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Abstract: The increasing share of distributed renewable energy resources (DER) in the grid entails
a paradigm shift in energy system operation demanding more flexibility on the prosumer side.
In this work we show an implementation of linear economic model predictive control (MPC) for
flexible microgrid dispatch based on time-variable electricity prices. We focus on small and medium
enterprises (SME) where information and communications technology (ICT) is available on an
industrial level. Our implementation uses field devices and is evaluated in a hardware-in-the-loop
(HiL) test bench to achieve high technological maturity. We use available forecasting techniques for
power demand and renewable energy generation and evaluate their influence on energy system
operation compared to optimal operation under perfect knowledge of the future and compared to
a status-quo operation strategy without control. The evaluation scenarios are based on an extensive
electricity price analysis to increase representativeness of the simulation results and are based on
the use of historic real-world measurements in an existing production facility. Due to real-world
restrictions (imperfect forecast knowledge, implementation on field hardware, power fluctuations),
between 72.2% and 85.5% of the economic optimum (rather than 100%) is reached. Together with
reduced operation cost, the economic MPC implementation on field-typical industrial ICT leads to
an increased share of renewable energy demand.

Keywords: model predictive control; hardware-in-the-loop; programmable logic controller; cyber-
physical system; energy transition; smart energy systems

1. Introduction

With the shift from predominantly fossil-fuel-based electricity generation towards an
energy system primarily based on renewable energy sources, new operational challenges
for the electrical grid arise. A high penetration of renewable energy sources in the grid
entails a paradigm shift in the utility grid operation, because electricity demand needs to
be adapted to a certain degree for renewable energy generation. One of various methods
for renewable energy supply and electricity demand to meet is demand side management
(DSM) [1]. Flexibilization on the demand side should be incentivized by energy scarcity and
excess pricing signals, and should be automated through information and communications
technology [2,3]. European electricity providers with more than 200,000 customers are
required to offer dynamic price contracts by the directive of the European parliament and
of the council of 5 June 2019 on common rules for the internal market for electricity [4].
Rather small electricity retailers already offer time-variable energy tariffs on the German
market [5–7].

To date, the energy system operation strategy of households and small and medium
enterprises (SMEs) usually is to maximize the own consumption of on-site distributed
renewable energy (DER). This is due to privileged own-consumption tariffs and static
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energy supply tariffs and does not comply with the goal of flexibilization. Literature
abounds with energy management strategies in the residential sector, whereas we focus
particularly on SMEs since they have high DSM potential. This potential results from
incorporating plannable electric vehicle (EV) fleets, large roof-mounted photovoltaic (PV)
energy systems on production facilities, dual-use of battery storage for energy management
and uninterruptible power supply, and existing ICT for the automated implementation
of DSM measures. ICT in SMEs often contains programmable logic controllers (PLCs) of
IEC 61131 standard with application-specific IOs and fieldbuses [8], which we will use in
our work.

A promising approach for the incorporation of DSM in microgrids is economic
model predictive control (MPC). This optimization-based technique has been shown
to be beneficial for microgrid operation involving battery storage, EVs, and renewable
generation [9–13]. It allows to take the predictability of the controlled system into account
and enables economically driven operation strategies depending on time-variable prices.
However, the implementations described in the literature are often simulation-only and are
implemented on desktop or workstation hard- and software [13–15]. Moreover, the forecast
data used to predict renewable energy sources often implies perfect knowledge of the future.
Other work focuses on peak shaving and disregards time-variable electricity tariffs [16].
Hardware implementations of MPC were shown for energy systems but often use Matlab
or similar desktop/workstation software for tertiary control (optimization, MPC) and
underlying interfacing with Labview or SCADA devices for primary/secondary control of
energy system components [16–19]. The authors of [20] report on a field-hardware-only
implementation of a tracking MPC for a distillation column. To this end, they ported MPC
algorithms to the IEC 61131 programming language on a PLC. More recently, in [21] an
MPC was implemented in IEC 61131 code by code generation from MATLAB, which results
in code that can be hard to maintain or modify.

The use of MPC in embedded systems is still limited by implementability and de-
pendability issues (dependability is used as a collective term for the time-related quality
characteristics of a system and includes concepts such as availability, reliability, recover-
ability, maintainability, maintenance support performance, durability, safety, and secu-
rity) [22,23]. Requirements, that we fulfil in our field-ready implementation of economic
MPC for energy systems, are the incorporation of typical SME energy system components,
implementation on field-suitable hardware only, prediction but imperfect knowledge of
future PV power and aggregated power consumption, problem formulation such that
commissioning is limited to parametrization (complexity reduction), and increase of op-
eration reliability, safety, and security by hardware-in-the-loop (HiL) testing. The article
addresses the research gap from simulation papers (mostly in the residential sector or sin-
gle specific plants) and hardware implementation based on workstations towards on-site
and stand-alone implementations on field-hardware (industrial ICT) with a reasonable
trade-off between commissioning effort and optimisation results, keeping the rather low
economic savings potential with today’s typical price structure in mind.

This paper extends the preliminary study presented in [24] to include electric mobil-
ity, simulation of more representative scenarios with longer duration, and comparison of
MPC results under uncertainty of forecasts with the theoretical optimal solution under
perfect forecasting knowledge.

2. Materials and Methods

This section describes our linear model of a microgrid, the MPC formulation, and
implementation on field-typical hardware. The underlying predictions of pricing, PV and
load power are outlined, too. Furthermore, an experimental performance evaluation of the
field-ready implementation by HiL testing is described. The conditions and scenarios of
these experiments are also described in this chapter.
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2.1. System Modelling and Implementation Specifics

The basic idea of economic MPC is to repeatedly solve a constrained optimization
problem with receding horizon and an objective function that represents an economic
objective [25]. Therefore, it is necessary to establish a mathematical model of the con-
trolled system, or plant. This section describes the system model, the objective function,
and implementation specifics.

2.1.1. System Modelling

The system model that is used in an MPC controller must provide information about
the future state as a function of the current state and of current and future inputs. This
model can be formulated in various forms such as differential equations, state-space repre-
sentation, transfer function representation, or discrete difference equations but also artifical
neural network (ANN) models [26]. In this work, we use an explicit discrete state space
representation. The goal is to develop this MPC implementation for use in SME micro-
grids. Therefore, the system architecture and the constraints were chosen with an existing
production facility in mind, used as a representative example.

The components of the energy system model and their associated active powers are
depicted in Figure 1. The system consists of a PV power plant (power output P0), a single
immutable load (P1) which represents the aggregated power demand of the production
facility and must be met at all time, a battery storage (charging power P2,c, discharging
power P2,d, energy content E2) for dual use (uninterruptible power supply and DSM), an
EV (charging power P3,c, discharging power P3,d, energy content E3), and a connection
to the central power grid. The grid can serve as source (P4,s) or as a sink for for feed-
in of surplus renewable energy (P4, f ). The absent discharging of the vehicle battery by
driving is modelled with a discharge power P3,a. Transmission losses due to cabling
etc., are neglected as they could not be determined with reasonable effort in practical
commissioning situations.

Figure 1. System architecture of the energy system under investigation and system components (Pk
i

denoting power exchange and Ek
i denoting energy content of component i at timestep k).

The energy conservation in the local microgrid and in the two storage components
and the power prediction for the PV plant and the load leads to the discrete linear model
equations

Pk
0 + Pk

2,d + Pk
3,d + Pk

4,s − (Pk
1 + Pk

2,c + Pk
3,c + Pk

4, f ) = 0, (1)

Ek+1
2 − Ek

2 = ∆t× (η2,c × Pk
2,c − 1/η2,d × Pk

2,d), (2)

Ek+1
3 − Ek

3 = ∆t× (η3,c × Pk
3,c − 1/η3,d × Pk

3,d − Pk
3,a), (3)

Pk
0 = Pk

pv,f, and (4)

Pk
1 = Pk

load,f. (5)
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Here,
Pk

i = Pi(t = tk) with tk = k∆t (6)

denotes the active power exchanges of component i at timestep k, and

Ek
i = Ei(t = tk) (7)

are the energy contents of the battery storage (i = 2) and the electric vehicle battery (i = 3)
at timestep k. The time interval ∆t is the time difference between discretization steps
(the sampling interval). ηi,c and ηi,d are the charging and discharging round-trip efficiencies
of battery storage and electric vehicle, which are assumed to be constant. While in reality the
efficiency depends on C-rate, aging, SOC, etc. [27], the assumption of constant efficiencies
does not contribute larger errors than the many unknown disturbances and uncertainties
associated with systems the parameters of which cannot be identified completely for
economic reasons. The fact that the assumption preserves the linearity of the problem,
justifies its use in these circumstances. Pk

pv,f and Pk
load,f are the respective PV and load power

forecasts at timestep k (see Section 2.2).
German grid regulations allow the feed-in from battery electric storage systems (BESS)

or EV to the utility grid if these components can only be charged by on-site renewable
generation, but not from the grid. Because we want to exploit time-variable energy prices
by storing cheaper energy in the BESS, this means that the feed-in from BESS or EV to the
local microgrid must be less than the total power consumption to avoid feed-in into the
utility grid:

Pk
2,d + Pk

3,d − Pk
1 − Pk

2,c − Pk
3,c ≤ 0. (8)

Additional constraints hold because of limitations in the rated power of components
and cabling,

0 ≤ Pk
i ≤ Pi,max, (9)

as well as limitations in the energy content of the BESS and EV,

SOCi,min × Ci ≤ Ek
i ≤ SOCi,max × Ci (10)

for all k, with minimum and maximum permitted state of charge (SOC) and the component
capacities Ci. An SOC operating window which is a subset of 0 % to 100 % is advisable
to increase the lifespan of the batteries, or to guarantee uninterruptible power supply for
a certain amount of time in case of grid faults. It may also be useful to limit or stop the
vehicle’s feed into the local grid to increase its battery life:

Pk
3,d ≤ Pk

3,d,max. (11)

The end user may want to guarantee certain minimum SOCs for their EVs at selected
points in time, depending on their fleet planning. A target SOC for the EV at timestep k
can be formulated as

SOCmin × C3 ≤ Ek
3. (12)

We minimize the economic cost function

J =
N−1

∑
k=0

l(ck
i , Pk

i ) = ∆t×
N−1

∑
k=0

(−cfeed-in × Pk
4, f + ck

supply × Pk
4,s) (13)

over a finite time horizon subject to the equality constraints (1)–(5), inequality con-straint (8)
and lower and upper bounds (9)–(12). The economic costs are calculated with a fixed feed-
in tariff cfeed-in and time-dependent electricity supply prices ck

supply, the step size ∆t over
the number of time steps N resulting in a prediction horizon of tp = N × ∆t. To ensure
reasonably foresighted fleet planning, a prediction horizon of tp =48 h was chosen. The
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discretization time step ∆t is 15 min, which is a common billing period in energy economics.
This results in N = 192 timesteps.

In this formulation, the charging and discharging powers of the storage units are
independent. In theory, this allows the simultaneous charging and discharging of storage
units, which is physically unreasonable. However, this condition could only occur, if the
power exchange between microgrid and utility grid were constrained and PV generation
were larger than the power demand, such that excess energy would have to be consumed.
Otherwise, simultaneous charge and discharge leads to energy losses and therefore costs,
that are avoided in the optimization by feeding surplus PV energy into the grid. Power ex-
change between the microgrid and the utility grid is not constrained, as the grid connection
in the modelled production facility sustains simultaneous maximum power demand of EV,
BESS, and load. Subsequently, simultaneous charging and discharging does not occur.

A similar problem exists for the power exchange of the microgrid with the main
grid. Simultaneous demand and feed-in are physically not reasonable, but possible in our
formulation if the price for electricity supply were less than the feed-in tariff. For the tariff
we evaluated, this is not the case. Nonetheless, lower retail prices might occur in the future,
even though feed-in tariffs for DERs are expected to further decrease as well. If this case
only occurs rarely, a simple mitigation is to treat such prices as equal to the feed-in tariff.
This of course discards optimality and no longer reflects actual economic costs, but avoids
a mixed integer formulation. With increasing frequency of lower retail prices, this would
have to be reconsidered. Simultaneous charging and discharging can be avoided by hiding
nonlinearity with mixed logical dynamical system modeling [9,28]. However, this results
in a MILP, which we avoid.

With the state vector
x := (E0, E1, P0, . . . , P5), (14)

where
Pi := (P0

i , . . . , PN−1
i ) and (15)

Ei := (E0
i , . . . , EN

i ), (16)

the equations, which have to be solved at every iteration, can be written in general form of
a linear programming (LP) problem, also called linear optimization problem, with linear
constraints and linear cost function:

min
x

cTx (17)

s.t. Aeqx = beq, (18)

Aubx ≤ bub, and (19)

l ≤ x ≤ u (20)

with a specific cost vector c containing the cost of energy supply and revenue from feed-in,
lower and upper bounds l and u, equality and upper bound inequality constraint matrices
Aeq and Aub, and equality and inequality constraint vectors beq and bub. These quantities
have the dimensions

Pi ∈ RN , (21)

Ei ∈ RN+1, (22)

c, x, l, u ∈ R11N+2, (23)

beq ∈ R5N+2, (24)

Aeq ∈ R(5N+2)×(11N+2), (25)

bub ∈ RN+2 , and (26)

Aub ∈ R(N+2)×(11N+2). (27)
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In the context of MPC, the constrained optimization problem (17)–(20) is solved
repeatedly, proceeding as follows:

1. Sample system state: SOC measurements, prediction of PV power and aggregated
power demand

2. Solve constrained optimization problem using the recently sampled state and the
predictions from step 1 for the prediction horizon tp;

3. Apply first elements of the optimal control sequence of the decision variables P2,c,
P2,d, P3c , and P3,d to the energy system for a specific control horizon tc;

4. Repeat after defined interval with a receding prediction horizon

The control horizon tc is chosen to be equal to the step size ∆t, i.e., only the first
element of the optimal control sequence is applied. The forecast of PV power and power
demand is assumed to be more representative for the following 15 min than the recently
measured value, which is why the prediced PV and load powers are used as system
state variables.

The decision to use an LP formulation as described above is also motivated by the
requirement of independence from high performance but expensive commercial solvers
and by the requirement of embedded (low-performance) hardware. Furthermore, ques-
tions about reachability of global optimality, computational complexity, determination of
runtime, and lower bounds for the objective function can be answered deterministically for
linear formulation. This ultimately benefits reliability.

2.1.2. Hardware and Software Implementation

Our MPC has been implemented on industrial hardware mounted on DIN rails, which
is typically used enclosure systems (see Figure 2). The hardware, on which the optimization
runs, is a field device of the type “Wago Edge Computer, 752-940x” based on an Intel Atom
E3845 quad-core processor with 1.91 GHz running Linux. A PLC of the type “Wago PFC
200, 750-8212” is used for measurements in the energy system (system sampling) and the
communication of set-points to underlying controllers like the battery controller or the
communication with the EV.

Figure 2. Hardware setup: (a) Human–machine interface, (b) power supply, (c) PLC, (d) edge
computer, (e,f) fieldbus-coupled input and output modules of the PLC.
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In this way, measurement and component control on the one side and operational
planning on the other side are clearly separated. This separation is important for

• commissioning: The parametrization of the MPC system parameters (storage ca-
pacities, bounds, efficiencies, . . . ) is done on the PLC and is available to the edge
computer (EC) via Modbus, such that the commissioning engineer only requires IEC
61131 knowledge;

• reliability: Independent devices for supervisory control and underlying component
control, such that fallback mechanisms in case of MPC failure can be implemented in
the PLC;

• maintainability: separation of devices and modularization simplifies maintenance and
further development;

• IT security: Independent devices provide different rights management, different
interfacing (local and web), and media discontinuity.

The implementation on field-devices led to specific software requirements. Opti-
mization is computationally expensive, such that the limited computing power of typical
ICT components was taken into account. Moreover, desktop/workstation software like
MATLAB was avoided and independent (stand-alone) solver implementations were used.
Additionally, specific requirements for licensing were considered. Open-source solvers,
licensed with strong copyleft, may not be usable if commercialization of the MPC solution
is intended. On the other hand, the price of commercial solvers might exceed potential sav-
ings. We decided to use the linprog solver, distributed with Python’s Scipy package, which
is licensed under a permissive BSD license. This solver is a Python implementation of the
interior point method. The optimization is triggered every 15 min by the operation sys-
tem’s scheduler resulting in high triggering precision of less than 7 µs. Figure 3 shows an
activity diagram of the software implementation.

While simulation studies allow the user to examine exceptional cases such as fail-
ing solver convergence, unusually many iterations, or other particularities in more detail,
there is no such easy way of monitoring in real-time field implementations. This requires
the field implementation to be much more reliable. This is why the PLC carries out a
feasibility check. Optimization results are not applied to the energy system unchecked.
Only if the optimization algorithm exits successfully, results are applied to the system by
the PLC. Success of optimization is communicated to the PLC via Modbus. Otherwise,
the system is set to a fail-safe mode (e.g., deactivation of the storage or EV charging on
maximum power regardless of pricing). Fail-safe operation can be defined by the commis-
sioning engineer in IEC 61131 code. Furthermore, the PLC is responsible for redundancy
in constraint satisfaction. Optimization results are compared again with the bounds, set by
the commissioning engineer. In case of bounds violation (e.g., due to MPC implementation
faults), the PLC uses fail-safe operation mode. In addition, the PLC is responsible for the
inequality constraint satisfaction of (8). Direct application of the optimization results with
a 15-min resolution could lead to constraint violation (e.g., battery feed-in to the grid when
power demand is lower than predicted). The PLC avoids this by continuously monitoring
the inequality constraint and restricting the setpoints in case of violation. Moreover, the
commissioner can implement special behaviour for scenarios outside of planned operation
(e.g., power outages of the grid). Further reliability measures can be found in [22], where
fault handling is categorized in fault prevention, fault tolerance, fault detection, fault
removal and fault prediction. Fault removal and prediction are not covered in our work.

Unsuspecting end users might configure lower EV SOC bounds that are infeasible
due to insufficient charging time or power. For this reason, the feasibility of SOC bounds is
checked before optimization and infeasible bounds are changed to the maximum feasible
lower bound. In this way, the vehicle is charged to the highest SOC that can be achieved in
the remaining time. For a linear problem under investigation, which is convex, choosing
the constraints in a reasonable and pre-checked way avoids infeasibility, which is why slack
variables as proposed in [22] are not applied, because this would increase the problem size.
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Figure 3. UML activity diagram of the economic MPC implementation on server, EC and PLC.

2.2. Predictions of Electricity Prices, Power Demand and PV Power

A crucial advantage of MPC over error tracking methods like PID controllers is its
ability to take knowledge about the future into account. This applies both to system
dynamics and to external disturbances. PV power and aggregated consumer power as
well as electricity prices can be considered external disturbances. These variables can be
predicted to a certain degree. Prediction methods and accuracy measures are described in
the following subsections, the evaluation of predictor accuracy is shown in Section 3.

2.2.1. Price Forecasts and Price Analysis

The EU directive on common rules for the internal market for electricity [4] stipulates
that beginning in 2021 electricity suppliers with more than 200,000 customers must offer
electricity tariffs representing real-time pricing signals based on spot market prices. Some
rather small electricity providers are already offering such time-variable tariffs on the
German retail market [5–7]. In this implementation, the price API of [5] is used, which is
representative for dynamic tariffs that pass on electricity exchange prices. This electricity
tariff is composed of a fixed basic charge per kWh and hourly variable charges, which
depend on the day-ahead market clearing prices at the European power exchange. Retail
prices for the following day are made available by the supplier daily at 2 p.m., which is
when market clearing at the European power exchange takes place. This means that secure
price information is available for a forecast horizon between 10.25 h (at 1.45 p.m. until
midnight of the same day) and 34 h (at 2 p.m. until midnight of the next day). Since the
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optimization horizon is 48 h, price information for the remaining hours is necessary. For
these remaining hours, mean prices from historic price data of 52 weeksW = {w ∈ N | 1 ≤
d ≤ 52} in 2020 were used. These were calculated for every type of day D = {d ∈ N | 1 ≤
d ≤ 7} and hourH = {h ∈ N | 1 ≤ d ≤ 24} resulting in 168 hourly prices

csupply,mean(h, d) =
1

52

52

∑
w=1

csupply(h, d, w). (28)

Moreover, the daily price spread and mean absolute deviation from daily mean prices
in 2020 were calculated. This analysis gives further insight into electricity pricing and
provides information on the suitability of pricing in terms of economic DSM potential.
In the literature, simulation scenarios often are referred to as typical days, but their in-
formative value is limited due to the non-transparent selection of these days. The price
analysis supported the selection of scenarios serving to evaluate the MPC implementation.
The intraday price spread

cspread(d, w) = max
h∈H

(csupply(h, d, w))−min
h∈H

(csupply(h, d, w))) (29)

is the difference between daily maximum price and daily minimum price for electricity.
The daily price spread alone is not a good indicator for DSM potential of the respective
day, because the duration of price fluctuations is just as important for the exploitation of
dynamic pricing as the spread. Hence, the mean absolute deviation (MAD)

MAD(d, w) =
1

24
×

24

∑
h=1
|csupply(h, d, w)− c̄(d, w)| (30)

of hourly prices from the daily mean price

c̄supply(d, w) =
1

24
×

24

∑
h=1

(csupply(h, d, w)) (31)

is a better measure of DSM potential because it takes the duration of price fluctuations
into account. The evaluation of relative frequency density of prices, MAD, and intraday
price spreads is shown in Section 3. The feed-in tariff for PV power feed-in is not time-
variable and defined in German feed-in legislation EEG. In this work, the tariff for plants
commissioned in August 2020 is used, which amounts to 8.9 ct/kWh.

2.2.2. Photovoltaic Power Predictions

The PV power generation at the production facility is predicted by an online imple-
mentation using external numerical weather prediction (NWP) data from the German
weather service (DWD) and physical PV models as described in previous work [29]. In
the first step, prediction data of relevant weather parameters (irradiance, temperature,
wind speed, etc.) from the COSMO-D2 NWP model of the DWD is downloaded from the
open data server of the DWD [30] to a local server. These weather predictions are provided
with a 15-min to 1-h resolution, depending on the parameter, and for the whole model area
of Germany in GRIB2 format. These raw data are then processed using the software pack-
age ecCode [31] of the European Centre for Medium-Range Weather Forecasts (ECMWF) to
extract localized parameters for the location of the PV power plant. The extracted localized
weather parameters are then used for PV power calculations using the pvlib-python library,
which provides Python implementations of physical PV modelling [32]. The PVWatts
physical model of National Renewable Energy Laboratory (NREL) was used for our predic-
tions [33]. The DC power of PV module arrays is calculated from plane-of-array irradiance
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Epoa, the nameplate power Pdc0 at standard test conditions, the temperature coefficient
γpdc, and the cell and reference temperatures Tcell and Tref by

Pdc =
Epoa

1000
Pdc0(1 + γpdc(Tcell − Tref)). (32)

Furthermore, inverter and cabling losses are considered. The DWD runs the COSMO-
D2 model every three hours starting at 12 a.m. coordinated universal time (UTC) with a
forecast horizon of 27 h each, except for the model run at 3 a.m. UTC, which has a forecast
horizon of 45 h. The PV power forecast implementation is automated to recalculate the PV
output power with each weather prediction release by the DWD.

The PV power predictions depend on the provisioning of data from the DWD and
on internet access. For reasons of reliability, the penultimate and third-last forecasts are
always used in addition to the most recent forecast. This bridges up to nine hours of data
provisioning downtime. Furthermore, the 3 a.m. forecast is always used due to its longer
prediction horizon. Priority is always given to the most recent prediction data. As the
power prediction forecast of 27 to 45 h does not cover the 48-h optimization horizon, the
power output beyond NWP predictions is modelled as half-sine wave during daytime at
time of day ttod

ppv(ttod) = ppv,max × sin
(

π(ttod − tsr)

tdl

)
. (33)

Here, ppv,max denotes the maximum intra-day power, tsr—the time of sunrise, tdl —the
daytime duration, and ppv,max—a peak power depending on the season (winter, summer,
transition) and based on historic PV plant measurement data. This prediction method
is used as fallback method in case of failing data provisioning and on the far end of the
prediction horizon beyond NWP data. The influence of imperfect predictions on the far
end of the forecast horizon is low, as shown in [24], such that this method is suitable as
addition to the NWP based prediction.

Data-driven models were not considered here for practical reasons. For widespread
application in SMEs it is necessary to obtain solid prediction data from day one without the
need of model training and protracted data acquisition. This can be achieved by physical
modeling. Moreover, the authors of [34] have found that data-driven models (trained
on five years worth of data) show similar performance as their physical model using
COSMO-D2 data of DWD.

2.2.3. Power Demand Predictions

The aggregated power demand of the production facility is modelled as a single and
immutable power consumer. From the analysis of historic electricity-demand data, it
became clear that the electricity demand of the investigated production facility quite stably
follows a pattern that mainly depends on the working hours of the company. The aggre-
gated demand was therefore modelled by averaging of one year of historic data, similar
to the price forecasts. The prediction distinguishes between weekdays (Monday to Thurs-
day), Friday, Saturday, and Sunday, and uses a 15-min resolution such that each demand
profile consists of 96 values. While this is a simple approach, it is sufficient for this field
implementation. It could possibly be improved by more sophisticated methods, however,
the influence on the control performance depends on the load variability of the SME and a
reasonable trade-off between simplicity of commissioning and control performance gains
is required.

2.3. HiL Simulations

The field-ready MPC implementation described in Section 2.1 was tested in a HiL
testbench, based on previous work described in [35]. The following subsections provide
details about the system architecture of the testbench, the simulation conditions, and
evaluated scenarios.
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2.3.1. HiL System Architecture

For safety and security reasons, the controller implementation described in Section 2.1
cannot simply be characterized and tested in the real-world production environment of the
facility (the “field”). However, testing of the implementation should cover as many aspects
as possible that occur in the field. For this reason, the energy system of the production
facility was modelled as a digital twin in MATLAB/Simulink with real-time execution
on a workstation computer. The simulation model matches the controller model, except
for the battery model, for which a generic model from the Matlab/Simulink Simscape
library was used. The library model is more comprehensive than the integrator in the
controller model. This results in a model mismatch that will also exist when controlling
the energy system in the production facilty. The MPC hardware implementation and
the simulation model communicate via the same field interfaces that are used in the
production facility, viz., MODBUS/TCP and CAN. Interfaces and protocols are realized as
in the field components in the production facility, such that the controller implementation
under test in this virtual environment is an identical twin of the field controller in the
production. This makes for a high technology readiness level prior to the actual field
implementation. The system structure is shown in Figure 4.

Figure 4. Hardware and Software components of the MPC control solution: HiL model, PLC, and EC.

2.3.2. Simulation Acceleration and Synchronization

In order to be representative for the real operating behaviour of the field-ready hard-
ware implementation, the simulation in the HiL experiment must run in real-time. To
evaluate the MPC implementation over a long period of time (e.g., days or weeks), the
HiL experiment would require an equally long simulation duration. If one wants to treat
different scenarios, as we did, one has to accelerate the simulation times. This is limited by
the computing power of the HiL simulation computer and the field hardware (PLC, EC).
The HiL simulation computer and the PLC allow acceleration without influencing the simu-
lation results as long as the CPU of both components is below full load and as long as their
processes are worked off in specified cycle times. Another factor limiting the acceleration
is the invariant computation power of the EC, which solves the constrained optimization.
In non-accelerated mode, optimizing a 48-h interval with 15-min resolution requires about
6 s of CPU time, i.e., the optimization solution is applied to the energy system 6 s after
the start of each quarter hour. Due to the acceleration of the surrounding HiL simulation,
this time interval scales linearly with the acceleration factor. An acceleration factor of 2 for
the HiL-simulation means that the optimizer’s solution is applied to the energy system
virtually 12 s after the start of each quarter hour. We limited the acceleration factor to 5,
which results in a delay of 24 virtual seconds, in order to limit the distorting influence of
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the delayed arrival of the optimization results at the energy system. Yet, this allowed us to
investigate significantly more scenarios per time.

Another issue we considered is synchronization and time drift. The devices should of
course be synchronized such that the HiL simulation and the optimization device operate
on the same simulation time. Nevertheless, the optimization device should remain close to
the real field behaviour. External triggering of the MPC is therefore unwanted. Initial syn-
chronization was achieved by setting the date and time of the EC from Matlab via SSH at
the start of simulation. Both computers show usual clock drift, resulting from their internal
clock mechanism, as the EC cannot be synchronized to NTP servers when historic scenarios
are simulated. Therefore the clock drift of the EC compared to the simulation computer
was determined in advance and added proportionally to the simulation acceleration fac-
tor. Subsequently, simulation and optimization devices showed clock drifts of less than
one second for a simulation scenario of two weeks and an initial synchronization offset of
zero seconds.

2.3.3. Scenarios for HiL Simulation

The HiL experiments were conducted with two representative scenarios. These sce-
narios were constructed from historic measurements of PV power and power demand at
the production facility, which was then operated without any control strategy or BESS.
The scenarios were selected based on the results of the price analysis. In addition, only
prediction data of the corresponding days that were available at that time were used for
the simulations (no ex-post knowledge). The scenarios and the reason for their selection
are presented below. The HiL scenario simulation data has a resolution of 10 s. This is
necessary to cover fluctuations in the PV and load powers.

In both scenarios, the BESS has a capacity of C2 = 13.8 kWh, SOC limits of
SOC2,min = 10 % and SOC2,max = 90 %, a maximum charge power of P2,c ≤ 5 kW, a
maximum discharge power of P2,d ≤ 3 kW, and a charging/discharging efficiency of
η2 = 96 %. The EV has a capacity of C3 = 77 kWh, a charging efficiency of η3 = 96 %, a
charging-power limit of P3,c ≤ 11 kW, and no vehicle-to-grid function (P3,d = 0). The PV
power plant has a nominal power of 8.44 kW. The EV is a commuting vehicle the presence
pattern of which was taken from historic usage data. It is planned to arrive at 6 a.m. local
time with an SOC of 10 % and to leave at 5 p.m. with an SOC of 90 % for seven days a week.
There is no mismatch between planned and actual EV behavior.

Scenario 1

The first scenario is based on the two-week interval from 3–16 August 2020. During
these two weeks, the MAD from daily average prices was exceptionally low (see Figure 8).
The minimum MAD was 0.35 ct on August 15, the maximum MAD was 0.75 ct on August 6.
As a result, the economic leverage from flexible prices is comparatively low in this scenario.
With mostly sunny weather, PV energy generation was high, which then resulted in surplus
feed-in of 85 kWh without control intervention. The economic leverage from avoiding sur-
plus feed-in is comparatively high in this scenario, since a feed-in tariff of 8.9 ct/kWh is
applied and the mean electricity price over the two weeks is 23.17 ct/kWh. The difference
can be exploited by avoiding feed-in via load shifting, thus increasing self-consumption
when PV generation is high.

Scenario 2

The second scenario is based on the two-week interval from 14–27 September 2020.
At the beginning of both weeks, the MAD from daily mean prices was exceptionally high
(2.53 ct on 15 September, 2.15 ct on 21 September, 1.53 ct on 14 September, see also Figure 8).
Nine of fourteen days have a higher price MAD, than the maximum price MAD in Scenario
1 (0.75 ct). The cost leverage from flexible prices is comparably high. Moreover, PV power
generation is quite high resulting in surplus feed-in of 92 kWh without control intervention.
The mean electricity supply price for the two weeks was 24.32 ct/kWh.
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2.3.4. Scenario Evaluation

The HiL simulation results with field-ready MPC operation strategy are compared to
two other operation strategies, acting as benchmark strategies:

(a) Status-quo operation strategy
(b) Ex-post optimal operation

With (a) there is no dedicated control strategy, i.e., surplus feed-in occurs when PV
excess energy is generated, no BESS is used, and the EV is charged on arrival until a
threshold SOC of 90 % is reached. This benchmark is used to determine improvements
compared to the status-quo. With (b) the scenario is optimized ex-post under perfect
predictor knowledge (knowledge of 15-min mean values of power demand and PV genera-
tion). This benchmark is used to determined the upper bound of achievable improvements.
The scenario is actually optimized for 16 days and evaluated at the end of day 14 to avoid
emptying of the BESS towards the end of the horizon, which occurs due to the economic
optimization. The determined optimal EV and BESS charging curves are used to determine
the residual load at the grid connection point, where total cost of feed-in and supply for
operation strategy (b) is calculated.

A comparison with other implementations described in the literature is only of
very limited value, since scenarios, components and system dynamics and are gener-
ally rather specific and results are not directly transferable. Therefore, a comparison with
ex-post optimal operation is preferable and is chosen in this work. Moreover, to the best
of the author’s knowledge, there are no peer-reviewed publications on real-time, on-site
implementations on field typical hardware (industrial ICT) without cloud dependendy in
the non-residential sector as of today.

In addition, the energy supplied by the grid is analyzed with regard to the hourly share
of renewable or conventional energy on the basis of market data from the German Federal
Network Agency [36]. In this way, the amount of renewable and conventional energy sup-
plied from the utility grid was determined in each scenario and operation strategy.

3. Results

In this section, we present results in four categories: (1) Price analysis of the chosen tar-
iff [5], which is representative for German energy exchange prices; (2) evaluation of the load
and PV forecasts; (3) verification of the controller model; and (4) evaluation of the perfor-
mace of our implementation by a comparison with the two benchmark operation strategies
(a) and (b).

3.1. Electricity Price Analysis

A heatmap representation of hourly electricity prices reveals an accumulation of high
prices in the morning and evening hours, and lower prices during night-time and early
afternoon (Figure 5). This is plausible as grid power demand peaks in the morning and
evening hours. Moreover, the share of PV power is highest around noon. This suggests
that demand flexibilization (which intends to exploit flexible price) has a typical daily
pattern. This synergizes with daily EV usage patterns and the relatively small storage
capacities of EVs and BESSs. Seasonal price fluctuations are not exploitable with the small
capacity storage of (small) stationary BESSs and of EVs.

Table 1 shows the yearly average of daily mean price, intraday price spread, and intra-
day MAD from daily mean price depending on the type of day in 2020. The price spread
but also MAD can be observed to peak on Mondays and decrease throughout the week
rising again on Sunday. The daily mean price is highest on Monday, relatively stable during
the week, and lowest on the weekend.
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Figure 5. Heatmap of hourly electricity prices in ct/kWh during the year 2020. Extreme values
outside the interval 15 ct/kWh ≤ c ≤30 ct/kWh are not shown (outliers see Figure 7).

Table 1. Yearly average of: Intraday mean price depending, intraday price spread, and intraday
MAD depending on the type of day, calculated from historic price data of the year 2020 in ct/kWh.

Mon Tue Wed Thu Fri Sat Sun

Mean price 23.94 23.10 23.25 23.23 23.07 22.29 21.54
Mean price spread 3.14 2.70 2.26 2.39 1.96 1.53 2.69

MAD 0.71 0.60 0.58 0.56 0.49 0.32 0.61

In Figure 6 the relative frequency distribution of hourly electricity prices csupply(h, d, w),
intraday price spreads cspread(h, d, w), and mean absolute deviations MAD(d, w) from
corresponding daily mean prices c̄(d, w) are shown for the year 2020. The hourly prices
appear to be normally distributed throughout the year. The intraday price spread shows
positive skewness. This means that high price spreads occur rather rarely and the mass of
intraday price spreads occur in the lower range. The same applies for the MAD from daily
mean prices. This keeps the potential of economic return from DSM through load shifting
rather low. Or, to put it differently, higher intraday spreads and MADs are desirable
in Germany in the future if one wants to effectively influence consumer behaviour by
time-variable electricity pricing.

17 19 21 23 25 27 29
Price / (ct/kWh)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
la

tiv
e 

fr
eq

ue
nc

y 
de

ns
ity

(a)

0 2 4 6 8 10 12
Price spread / (ct/kWh)

0.0

0.1

0.2

0.3

0.4
(b)

0 1 2 3 4
MAD / (ct/kWh)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
(c)

Figure 6. Relative frequency density of hourly electricity prices (a), outliers not shown, see Figure 7),
of intraday price spreads (b), and of MAD from daily mean prices (c) in the year 2020.

Figure 7 shows all hourly electricity prices in the year 2020 and the corresponding share
of renewable energy in the German utility grid at each hour. The market data of renewable
energy share is available at the SMARD data platform of the German Federal Network
Agency [36]. The correlation coefficient is r = −0.73. This high negative correlation
between prices and renewable share is explained by the fact that stock-market electricity
prices are determined by the merit-order principle. Renewable energy displaces fossil
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energy on the market due to the difference in their marginal costs. A high share of
renewable energy shifts the merit-order supply curve meeting demand at lower marginal
prices. Conversely, a flexibilization on the demand side based on economic optimization
would effectively reduce the CO2 footprint of electricity demand by shifting the demand
towards hours with higher renewable energy share.
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Figure 7. Hourly share of renewable energy versus hourly corresponding energy prices with a
Pearson correlation coefficient of r = −0.73 (Germany, 2020). The red line marks the basic fee per
kWh of the chosen electricity tariff, prices below the red line correspond to negative prices at the
stock market.

Figure 8 shows a yearly heatmap of the mean absolute deviation of electricity prices
from the corresponding daily mean price for electricity. This information was used to find
time periods that represent typical situations in the electricity market for the evaluation of
our MPC solution. Economic leverage lies in load shifting towards times when electricity
prices are more favorable as well as load shifting towards times when PV power generation
exceeds power demand. The price spread and MAD of electricity prices is significantly
lower than the price spread between grid supply and feed-in tariff, which makes the second
lever economically more influential. All prices in this evaluation are net prices.
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Figure 8. Calendar plot of mean absolute deviation from daily mean prices 2020 in ct/kWh.

3.2. PV and Load Power Predictions

During the operation of the power system, the PV power predictions are updated
every three hours, which is when the NWP model is issued by the DWD. To compare the
forecast in the two scenarios with the actually measured PV power, a two week best-case
forecast was created by stitching the first 3 h of every issue together. These forecasts are
believed to be the most reliable, which is why they are also used as state sample for the
MPC instead of measurements. The relative frequency density of the absolute prediction
error Perr = Psim − Ppred is shown in Figure 9 for Scenario 1 and in Figure 10 for Scenario 2.
In each case, 15-min mean values are compared. Positive errors describe underestimation,
negative errors mean overestimation of the power. Only power generation during daytime
was considered in this analysis. The power forecasts of both components show substantial
errors. All forecasts show a tendency towards overestimation.
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Figure 9. Relative frequency density of the prediction errors for the PV power forecast and the power
demand forecast compared to simulation data (retrieved from historic measurement data) in the
production facility in Scenario 1.
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Figure 10. Relative frequency density of the prediction errors for the PV power forecast and the
power demand forecast compared to simulation data (retrieved from historic measurement data) in
the production facility in Scenario 2.

3.3. Controller Model Verification

The correct implementation of the controller model was verified by implementing
the same linear system model not in Scipy but using the PuLP modeling language [37].
The open-source solver CBC [38] was used to find optimal solutions under various repre-
sentative scenarios. As expected, the optimization results of the SciPy implementation and
the PuLP/CBC implementation are the same, since LPs are convex and global optimality is
achieved whenever the solver converges.

3.4. Performance Evaluation of the Hardware Implementation

Table 2 shows the operational cost of both simulated scenarios. In Scenario 1, a cost
reduction of 13.11 € was achieved. This amounts to 85.5% of the possible cost reduction
in this scenario of 15.33 €. In Scenario 2, operational costs could be reduced by 18.23 €, or
72.2% of the possible cost reduction in this scenario of 25.26 €. The cost reduction consists
of avoided surplus feed-in and shifted energy supply from the grid while prices are low.
These numbers show, that economic MPC on field devices with state of the art forecasting
achieves a large part of the theoretically possible savings.

Table 2. Operational cost comparison of simulated scenarios.

Scenario 1 Scenario 2

Cost Total Supply Feed-in Total Supply Feed-in

Status quo 401.03 € 408.59 € −7.56 € 440.75 € 448.85 € −8.10 €
Ex-post
optimal 385.70 € 386.54 € −0.84 € 415.49 € 416.35 € −0.86 €

MPC, HiL 387.92 € 388.93 € −1.01 € 422.52 € 424.13 € −1.61 €
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Controlling the energy system with our MPC implementation also changes the share of
renewable and fossil-fuel-based energy supplied by the grid, because lower prices correlate
with higher shares of renewable energy in the utility grid (see Figure 7). In Scenario 1,
renewable energy share from the utility grid is increased to 43.8% from 40.7% while at
the same time reducing the total amount of energy from the utility grid by 4.0% due to
increased own consumption. In Scenario 2, renewable energy share from the utility grid is
increased to 44.1% from 41.3% while at the same time reducing the total amount of energy
from the utility grid by 2.7%. Table 3 shows amounts and shares of renewable energy and
conventional energy supplied by the utility grid.

Table 3. Energy from utility grid: Renewable energy (ren.), renewable energy share from grid, conventional energy (conv.),
conventional share from grid, total energy from grid and reduction of utility-grid energy due to increased DER own
consumption in ex-post optimal case and MPC controlled case (HiL-experiment) for both scenarios.

Ren. Energy ren. Share conv. Energy conv. Share Total Reduction

Status quo S1 712.5 kWh 40.7% 1037.2 kWh 59.3% 1749.7 kWh
Ex-post opt. S1 733.9 kWh 43.8% 941.4 kWh 56.2% 1675.3 kWh 4.2%
MPC, HiL S1 736.1 kWh 43.8% 943.7 kWh 56.2% 1679.8 kWh 4.0%

Status quo S2 750.0 kWh 41.3% 1068.0 kWh 58.7% 1818.0 kWh
Ex-post opt. S2 768.9 kWh 44.2% 970.7 kWh 55.8% 1739.6 kWh 4.3%
MPC, HiL S2 780.2 kWh 44.1% 989.5 kWh 55.9% 1769.7 kWh 2.7%

A comprehensive graphical presentation of the simulation results in both scenarios
can be found in Appendices A.1 and A.2. Subplot (d) shows the SOC of BESS and EV.
EV charging is distributed throughout the day by maximizing PV self-consumption and
making use of low energy prices until the EV minimum threshold SOCmin = 90% is reached.
The BESS is typically discharged in the morning hours when prices and load demand are
high, and typically charged by excess PV energy and from the grid when prices are low.
Subplots (e) and (f) show the residual loads at the grid connection point in the uncontrolled
and controlled scenarios. The proposed control modifies the uncontrolled scenario patterns
by avoiding most of the surplus feed-in of PV power and and typically shifting power
demand towards afternoon, when energy prices are typically lower. This control behaviour
makes immediate sense and reproduces what fuzzy rules described in language form
would call for.

4. Discussion

Today, there can be not doubt that machine learning and big-data methods allow one
to optimize large-scale energy systems. This viewpoint is that of utilities, which must
ensure security of supply for many consumers, and also the viewpoint expressed in many
published works. In such applications, the effort for modeling and operating a control sys-
tem is almost irrelevant, because these efforts can be allocated to many consumers and
because statistical influences can be modeled very well due to the law of large numbers.

In this work, we have tried to take a different viewpoint, viz., that of small industrial
prosumers who attempt to optimize their use of electric energy and to minimize cost.
In such applications it is usually not possible to fully model the system, identify all system
parameters, collect data over extended periods of time, compromise production for commis-
sioning, parameterization, and possibly even troubleshooting of new control equipment,
use hardware or software that is expensive or otherwise unsuitable for field use, etc., The
presented implementation takes these restrictions into account. With it, flexible control
equipment for electric power systems can be put into operation with manageable effort.

Again, there exist methods which provide better prediction results in specific and indi-
vidual cases (e.g., no overestimation of PV power or better prediction of load requirements).
Data-driven predictor methods spring to the mind, but they require resources (hard-
ware, software, time for data acquisition and learning) which, under practical demands, are
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often unreasonable. Moreover, prediction methods can be improved incrementally if the
current trade-off between commissioning effort and potential for economic improvement
in microgrid operation is considered unfavorable as price structures change in the future.
For now, achieving as little as 50% of the theoretical optimum at a normalized overall cost
of 1 beats achieving 90% of the theoretical optimum at a total cost of 10.

5. Conclusions

Demand side management through economic MPC on field typical ICT using avail-
able forecasting techniques is beneficial regarding cost reduction for the facility operator,
regarding reduction of fossil fuel based electricity demand and regarding increase of own
consumption. An optimal operation may not be reached with imperfect forecasts, but we
achieved a large part of theoretically possible savings (up to 85%). A high technology
readiness level was achieved by HiL-testing the ICT in a digital twin of the energy system.
We added practical aspects to existing research on MPC for power systems (to date mainly
consisting of simulation-only studies) and show that field implementations are possible
and useful.

However, to further the flexible use of regenerative energy, there is a need for a higher
economic incentive. As our results have clearly shown, the current German pricing struc-
ture is a serious obstacle to the goal of flexible regenerative energy use. This goal can best
be realized by increasing the variable share of energy prices compared to the fixed share of
energy prices (fees, taxes). We also expect price spreads to increase with further installation
of renewable energy plants. The economic benefits for the SME result from variable pricing,
but also from the increase of privileged own-consumption of DERs. Instead of motivating
the PV plant owner towards own consumption, an increased variable share of energy
prices could motivate more customers to switch to time-variable prices and make use of
times with high renewable energy share in the grid. This is especially important, because
privileged own-consumption also rewards disproportionately high electricity consumption
and sets disincentives for plant sizing.

The presented HiL implementation and digital twins of energy systems enables to
evaluate future pricing scenarios as well as different sizing options of PV-plant installations
or EVs with regard to economic feasibility and practical implementation (e.g., other field-
buses). Finally, the mature implementation will be transferred to the existing production
facility for further experiments.
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Abbreviations

The following symbols and abbreviations are used in this manuscript:
Aeq Equality constraint matrix
Aub Inequality constraint matrix
beq Equality constraint vector
bub Inuality constraint vector
c cost vector
cfeed-in Feed-in tariff of PV energy
csupply Supply price of electrical energy
Ci BESS/EV capacity
∆t Step size
d day
D Set of days per week
ηi,c Charging efficiency of component i
ηi,d Discharging efficiency of component i
Ek

i Energy content of component i at timestep k
h Hour
H Set of hours per day
k Discretization step
l Lower bounds
N Number of timesteps
Pk

i Power of component i at timestep k
Pi,max Nameplate maximum power of component i
Pload, f Load power forecast at timestep k
Ppv, f PV power forecast at timestep k
r Pearson correlation coefficient
SOCi State of charge of component i
tk Time at timestep k
u Upper bounds
w week
W Set of weeks per year
x State variables
API Application programming interface
BESS Battery electric storage system
BSD Berkeley Software Distribution
CPU Central processing unit
DER Distributed renewable energy resources
DSM Demand side management
DWD Deutscher Wetterdienst (German weather service)
EV Electric vehicle
HiL Hardware-in-the-loop
ICT Information and communications technology
IO Input/Output
LP Linear programming
MAD Mean absolute deviation
MILP Mixed integer linear programming
MPC Model predictive control
NTP Network time protocol
NWP Numerical weather prediction
PID Proportional–integral–derivative
PLC Programmable logic controller
PV Photovoltaic
SCADA Supervisory control and data acquisition
SME Small and medium enterprises
SOC State of charge
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Appendix A. Simulation Results

Appendix A.1. Simulation Results of Scenario 1

(a) PV power simulation (10 s resolution), PV power simulation (15 min mean), predicted PV power (15 min mean);
(b) simulation power demand of load (10 s resolution), simulation power demand of load (15 min mean), predicted power
demand of load (15 min mean); (c) electricity supply price; (d) BESS and EV SOC of MPC controlled system; (e) residual
load at grid connection point of uncontrolled scenario and MPC controlled system (10 s resolution); (e) residual load at
grid connection point of uncontrolled scenario and MPC controlled system (15 min mean).
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Appendix A.2. Simulation Results of Scenario 2
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