
estimated rotor position is compared with rotor position measured by the encoder, for the
reference speed set to 400 rad/s. Figure 8b shows position variance and Figure 8d presents
the Kalman gains for position measurement corrections. The switching frequency fs was
set for 5 kHz, while the Kalman gain and all covariance matrices are calculated at the same
frequency of fb = 5 kHz.
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DC supply Inverter

LPC1549 Board

PC

PMSM

Load

Encoder

+

−

Figure 7. Experimental system configuration.

Table 3. PMSM parameters.

Parameter Symbol Value

Stator resistance Rs 1.2 Ω
Synchronous inductance Ld 0.5 mH
Synchronous inductance Lq 0.5 mH

Flux linkage λm 0.007 Wb
Number of poles P 8
Nominal voltage Vn 24 V
Nominal torque Tn 0.063 Nm

Rated speed ωn 4000 RPM
Rated power Pn 30 W

In Figure 9 the same measurements are performed, but with a reduced Kalman gain
and covariance matrices calculation frequency fb of 1 kHz. To get results in Figure 9 the
Kalman gain and covariance matrices are computed 5 times slower. Comparing the results
presented in Figures 8b with 9b one can see, that the position error is about the same average
value. More details about position error dependency are presented below. The position
variance P44 in Figures 8a and 9a is about the same average value [0.35− 0.37]. This means
that the variance of estimated position did not change with reduced Kalman gain and
covariance matrices calculation frequency. The Kalman gains for position estimation in
Figures 8d and 9d have the same amplitude peak values and have similar shapes, but
the shape in Figure 9d are more discrete. A bigger discretization steps are mainly due to
reduced calculation frequency of Kalman gain. During a short time (1/ fb) the Kalman gain
matrix is assumed to be a constant value. And the Kalman gain matrix is used multiple
times in control procedure until background procedure calculates new one.
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Figure 8. Experimental results of the rotor position estimation performance at fb = 5 kHz fs = 5 kHz
and we = 400 rads. (a) measured and estimated rotor positions, (b) estimated position error, (c) esti-
mated position variance, (d) position estimation Kalman gains.
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Figure 9. Experimental results ot the rotor position estimation performance at fb = 1 kHz, fs = 5 kHz
and we = 400 rads. (a) measured and estimated rotor positions, (b) estimated position error, (c) esti-
mated position variance, (d) position estimation Kalman gains.
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Further experimental tests have shown that the position error did not increase when
reducing the Kalman gain, and it’s covariance matrices calculation rate, until some mini-
mum frequency fbmin is reached. The position errors at various fb frequencies are shown in
Figure 10. In Figure 10e the Kalman gain, and it’s covariance matrices calculation update
rate is 12 times slower ( fb = fs/12) than the switching frequency, while the position error
order is about the same, as when calculated in every switching instance.

However, slowing the Kalman gain and covariance matrices calculation update rate
will cause the synchronization to be lost. By setting: fb = fs/13 and reference speed
were f = 400 Hz the synchronization is lost, and the rotor speed drops to zero and reverse
spin occurs as shown in Figure 11.

The last experimental tests have shown that the minimum Kalman gain and covariance
matrices calculation update rate depends on the fundamental electrical rotor speed and
this relation is very similar to simulation results.
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Figure 10. Estimated position errors at various Kalman matrices calculation update frequencies fb.
The switching frequency 5 kHz and the rotor electrical angular speed 400 rad/s. (a) fb = 5 kHz,
(b) fb = 2.5 kHz, (c) fb = 1.25 kHz, (d) fb = 500 Hz, (e) fb = 454 Hz, (f) fb = 416 Hz.
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Figure 11. Synchronization lost at: fb = 384 Hz, fs = 5 kHz and reference speed were f = 400 rad/s.
(a) measured (θe) and estimated ( θ̂e) rotor positions, (b) estimated position error (∆θe).

The Figure 12a depicts the relation between the minimum matrices calculation fre-
quency fbmin and fundamental rotor frequency fe. To obtain the relation of fb

fe
the experi-

ments with different speed reference points was analyzed. For each speed reference point,
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the minimum frequency fbmin was searched. The frequency fbmin considered enough high
if the motor speed with constant reference speed was controllable. In the experiment,
the frequency fbmin was reduced until the control was lost. The loss of the control was easy
to see from the rotor speed not able to follow the speed reference set-point, the speed of the
rotor dropped to zero. The synchronization was obviously lost. From this experiments it
could be seen that the higher the reference speed, the higher update matrices calculation
rate was needed. From Figure 12a the relation of minimum required fbmin and fe is linear.
The Figure 12b presents the same measured data as in Figure 12a, by taking ratio fb

fe
. From

Figure 12b can be seen how many times per rotor electrical period, the Kalman gain and
covariance matrices has to be computed without losing control. From Figure 12b we can
conclude, that for high frequencies ( fe > 50 Hz) the minimum 7 times Kalman gain and
covariance matrices have to be computed per one rotor electrical period. The lower ratio
of the Kalman gain and covariance matrices calculation ratio ( fb

fe
< 6) will mostly cause

lost control. The higher ratio ( fb
fe
> 7) of course will be good, but the higher ratio means

more computation power are needed. Also, from Figure 12b we can conclude, that at low
frequencies ( fe < 50 Hz) the ratio fb

fe
is higher than 7 is needed, but from Figure 12a we can

see that the required minimum frequency fbmin is decreasing even if the ratio increase fbmin
fe

.
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Figure 12. Experimentally measured relation between the minimum required Kalman matrices
calculation frequency fbmin and the rotor electrical frequency fe. (a) the relation between mini-
mum required fbmin and fe, (b) the relation between the ratio of fbmin to fe and the rotor electrical
frequency fe.

ARM Cortex-M3 LPC1549 processor usages for executing EKF estimator with various
background frequencies are given in Table 4. The data from Table 2 was used for calculating
usages. Also, by applying the role that at least 7 times per one rotor electrical period Kalman
gain and covariance matrices have to be computed, we get maximum allowed electrical
frequency ( femax) in control. That level of optimization to choose is a trade-off decision
between processor usage and the maximum allowed electrical frequency in the system.

Table 4. Processor usages for executing EKF estimator with different background frequencies, fs = 5 kHz.

fb CPU Usage femax

5 kHz 18.85% 714 Hz
2.5 kHz 10.95% 357 Hz
1.25 kHz 7.0% 179 Hz
500 Hz 6.21% 71 Hz
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From Table 4 can be seen that even reduction of background frequency by two times
from 5 kHz to 2.5 kHz gives a good time optimization. The further reduction gives less
win of the processor time for each step.

7. Conclusions

This paper proposes optimized EKF estimation method for PMSM sensorless control
with low execution time. The computational methods used to simplify the EKF estimator
and their implementation in fixed-point arithmetic are discussed. Experiments and simu-
lation have been carried out to evaluate the performance and the computing cost of the
EKF based on Kalman gain and all covariance matrices calculation in separation from the
prediction and update steps. The primary conclusions are summarized as follows:

1. Separation of the Kalman gain and all covariance matrices calculation from predic-
tion and update steps could provide the same accuracy with less execution time of
the processor.

2. The minimum required Kalman gain and all covariance matrices update ratio depend
on the fundamental electrical frequency, the higher electrical frequency the higher
update frequency required.

3. The estimated rotor position error did not increase until minimum required Kalman
gain and all covariance matrices update ratio is reached.
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