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Abstract: Short-term Photovoltaic (PV) Power Forecasting (STPF) is considered a topic of utmost
importance in smart grids. The deployment of STPF techniques provides fast dispatching in the
case of sudden variations due to stochastic weather conditions. This paper presents an efficient data-
driven method based on enhanced Random Forest (RF) model. The proposed method employs an
ensemble of attribute selection techniques to manage bias/variance optimization for STPF application
and enhance the forecasting quality results. The overall architecture strategy gathers the relevant
information to constitute a voted feature-weighting vector of weather inputs. The main emphasis
in this paper is laid on the knowledge expertise obtained from weather measurements. The feature
selection techniques are based on local Interpretable Model-Agnostic Explanations, Extreme Boosting
Model, and Elastic Net. A comparative performance investigation using an actual database, collected
from the weather sensors, demonstrates the superiority of the proposed technique versus several
data-driven machine learning models when applied to a typical distributed PV system.

Keywords: smart grid; Photovoltaic (PV) Power Forecasting; weather sensors; random decision
forest; feature importance; energy management

1. Introduction

Over the years, the exponential increase in global energy demand has become the
leading cause of the rapid depletion of fossil fuels and increased Greenhouse Gas (GHG)
emissions of conventional generators [1]. To effectively satisfy the meteoric growth in
energy consumption, the world has taken serious initiatives to deploy RES on a larger
scale. [2]. Solar Energy (SE) hold out the greatest promise for modern humankind among all
RES, being free, clean, and abundantly available [3]. For these reasons, it keeps increasing
its share in the energy-mix in the face of diminishing conventional fossil fuel energy sources
and rising environmental protection concerns [3]. However, the discontinuity of PV power
flow brings into question the reliability of the high penetration of PV systems, which affect
the dispatch accuracy greatly. Moreover, the negative effects of the sudden weather change
on the PV farms threatens the grid stability and rises the cumbersome costs of the allocation
of the spinning reserve [3]. Therefore, PV Power Forecasting (PPF) is a pivotal element
for reliable power supply as it significantly reduces the sensitivity of energy systems to
weather intermittency. PPF is mandatory for PV generators as it has a direct impact on the
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stability and reliability of the grid. Achieving accurate forecasting for PV power generation
will facilitate the SE integration to the power system.

In this context, the research community has been focusing on the development of effec-
tive forecasting techniques to handle pattern dependencies [4,5]. With computer hardware
and software development, forecasting models take advantage of High-Performance Com-
puting (HPC) to achieve higher effectiveness. The energy forecasting methods provided
by the PV generators can be generally classified into two categories: traditional methods
and Artificial Neural Networks (ANN)-based methods [6]. Traditional methods mostly
include statistical methods. Statistical methods include regression techniques, Exponential
Smoothing (ES) [7], Autoregressive (AR), Moving Average (MA), and their generalizations
such as Autoregressive Integrated Moving Average with exogenous inputs (ARIMAX)
methods also known as Box-Jenkins models [8,9]. These models include a few model
parameters leading to higher simplicity and interpretability. In [10], a PVPF method-based
Autoregressive Integrated Moving Average (ARIMA) has been adopted for the design of
an energy management system. Paper [7] exploits ES State Space (ESSS) for short-term
solar irradiance model. Nevertheless, the direct PPF is not considered in this study [7].
In summary, the traditional former approaches do not make use of the historical data
generated by weather stations leading to poor forecastability potential. Reciprocally, ANN
becomes one of the most commonly used approaches for PVPF [11]. It has been reported
in [12] that ANNs are easy to use for RES designs, especially for solar irradiance with
related PV power [13].

Pioneering work is presented in [14], where it is shown that ANN can generate deter-
ministic and probabilistic PV power for three days ahead. An Analog Ensemble (AnEN)
model has boosted the ANN accuracy using computed astronomical variables and past
predictions of a deterministic Numerical Weather Prediction (NWP) model. However,
the computational requirements for the model training are cumbersome. The finding is
consistent with the results of recent studies by [15], which employs Multi-Layer Perceptron
(MLP)-based ANN. These contributions are completed in [16], where a comparison of differ-
ent models is performed. Although the MLP method enhances the prediction performance,
the uncertainty resulting from the assumptions of the pre-processed features could form
a barrier to its practical implementation [16]. In [17], a radial basis function (RBF)-based
ANN has been proposed for an online PVPF. Such observations are confirmed in [18] where
Feed-Forward Neural Networks (FFNNs) and RBF, tow variants of ANN, are also used
for solar PV power production predictions. The proposed model provides a Root Mean
Square Error RMSE = 10.59% in a typical Autumn day. Ultimately, in [19], an optimized
ANN for one day ahead PVPF has been presented. The proposed model makes use of dust
and temperature to follow a PV plant, yielding a coefficient of determination R2 = 91.4%.

To sum up, the ANN-based models are perfectly tailored for PVPF. The concern,
however, has been raised that the above methods lack an end-to-end process for selecting
essential features among the provided inputs, leading to a tedious manual preprocessing
phase. Furthermore, these models sacrifice interpretability over high forecasting accuracy.
In other words, the recently cited forecasting methods failed to provide an empirical ability
to develop insights on how they use different inputs, resuming in burdensome problem for
the industrial acceptability of these methods.

However, it is evident that the input parameters do not have an equal contribution
to the domain knowledge. Therefore, several methods were proposed to benefit from
this inequality. In earlier work, the authors employed an enhanced RF for classification
purposes [20]. Their proposed approach lies in the integration of a slowness index with a
feature ranking and selection process. According to the simulation results, a classification
technique of static and dynamic nodes was adopted to mitigate the overlap between classes.
Next, the Relative Mean Decrease Gini (RMDG) method is employed to determines the
significance of the feature inputs to the domain knowledge and rank them accordingly.
Although the proposed method outperforms a variety of prediction techniques, the compu-
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tational effort is high. This burden is due to the large number of possibilities investigated,
especially with a larger dimensional space.

This paper deploys a state-of-the-art method to improve the performance potential
of RF model. The system employs three techniques to rank the weather and power
inputs through a novel feature selection procedure. This ranking leads to a Weighted
Feature Vector Importance (FVI). The forecasting model relies on FVI coefficient to generate
multiple forecast outputs for each feature input. The final output result is concluded from
a summation of the single forecasts. The main contributions are outlined as follows:

1. An effective feature engineering technique is deployed based on six input parameters
using three different approaches. The features are classified according to their weights.
FVI is calculated using the input parameters relevant to the PPF model.

2. A new approach-based-multimodal prediction system is comprehensively investigated.
3. The performance superiority of the proposed approach versus Decision Trees (DT),

K-Nearest Neighbors (KNN), and Random decision forest (RF) is demonstrated using
a real data set.

The remainder of the paper is organized as follows: Section 2 comprehensively defines
the problem statement and the main contributions. Then, Section 3 presents the related
works for PV power forecasting and the common taxonomies and methodologies. Section 4
introduces the proposed methodology and investigates the FVI formulation. Afterward,
Section 5 illustrates the implementation results, interpretations, and provides a comprehen-
sive comparison with the state-of-the-art models. Finally, Section 6 discusses the presented
results and concludes the study.

2. Literature Review

In [21,22], the PPF was classified into four distinguished classes according to the
forecasting horizon, the forecasting method, and forecasting output, as shown in Figure 1.

Figure 1. General taxonomy of PV power forecasting.

Conceptually, the determination of a specific parameter variation essentially lies in
Physical Models (PMs), statistical techniques, and Artificial intelligence (AI) techniques [23].
The PMs consist of real-world natural conversion formulas to conduct a determinis-
tic closed-form solution for future behavior. PMs are commonly deployed with low-
complexity systems and target short-term dependencies [23]. On the other hand, statistical
forecasting is carried out through extensive numerical patterns analysis based on statistical
theory. Statistical algorithms require a dataset acquisition to build their domain knowl-
edge since they neglect the investigated physical process [24]. Moreover, statistical and
physical models are found not great enough to be effective with unsatisfactory accuracy in
numerous complex problems such as renewable energy forecasting and weather forecast-
ing. AI techniques have been achieving worldwide acceptance for their accurate results
and excellent generalization capabilities [25]. Although AI is very promising for power
systems due to the abundance of computational resources and high-resolution databases,
ML techniques have only been accorded to a few considerations compared to statistical
and physical methods. For PV power forecasting, ML and statistical techniques are greatly
influenced by the horizon time series prediction [26].

According to the time domain, there are four distinguished forecasting horizons,
specifically ultra-short (USTF), short-term forecasting (STF) required to be valid for seconds
to one day, medium-term forecasting for one day to weeks, and Long-Term Forecasting
(LTF) that may be valid for years [27]. For example, the USTF forecasting was comprehen-
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sively investigated by the authors in [28]. The authors’ work consists of the implementation
of the underlying Local Sensitive Hash algorithm (LSH). The used taxonomy takes into
account four weather conditions, specifically clear, cloudy, rainy, and snowy weather.
LSH profoundly investigates the coupling correlated weather features. The methodology
adopted for LSH system classifies the PV power segments and generates a PPF output.
In [28], the authors proposed a hybrid method for an accurate hourly PV power prediction
based on a gradient-descent backpropagation method (BP), Schema Frog Leaping Algo-
rithm (SFLA), and Artificial Neural Network (ANN) named BP-SFLA-ANN model. Their
proposed BP-SFLA-ANN model consists of using SFLA as a mediator between BP and
ANN models. BP model provides the values of the primary hyperparameters of ANN to let
the SFLA start from this initial selection to further search for more suitable parameters of a
typical ANN. The interaction between SFLA and the BP led to a superior ANN accuracy
and less computational burden compared to an SFLA-ANN without the initial tuning of BP.

So far, the forecasting methodologies can be classified as physical methods, statistical
methods [29–31], AI methods or a mix of them (hybrid models) [32,33]. The physical
models use NWP models or satellite imagery alongside physical considerations such as
meteorological or topological data. However, physical models are restricted to tedious
mathematical approaches for specific PV plants, leading to poor generalization potential
and complicated modeling [32,34]. Statistical models employ prediction models such as
Moving Average (MA) and Autoregressive (AR) [35]. AI methods employ computational
intelligence to predict the PV output accurately, taking advantage of the evolved enhance-
ment in hardware and software [36]. The optimal models are often a combination of
physical and statistical models [37]. According to the literature, it has been found that the
combination of different forecasting models could enhance the performance and efficiency
of the overall prediction paradigm [38,39].

Moreover, PV generation forecast methodologies can be taxonomized, taking into
account the relationship between inputs and estimated outputs: direct and indirect. The in-
direct PV power forecasting approach is the estimation of a key relevant element, such as
the irradiance and the temperature, leading to an accurate PV power prediction [40], while
the direct forecasting approach only considers the PV power as the output to be predicted
from weather conditions. Some of the PV power forecasting methods are provided in
Table 1.

Table 1. A summary of the literature studies.

Methods Ref. Class Error Metrics Lowest Error Time Step Data Set Location

PEEC [41] Physical NMAE, WMAE NMAE = 0.5% 1-h Politecnico di Milano

PMCV [42] Physical RMSE, MAE, MBE NMAE = 13% 24-h/48-h Hungaria

LSSVR–NARX [43] Statistical MAE, MBE, MSE, RMSE, R2 R2 = 92.03% 2-h Casablanca, Morocco

ARMAX [8] Statistical RMSE, MAD, and MAPE MAPE = 38.88% 24-h Coloane island of Macau

ARMA [44] Statistical MAE, MRE MAE = 1.16 MW 15 min IEEE14 bus system

SVM [45] AI MRE, RMSE RMSE = 1.57 MW 24-h PV station in China

CNN-LSTM [31] AI MAE, RMSE, R2 R2 = 99.93% 15/45 min Limberg, Belgium

RNN [46] AI R2 R2 = 99.94% 15–90 min Flanders, Belgium

ANN [47] AI RMSE RMSE = 0.07 KW 24-h Amman, Jordan

In particular, an ANN-based Statistical Feature Parameters (ANN-SFP) has been
implemented for solar irradiance prediction [48]. The proposed model provides a 24-h
weather forecast on the hourly level for all the daylight hours of the next day. However,
the proposed model is incapable of following the PV generation on an overcast and cloudy
days. A three-stage prediction approach named optimized multi-layer backpropagation
neural network has demonstrated better system performance than the state-of-art for
ultra-short-term PPF [49]. This approach relies on the seasonal division of weather data
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set to guarantee the adequate repartition of sample features for different stages. Never-
theless, the splitting process for the meteorological database can threaten the inherent
consistency of the overall data set. Additionally, forecasting PV power generation located
in the north of Italy for the next day could be conducted using a Physical Hybrid ANN
(PHANN) [50]. By fusing the ANN with the physical model of the clear sky solar irradiance
method, the proposed model improved prediction accuracy in some of the selected days
but unable to provide stable and improved forecast results in peculiar weather conditions.
Seasonal Autoregressive Integrated Moving Average (SARIMA)-Random Vector Func-
tional Link (RVFL) model is employed for a short-term PPF [51]. A maximum Overlap
Discrete Wavelet Transform technique is implemented to assist a hybrid model for better
generalization potential. The produced power profile of a Silicon-crystalline PV module
yielded an R2 = 92.4% for a single-step-ahead prediction. However, the accuracy drops as
the prediction time window become wider (Three steps ahead). In [22], an ensemble of
ANN has been proposed to conduct short-term solar forecasting using day-ahead weather
forecasts. Despite outperforming several benchmarks, the proposed model cannot cap-
ture the fast variation of the weather conditions. A high-precision Convolutional Neural
Network (CNN)-based PPF named PVPNet is depicted to predict the PV generation for
one day ahead [52]. The proposed deep learning model has been found highly sensible
to representation learning and the quality of data [25]. In [53], an LSTM-based attention
mechanism has been proposed for STPF. Nevertheless, the prediction system is limited
to a single-step forecasting strategy. A Random Forest solar power forecast based on
classification optimization was presented and analyzed for PPF [54]. Despite the high
system complexity, the proposed model makes it possible to forecast solar irradiance on a
24-h basis with high precision.

3. Problem Statement and Contributions

For ML techniques, the forecasting accuracy is essentially related to three factors,
namely bias, variance, and noise. Inappropriate tuning of the aforementioned factors
leads to overfitting or underfitting. A comprehensive adjustment of these factors is a core
solution in improving prediction results. Ideally, the bias describes the mismatched samples
values between measurements and forecasts taken during the learning process. Although
the variance is the quantification of the squared deviation of a random feature from its
mean [55]. Erroneous predictions are due to high variance or high bias. Mathematically, let
y be a variable output generated by a function f with a set of variable vector X, we assume
that f̂ is a forecast of f (x). Then, the computation of error Err(x) is given by [56]:

Err(x) = E[(y− f̂ (x))2] (1)

where an output y can be calculated as follows [56]:

y = f (X) + ε (2)

where ε denotes the error term. Thus, the prediction error is given by:

Err(x) = (E[ f̂ (x)]− f (x))2 + E[ f̂ (x)− E[ f̂ (x)]2] + σ2
ε (3)

where σ2
ε denotes the irreducible error. The optimal goal is to minimize both the variance

and bias at the same time to reduce the errors. However, the bias-variance tradeoff is
inversely proportional, as presented in Figure 2.
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Figure 2. Bias-variance Tradeoff curve.

Therefore, the optimization task is required to obtain the desired outputs. In order
to avoid high variance, we employed RF Ensemble presented in this paper. This variance
optimization is achieved using randomized replication of the original dataset to construct
sub-modules. The prediction output is presented by averaging these models’ outputs. Al-
though RF reduces the variance of one predictor, the system remains biased. The bias taken
from the original model before the subdivision stays unchanged [57]. The bias optimization
is carried out in this study using the interpretability of Feature Importance (FI).

Recently, FI has been commonly deployed, especially for high-dimensional data. It
consists of the evaluation of the inputs’ sensitivity to the output. The probability value
(p-value) consists of the measurement of the evidence occurrence by calculating the proba-
bility of action when the null hypothesis is correct. The p-value of the distributed variables
importance allows the system to determine the features’ contribution as indicators of a
future target behavior. The features with statistical significance are given higher importance
from the p-value coefficient and vice versa. Additional information from p-values that im-
proves the model accuracy is given in [58]. The Feature Attribute Coefficient (FAC) deploys
this knowledge to optimize the variance/bias of the ANN. Feature relative importance
(FRI) introduces metrics weights to emphasize the significance of variables to the model.
The feature weights are combined in a vector named the null importance. In the case of
small datasets, instead of putting a threshold for weights values and the removal of every
feature that has a lower weight, our proposed technique takes into account all the features
that have a physical interaction with the output. In this paper, a novel Voted Feature
Weighting (VFW) is introduced and deeply investigated. This procedure reduces system
complexity and computational burden. The weights are fed in an ensemble learning system
for the aim of achieving further accuracy. In the proposed model, Feature Importance (FI)
is considered a crucial part of the decision-making in the PPF system. This is related to the
role of FI ranking in avoiding multicollinearity and low accuracy caused by the arbitrary
variable selection. To the best of the authors’ knowledge, the architecture of the proposed
machine learning model has not been reported in the literature. The implementation results
have been verified and validate the effectiveness of the proposed model for bias correctness.

4. Proposed Methodology

The importance of an input depends on whether the forecasting performance varies
dramatically when such input is replaced with random noise [59]. Thus, the selection of the
best features or the best combination of features has an utmost importance on the prediction
model performance. The proposed methodology consists of introducing a preprocessing
approach based on the p-value information associated with the RF model. For variable im-
portance quantification, the p-value is designed to measure the feature relevance using Gini
index (impurity). For every input parameter, the p-value is measured according to three
feature ranking techniques: Elastic Net, Local Interpretable Model-agnostic Explanations
(LIME), and Extreme Gradient Boosting (XGBoost). The Feature Vector Importance (FVI)
is unified for each method to fairly grasp the non-linear relationships among candidate
attributes and assess interactions to showcase the most effective combination of features.
The global FVI is concluded using the average FVI methods output. Afterward, with every
elimination of one feature, RF model generates an output result using the rest of the data.
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Then, a voted ensemble technique makes a multiscale prediction for input vectors and
multiply the probability distribution by the FVI. This perfectly tailored forecasting system
assumes that the RF acquires n features. The prediction system is divided into n subsys-
tems. For each subsystem, a k feature parameter is eliminated from the database. With the
Bagging model, every subsystem gives a prediction output ȳi. Let us make wi ∈ [0, 1]d

be the importance rate of each feature. The final output is concluded by summing the
weighted subsystems products by an importance factor explained in:

Yi =
n

∑
i=1

wi ȳi (4)

where the weight values wi denote adjusted using three potential FRI methods. The useful-
ness of using multiple techniques simultaneously lies in the variant architectures of these
tools. Regarding the fact that the selection of the most suitable FRI method is confusing,
these three methods are taken into consideration to give more integrity to the domain
knowledge. Assuming N is the number of feature weighted methods. The correlation
could be averaging or voting as follows:

w f eature =
1
N

N

∑
j=1

wj (5)

In the study, averaging is the primary case deployed. Then, a voting output result is
comprehensively analyzed. Assuming w is the reweighting feature coefficient. x̄ij is the
feature weighted of xi, which is computed as:

x̄ij =
xij

s(wj)
; j = {1, . . . , d} (6)

where s denotes a positive coefficient, w is the weight vector, and xij is the jth feature of
xi. The proposed method allows RF to overcome overfitting by an additional correctness
vector. By using a distinguished feature importance, this paper verifies the contribution of
multiple FRI techniques to the model accuracy as shown in Figure 3.

Figure 3. Flow diagram for proposed model implementation.



Energies 2021, 14, 3992 8 of 20

5. Case Study

Typically, forecasting techniques applied for smart grid operations are validated
through a meteorological database and a real power system to verify the efficiency and
feasibility of the proposed model.

5.1. PV System Description

In this study, the data used for the numerical validation of the proposed model
is obtained from an open source from a large-scale PV plant in the Desert Knowledge
Australia Solar Center (DKASC), Alice Springs (AS), Australia, at a latitude 2376′ S and a
longitude 133°87′ E) [60]. AS has a desert climate with scarce rainfall and frequent clear
skies during the dry days and, therefore, comparatively rare output volatility in the PV
generation due to sky cover during that period. Rainy days are frequently registered
between November and February during the wet season leading to high PV uncertainty.
For showcasing the PV systems’ repartition in DKASC, Figure 4, is represented.

Figure 4. Representative chart of the DKASC PV plant [60].

This PV plant relies on high-resolution sensors for PV systems of different technologies
and configurations to record data every five minutes. The DKASC consists of a demonstra-
tion facility of 38 sites to build a high confidence level of PV technologies with different
manufactures and stakeholders. The detailed characteristics of the used PV plant are sum-
marized in Table 2. The explanatory labels consist of time indicator, relative humidity, wind
speed, and its direction, horizontal irradiation, relative horizontal irradiation, temperature,
and PV power output. The above-mentioned parameters allow the PPF techniques to
tackle every slight change that could affect the PV power generation. The measurements
were taken from 1 April 2016 to 1 August 2019, which provides sufficient information
for training and validation. 248,503 samples were pre-processed and split into 3 phases,
namely training, validation, and testing tiers. Regarding the validation process, 17,280
samples are devoted to the analysis of the prediction quality.

Table 2. The related characteristics of the PV plant.

System Specification Characteristics

Array rating 191.74 kW

Average of Powering 141 house

Location Alice Springs, Australia

PV technology Crystalline Silicon, CdTe/CIGS

First operating installation Since 2008

Array area 4 × 38.37 m2

Type of tracker Fixed: Ground Mount, Single Axis, Dual Axis

Inverter size/type 46 kW, SMA/Sunny Mini Central 6000A
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5.2. Feature Engineering

In real-world problems, several preprocessing steps were taken into account for better
interpretability of the obtained data. The complete steps of the adopted data prepossessing
strategy are given in Figure 5.

Figure 5. Flowchart of the adopted data prepossessing strategy.

Specifically, the acquired data have been cleaned from outliers, missing, and redundant
data, which require a huge effort to be smoothed accordingly. For instance, for special cases
where it can be found some samples were missing the values for the same times from the
previous or following day were inserted. To deal with this issue, an output of zero was
given to larger missing boxes. These samples are later excluded from the database since
they do not give any significance to the variability analysis. As a result of the data cleaning
process, the wind speed has been removed from the system inputs since it includes many
apparent wrong measurements (negative values) and missing values. The generated data
contains electrical features such as the PV power generation, meteorological features such
as the wind orientation, temperature, and horizontal radiation, and date features. Using
one-hot encoding method, the date features are transformed into numerical values to be
used in the forecasting system for all data to be time-synchronized. However, the date
features are excluded from the feature inputs since the irradiation features already embody
time and seasonal variation tendencies. Finally, the resulting samples are standardized by
the Min–Max normalization method to the range of [0, 1] to prevent the model saturation
during the learning process and promote the efficiency of the forecasting system [33].
The original PV power and its related features are shown in Figure 6.

As can be seen from Figure 6, the related indicators have a direct relation with the PV
power output. However, these correlations differ from one input to another. For example,
the previous PV power and the horizontal radiation are perfectly tailored for the PPF
contrary to the wind direction, which shows less variation with the PV power. Regardless
of the weather indicators, the accumulation of PV power records over the years may be
taken into consideration as a reliable measure of future PV power predictions. In the
simulation part, one year (2017) data set is used for training prior to the beginning of the
yearly test period. Subsequently, the testing data measurements during 2018 were used for
the evaluation process. As shown in Figure 7, the historical PV power curves are illustrated
for the 1st of August and the 1st of April of four consecutive years and the monthly PV
power during three successive years.
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(a) PV power vs diffuse horizontal radiation (b) PV power vs horizontal radiation

(c) PV power vs relative humidity (d) PV power vs previous PV power

(e) PV power vs temperature (f) PV power vs wind direction

Figure 6. PV power time series with the related feature inputs: (a) diffuse horizontal radiation (b) horizontal radiation (c)
relative humidity (d) previous PV power (e) temperature (f) wind direction.
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Figure 7. PV power variation (a) on April 1st in the past 4 years (b) on August 1st in the past 4 years
(c) between 2016–2018.

It can be noticed that the real generated PV power in 2018 for the spring season
(Figure 7a) and the winter season (Figure 7b) is remarkably close to the first previous last
year accordingly. This impressive behavior leads to conclude that the lagged yearly PV
output presents an important feature indicator for the estimation of the PV power. It can be
noticed from Figure 7c) that the measured power values during 2017 and 2018 have a close
variation, while the 2016 values are less correlated with the following years. This difference
is noticeable during January, April, May, and June months. The historical PV power series
at the same instant from the previous year is associated with the weather parameters
and the hourly time indicator. These inputs face many processing stages. The first step
is composed of feature engineering and data cleaning. The missing and odd data are
removed from the dataset. Next, the extracted inputs samples pass by a feature selection
stage to evaluate their importance. The P-value of each input indicates its relevance to
the PV power output. For a given temporal resolution of 5 min, a total of 288 samples are
collected per day.

5.3. Feature Vector Construction

The weather dataset consists of the sensor measurements, including the temperature
(°C), relative humidity (%), wind direction (°), PV power (kW), and horizontal and vertical
solar radiation (W/m2). It may be intuitively understood that the chosen features are
relevant to PV generation. Feature selection methods lie in shaping the FVI. Figure 8
presents the simulation results of a set of feature importance ranking. The annotation gives
LIME the yellow color, Elastic Net the grey color, and XGBoost the red color.
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Figure 8. Relative importance of the candidate variables, using LIME, Elastic Net, and XGBoost.

The proportional importance distribution is not uniformly partitioned, as shown in
Figure 8. For instance, XGBoost only considers the horizontal radiation as an informative
feature while the Elastic Net does not attribute high p-value to Horizontal radiation. On the
contrary, LIME gives the most physically comprehensive results. The yearly lagged PV
power and horizontal radiation are the most correlated features with the current PV power.
Each feature is given a relevant weight value wi with ∑n

i=1 wi = 1. The weights calculation
takes into consideration the inputs permutation, and the percentage of the error caused
by the exclusion of the corresponding feature. The higher p-value reflects, the closer the
behavior of a feature inputs to the output predicted.

This diversity contributes to the system accuracy from the FVI coefficients. The hor-
izontal irradiation followed by the previous PV power from the same instance in the
neighboring year gains more importance. Next, the wind direction comes third, followed
by the diffuse horizontal irradiation. Finally, the relative humidity takes place to finish with
the temperature parameter in the last position with a lower relevant information according
to the accumulation of the three methods p-values.

5.4. Simulation Results and Comparison with Benchmark Models

The proposed paradigm passes by four stages, specifically, data processing and feature
engineering, object determination, model constriction, and evaluation as shown in Figure 9.

The data are normalized using Min–Max normalization in the data preprocessing
stage. The Min–Max normalization is defined as follows:

xn =
xr − xmin

xmax − xmin
(7)

where xn denotes the normalized weather variable, xr is the real value. Here, xmin and xmax
are the minimum and maximum values. The hybrid model employs a Randomized Search
tool for hyperparameter optimization. The outputs for this tool assign to the modified RF a
minimum sample leaf of 20, maximum leaf nodes of 100 and maximum depth equal to 8.
For reference models, Table 3 illustrates the hyperparameter of benchmarks.

The trained model is verified on a testing dataset. All experimental models run in
Python 3.6.7 programming environment. The hardware is a Lenovo personal computer
(PC) with Intel Core i7 9th Generation and 16 GB of memory. The Windows 10 operates a
graphic card of NVIDIA GeForce GTX 1650.
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Figure 9. Structure of the proposed methodology with (a) data preprocessing and feature engineering,
(b) object determination, (c) model construction (d) evaluation.

Table 3. Hyperparameters settings for reference models.

Base Models Hyperparameter Settings

DT maximum depth = 3; minimum samples leaf = 3; maximum leaf nodes = 5;minimum impurity decrease = 0.2
KNN The algorithm is KDTree; the nearest neighbor number is 7; the leaf size is 90; the distance function is

Minkowski distance
RF The maximum depth is 50; the minimum samples split is 10; The number of estimators is 140

Score metrics between the actual power yi and the forecast points ŷi were computed
in terms of coefficient of determination (R2), RMSE and Mean Absolute Error (MAE) as
follows [61]:

MAE =
1
n

n−1

∑
i=0
|yi − ŷi| (8)

RMSE =

√√√√ 1
n

n−1

∑
i=0

(yi − ŷi)2 (9)

R2 = 1− ∑n−1
i=0 (ŷi − yi)

2

∑n−1
i=0 (ȳi − yi)2

, ȳ =
n−1

∑
i=0

yi (10)

where n denotes the total number of samples. The simulation results are compared with
those results of the KNN, RF, and DT models. The forecasting horizon is investigated for
the short-term, specifically, for 5-min daily time interval during the year of 2018. The testing
data are evaluated using RMSE and MAE, and R2 score metrics. Figure 10 presents the PV
power variations in four types of days arbitrary selected, including rainy, sunny to cloudy,
sunny, foggy to cloudy days.
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(a) Forecasted PV power on a rainy day. (b) Forecasted PV power on a sunny day.

(c) Forecasted PV power on a sunny day. (d) Forecasted PV power on a sunny to cloudy day.

(e) Forecasted PV power on a sunny day . (f) Forecasted PV power on a foggy to cloudy day.

Figure 10. Actual and forecasted PV power using DKASC dataset for different weather patterns with (a) March 20, Rainy.
(b) May 20, sunny. (c) June 20, sunny. (d) July 20, sunny to cloudy. (e) September 20, Sunny. (f) November 20, foggy to
cloudy.

Regarding Figure 10, it can be noticed that the proposed model exhibits satisfactory
forecasting performance according to the forecasting curves between the ground truth and
the forecasted PV power. From Figures 10b,c,e, the the actual PV power ramps smoothly
during the sunny day. With no abrupt change, the proposed model efficiently provides
precise estimations of the PV power output. Even with sudden changes, especially in the
middle of the day, it can be noticed from Figure 10a,d,f that the proposed hybrid machine
learning model was able to follow the curve shape of the PV power generation during
the rainy, foggy to cloudy weather from the close distance between the forecasted and
real points. The forecast ability of the proposed method seems to be very promising in
all the seasons of the year with different climatic conditions. To showcase the prediction
performance of the proposed model in a more intuitive way, Figure 11 presents the scatter
plot and error distributions of the proposed model.
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(a) Scatter plot. (b) Error distribution.

Figure 11. Scatter plots (a) and error distributions (b) of PV measured power and forecasted power.

Regarding Figure 11b, it is apparent that the forecasted points are consistent with the
actual values. In Figure 11b, the majority of the instance are concentrated on the zero axes.
It should be emphasized that the difference of the proposed range between −10 kW and
40 kW in the worst-case scenario. To better examine the model performance, Figure 12
illustrates a 10-fold Cross-validation (10-CV) curve.

Figure 12. 10-CV flowchart using the R2 measure.

According to Figure 12, the model conducts a coefficient of determination R2 = 96%,
which reflects the high potential of the proposed approach in improving the existing RF.
The simulation results confirm that the bias correctness is significantly contributing to the
prediction accuracy. The proposed technique is effective in diminishing the errors coming
from the misleading inputs. Therefore, the proposed architecture generalization for ML
model improvement worth further investigation. The model performance assessment
requires the deployment of different methodologies and comparative analysis to ML
models. Table 4 includes MAE, and RMSE scores for ML models.
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Table 4. Forecast error metrics of the simulated predictors for various weather conditions.

Weather Condition Model RMSE (kW) ± SD MAE (kW) ± SD

Sunny

KNN 11.00 5.94
RF 12.14 6.70
DT 12.41 6.84

Improved RF 9.60 5.23

Partially cloudy

KNN 12.74 8.08
RF 17.17 11.26
DT 17.49 11.40

Improved RF 10.79 6.43

Cloudy/foggy

KNN 17.75 12.68
RF 19.69 14.00
DT 19.96 14.11

Improved RF 11.65 8.51

Rainy

KNN 3.68 1.48
RF 8.49 5.00
DT 8.84 5.20

Improved RF 1.41 0.65

Overall

KNN 11.29 ± 5.05 7.04 ± 4.03
RF 14.37 ± 4.35 9.24± 3.58
DT 14.68 ± 4.33 9.39 ± 3.55

Improved RF 8.36 ± 4.08 5.21 ± 2.88

Table 4, compares different predictors in terms of RMSE and MAE errors and different
weather conditions. From Table 4, the proposed method is highly effective according to
the registered low error values. From Table 4, the proposed method outperforms the list
of models depicted, achieving a mean RMSE = 8.36 kW and a mean MAE = 5.21 kW. The
high accuracy achieved takes advantage of the bias correctness of RF model. Alternatively,
the original RF and DT produces large MAE, and RMSE values than the proposed model
resulting in poor performance. In particular, RF generates an RMSE = 14.37 kW and a
MAE = 9.24 kW. This superiority is provided by the p-value adjustment based on multiple
features selection methods. Thus, the model ensures the correct repartition of categorical
feature inputs instead of selecting a particular threshold and extracting the feature corre-
sponding to higher p-values from a single assessment method. Although the subsequent
heavy computation of p-values calculations, the proposed model is high performing in PV
power series forecasting.

5.5. Discussion and Analysis

As the weather indicators have a disproportionate relevance on the PV power gen-
eration, the intuition of associating an importance vector to emphasize the relevance of
each variable input seems to be promising for the overall forecasting system accuracy.
From the above-mentioned results (Section 5.4), it can be said that the proposed model
shows excellent predictive performance for different meteorological conditions. This will
permit the generalization of the proposed model. More specifically, the strong competitive
advantage of using the proposed model is evident during the rainy and cloudy days since
the prediction results are very close to the real values. Therefore, the proposed site-specific
hybrid model can be applied to similar PV power systems with different climatic conditions
and different locations. Despite the PV power output is sensitive to chaotic meteorological
conditions, the proposed model has the potential to capture the trend of the PV power
generation with dramatic variability. Compared to the original RF model, the proposed
method significantly improves the forecast accuracy by giving more importance to the
feature relevance. In fact, it generates forecasting results with the lowest RMSE and MAE
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on most types of the day. The results further reveal the robustness of the proposed method.
The superior accuracy of the proposed model is primarily due to attributing a coefficient
that describes the importance of each feature to the PV power output, which provides an
effective means to approximate inherent invariant features and structures.

6. Conclusions

For a reliable and secure operation of power systems, this paper seeks to explore the
problem of predicting PV power generation for efficiently manage the capacity of the inter-
mittent asynchronous PV generators. To overcome this challenge, an Enhanced Random
Forest (ERF) model was first proposed to increase system forecasting accuracy based on
the adequate understanding of the unequal influence of the input indicators on the PV
power. To distinguish the relevance of the variables, a feature vector importance has been
constructed based on three methods, specifically, Elastic Net, Local Interpretable Model-
agnostic Explanations (LIME), and Extreme Gradient Boosting (XGBoost). A multivariate
dataset from Desert Knowledge Australia Solar Center (DKASC) has been employed to
validate the efficiency of the proposed method. The numerical performance investigation
in sunny, rainy, and cloudy days demonstrate that the proposed model is effective, simple,
explainable, and more accurate than the benchmark models with an overall RMSE = 8.36
kW and MAE = 5.21 kW. The proposed model is perfectly tailored to fulfill short-term
PV power forecasting needs with high efficiency. Although the proposed model seems
to be suitable for PV power systems, there are many areas that can be improved and
optimized, such as the deep investigation of the weather patterns to forecasting perfor-
mance substantially and empower the proposed approach stability for different climatic
conditions.
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NMAE Normalized Mean Square Error
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R2 Coefficient of determination
MAPE Mean Absolute Percent Error
CNN Convolutional Neural Network
MRE Mean Relative Error
RNN Recurrent Neural Network
NARX Non linear Auto-Regressive with Exogenous inputs
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