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Abstract: This work presents a comprehensive analysis of two cubic techniques for Power Flow
(PF) studies. In this regard, the families of Weerakoon-like and Darvishi-like techniques are consid-
ered. Several theoretical findings are presented and posteriorly confirmed by multiple numerical
results. Based on the obtained results, the Weerakoon’s technique is considered more reliable than
the Newton-Raphson and Darvishi’s methods. As counterpart, it presents a high computational
burden. Regarding this point, the Darvishi’s technique has turned out to be quite efficient and fully
competitive with the Newton’s scheme.

Keywords: power-flow analysis; high order methods; computational efficiency; numerical stability

1. Introduction
1.1. Motivation

In power system analysis, PF is probably the most important computational tool,
playing a vital role in a wide variety of applications such as power system planning and
operation, economic dispatch or security analysis, among others. From a mathematical
point of view, PF consists on solving the set of equations that model the nonlinear relation-
ships between nodal voltages and power injections. Since the PF equations are nonlinear,
this problem cannot be directly solved. In this sense, iterative solvers have been customary
used for solving the PF equations. From a PF solver one expects two main characteristics:

• Robustness: for effectively solving ill-conditioned systems, which are mainly encoun-
tered in presence of cascading failures, heavy loading conditions or badly initialization
of the iterative procedure.

• Efficiency: this aspect is crucial for online applications, since it determines the ability
of a PF solver for quickly finding the solution of the PF equations.

Many efforts have been devoted during decades on developing different PF solvers
(see Literature Review). Developed approaches have been mainly focused on separately
enhancing one of the characteristics enumerated above. However, in a modern power
system paradigm, it is necessary to use tools that are simultaneously efficient and robust
enough to, for example, properly handle large-scale ill-conditioned cases. In this context, it
is very difficult to find a PF solver which gathers both robust and efficient features. For
instance, the conventional Newton-Raphson (NR) can be considered an efficient technique,
however, it fails in ill-conditioned systems being so its universal applicability questionable.
Recently, some studies have been conducted on studying the applicability of various high-
order Newton-like (HONL) methods for PF analysis [1–4], manifesting good performance
in well-conditioned systems. However, these works lack of a formal analysis of the
mathematical properties of such solvers, more specifically, their stability and robustness
properties were not properly studied. This work aims at being a first step on filling this gap.
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1.2. Literature Review

During decades, PF problem has been extensively investigated by the engineering
community. In this context, the use of NR for PF solution at early 60’s [5] can be consid-
ered as one of the main milestones. By far, NR is nowadays the most widely employed
solver in PF analysis, however, inversion or factorization of the Jacobian matrix supposed
an important barrier for former computers. Thereby, many efforts were conducted on
reducing this computational burden either by using decoupled techniques [6,7] or spar-
sity routines [8]. Decoupled techniques gained popularity during 80’s, nonetheless, the
emergence of very efficient computational machines and the lack of effectiveness of such
techniques in ill-conditioned systems limit their usage nowadays.

On the other hand, ill-conditioned systems began to be studied at 80’s due to the diffi-
culty of the existing techniques to successfully solve such cases [9]. Firstly, ill-conditioning
in power systems was most related with electric characteristics of the networks (i.e., high
R/X ratio or heavy loading conditions). This definition has evolved towards being more
related with the starting guess of the iterative procedure, according to the definition given
in [10]. However, ill-conditioning in power systems is currently related with mathematical
issues. During decades, solution of ill-conditioned PF problems has supposed as a main
concern for engineering researchers. The very first steps in this direction [9] were devoted
on developing robust techniques which resulted very inefficient in most cases (e.g., see
results in [10]).

With the advent of 90’s, PF was revisited in order to address current issues. In this
sense, PF analysis in distribution networks (radial or meshed) attracted huge attention. In
this kind of networks, conventional (especially decoupled) solvers offered badly perfor-
mance due to high R/X ratios or natural bad condition of such systems. To address such
issues, huge efforts were conducted on developing specific solvers [11,12] and formula-
tions [13–15]. However, this kind of techniques are very far to be considered universal
methods as their main area of application lie in distribution systems. Actually, some
of them cannot be directly applied in meshed networks [11]. In addition, some specific
PF solvers such as the well-known backward-forward algorithm are totally inefficient in
comparison with Newton-like methods (see results for radial networks in [3]).

Ill-conditioned systems were barely studied at the beginning of the 21st century, how-
ever, this issue have re-emerged in recent dates due to this kind of systems are becoming
more frequent [16]. In addition, in contrast to the traditional ill-conditioned systems stud-
ied at 80’s which comprised very few buses [8], modern robust solvers require to be efficient
and competitive with conventional techniques (e.g., NR) due to most of ill-conditioned
cases are, in fact, very large (>1000 buses). In this sense, traditional robust approaches
such like [9] can be considered totally out of date [10]. This way, multiple works have been
recently conducted on developing efficient and robust techniques that could satisfactory
addressed both well and ill-conditioned cases. The application of the Continuous Newton’s
method for PF analysis [10,17–19] suppose a clear example of this trend. The Continuous
Newton’s method establishes a formal analogy between NR and Euler’s techniques by
which any other numerical integration method (e.g., the Runge-Kutta formulas [18]) could
be applied for developing robust and efficient PF solvers. However, as reported in [18],
those solvers based on the Continuous Newton’s method are still not competitive with
NR in the sense that they are very inefficient. As a sake of example, the solver introduced
in [10] which is based on the 4th order Runge-Kutta method requires four matrix factor-
izations. Since the factorization of the Jacobian matrix could be considered the heaviest
computational part of a PF solver [10], one could deduce that the technique developed
in [10] is four-times less efficient than NR. To address such issue, the authors developed a
combined Runge-Kutta-Broyden paradigm in [20], which avoids the factorization of the
Jacobian matrix. However, this calculation is replaced by the inversion of the Jacobian,
which is unaffordable in large-scale systems. Similarly, the dynamic computing paradigm
developed in [16] and its posterior refinements [21,22] are not suitable for large-scale cases,
as the authors pointed out in [16].
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Regularization-based methods have been recently applied for solving PF equations,
especially in ill-conditioned cases [23,24]. This approach basically consists of avoiding
the singularity of the Jacobian matrix when it is ill-conditioned, by adding the so-called
regularizing operator. Due to the Jacobian matrix is modified, the solution of the iterative
process may not be the actual solution of the PF problem, as commented in [24] and reported
in [25]. This issue has limited the applicability of this kind of techniques. Homotopic and
holomorphic principles have been also applied for solving PF problem [26,27]. This kind
of methodologies solve the PF equations by posing a continuous version of them by which
their solution is reaching by progressively increasing a well-known homotopic parameter.
This kind of approaches are quite robust and have found certain interest on ill-conditioned
cases. However, as in the case of regularization-based methods, they may reach a non-
physical solution which lacks of interest [28]. Recently, the authors have developed various
self-developed robust solvers [28,29], which arise from combination of different approaches.
Although this kind of techniques present good computational performance, they are not
competitive with other conventional techniques in well-conditioned cases yet.

Recently, HONL methods hav gained popularity for solving PF equations. Basically, a
HONL is a nonlinear solved based on NR with a convergence order higher than two. Thus,
a HONL should converge employing less iterations than NR. If besides this feature the
solver is computationally efficient, the obtained PF solution approach may be competitive
with NR. In this context, Pourbagher and Derakhshandeh firstly compared various HONL
in [1], showed very good results. The conclusions in this reference motivated the authors to
further study this kind of methods in [2–4], confirming that HONL methods may suppose
an attractive alternative to NR.

1.3. Contributions and Paper Organization

Motivated by the good results showed by HONL techniques in recent studies. This
work aims at further analyzing this kind of techniques for PF analysis. So far, HONL
methods have been only employed for solving well-conditioned systems, therefore, their
robust properties have not been analyzed from a theoretical and empirical point of view.
This work aims at supposing a first step to filling this gap. In this sense, we focus on two
well-known family of cubic techniques. In this context, we comprehensively analyze the
cubic methods proposed by Weerakoon [30] (3OW) and Darvishi [31] (3OD). The stability,
efficient and robustness properties of these solvers are firstly theoretically deduced and
analyzed and, posteriorly, these theoretical foundations are empirically confirmed by
numerical experiments. The two cubic methods are compared with the most standard PF
solver (i.e., NR) and the 4th order Runge-Kutta method (RK4) developed in [10] with the
aim of providing a benchmark study for the applicability of these families in both well and
ill-conditioned systems. It is worth mentioning that these two cubic methodologies suppose
the background for the development of many HONL techniques (e.g., see [32]). Thereby,
this work aims at supposing a valuable guidance for applying other HONL techniques that
are in fact modifications of the studied cubic techniques.

Remainder of this paper is organized as follows. Section 2 outlines the necessary
background. Stability of two families of cubic techniques is studied in Section 3. Section 4 is
devoted on comparing two families of cubic methods with the Newton-Raphson approach
using a well-known efficiency index. Section 5 presents several numerical experiments
with results. The main conclusions of this work are duly drawn in Section 6.

2. Background
2.1. PF Solution Using NR

In polar coordinates, the PF equations describe the nonlinear relationship between the
nodal voltages and power injections. Thus, generically considering the ith system bus, the
PF equations are given by [1–4]:

g(x)
{

gP, ∀i ∈
[
Nl ,Ng

]
gQ, ∀i ∈ Nl

(1)
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gPi = Psch
i −∑|Vi|

∣∣Vj
∣∣∣∣Yij

∣∣ cos
(
θij − δi + δj

)
(2)

gQi = Qsch
i −∑|Vi|

∣∣Vj
∣∣∣∣Yij

∣∣ sin
(
θij − δi + δj

)
(3)

x =
[
δg,δl, Vl

]T (4)

where, Nl and Ng are the sets of PQ and PV buses, respectively. Psch
i ∈ R and Qsch

i ∈ R
are the active and reactive power injected at ith bus, respectively. Vi∠δi ∈ C is the complex
voltage at ith bus. Yij∠θij ∈ C is the ijth element of the admittance matrix, δg ∈ Rng is the
vector of voltage angles at PV buses, δl ∈ Rnl is the vector of voltage angles at PQ buses
and Vl ∈ Rnl is the vector of voltage angles at PQ buses, nl ∈ N and ng ∈ N are the total
number of PQ buses and PV buses, respectively.

Because (1) are strongly nonlinear, they cannot be explicitly inverted. In PF analysis,
iterative techniques are customary employed for addressing this issue and solving (1).
Thereby, NR is often considered as the standard approach for PF purposes. PF solution
using NR is established as a discrete map given by [2–4]:

xk+1 = xk − [g′(xk)]
−1g(xk) (5)

where g′ = ∇xg ∈ Rn×n is the Jacobian matrix and [·]k is the iteration counter. It is well-
known that mapping (5) has quadratic order of convergence. Unlike to the mapping (5),
HONL methods present order of convergence higher than two. In following Sections, we
present two families of HONL techniques with third order of convergence.

2.2. Weerakoon-Like Methods for PF Analysis

Weerakoon and Fernando developed in [30] a nonlinear solver with cubic convergence
rate (labelled 3OW in this work). Application of this technique to PF analysis leads to the
following map: {

yk = xk − [g′(xk)]
−1g(xk)

xk+1 = xk − 2[g′(xk) + g′(yk)]
−1g(xk)

(6)

As observed, mapping (6) requires two Jacobian evaluations and two Lower-Upper
(LU) decompositions. This approximately supposes doubling the computational cost of
NR. Other nonlinear methodologies with cubic convergence rate based on mapping (6),
have been developed and studied in [33–36].

2.3. Darvishi-Like Methods for PF Analysis

Darvishi and Barati studied a third order Newton-like technique in [31] (labelled by
3OD in this work). This approach was already applied to PF analysis in [1], leading to the
following map: {

yk = xk − [g′(xk)]
−1g(xk)

xk+1 = yk − [g′(xk)]
−1(g(xk) + g(yk))

(7)

Alternatively, Babajee et al. [37] concluding in (7) by similitude with the Chebyshev’s
method. 3OD responds to the structure of the so-called multipoint iterative methods [38].
These approaches achieve (N + 1)th order of convergence, where N is the number of steps
computed (two steps in (7)). In contrast to (5), the mapping (7) only requires a Lower-Upper
(LU) factorization each iteration, however, the function g has to be computed twice. For
the sake of self-sufficiency, Figure 1 is a flowchart for PF solution using NR, 3OW or 3OD.
As seen, the flowchart is the same for the three considered solvers. This evidences that the
methods 3OW and 3OD are easily implementable in standard PF codes, thus only requiring
minor modifications.
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Figure 1. Flowchart for the application of NR, 3OW or 3OD for PF analysis.

3. Stability of the Considered Cubic Methodologies

In order to study the stability of 3OW and 3OD, let us introduce the following definition:

Definition 1. Hyperbolic points: a fixed point x∗ of a map G : C ⊂ Rn → Rn is hyperbolic,
if the Jacobian of the equation

.
G = G(x)− x at x∗ has no eigenvalues with a zero real part. In

addition, x∗ is asymptotically stable if all the eigenvalues of the Jacobian of
.

G at x∗ have a modulus
≤ 1. A hyperbolic point can be:

• Sink: if all the eigenvalues of the Jacobian of
.

G have a negative real part.

• Source: if at least one of the eigenvalues of the Jacobian of
.

G has a positive real part.

In contrast, a fixed point is called unstable if it is not stable.

The Definition 1 can be used to study the stability of an iterative map by assimilating
it to a dynamic paradigm [10]. This way, one requires for a PF solution (namely x∗ such
that g(x∗) = 0) to be asymptotically stable. In addition, it is desirable that x∗ be a sink.

3.1. Stability of 3OW

In the case of mapping (6) one can write:

.
G = −2[g′(x) + g′(y)]−1g(x) (8)

By differentiating (8) with respect x one obtains:

∇x
.

G = −2
(
∇x[g′(x) + g′(y)]−1g(x) + [g′(x) + g′(y)]−1g′(x)

)
(9)

On the other hand, by evaluating the first step of (6) at x∗ one obtains:

y| x∗ = x∗ − [g′(x∗)]−1g(x∗) = x∗ (10)

Then, evaluation of (9) at x∗ yields:

∇x
.

G
∣∣∣
x∗

= −2
(
[g′(x∗) + g′(x∗)]−1g′(x∗)

)
= −2

(
[2g′(x∗)]−1g′(x∗)

)
= −I (11)

where I ∈ Rn×n is the identity operator. By (11), we can easily deduce that x∗ is asymp-
totically stable for the mapping (6). In addition, since all the eigenvalues of (11) have a
negative real part, x∗ is also a sink for 3OW.
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3.2. Stability of 3OD

For (7) one has that:
.

G = −[g′(x)]−1(g(x) + g(y)) (12)

By differentiating (12) with respect x one obtains:

∇x
.

G = −
(
∇x[g′(x)]−1(g(x) + g(y)) + [g′(x)]−1g′(x) + [g′(x)]−1g′(y)

)
=

−
(
∇x[g′(x)]−1(g(x) + g(y)) + I + [g′(x)]−1g′(y)

) (13)

As observed, equation (10) is also valid for the mapping (7). Consequently, one
could write:

∇x
.

G
∣∣∣
x∗

= −
(
∇x[g′(x∗)]−1(0 + g(y| x∗)) + I + [g′(x∗)]−1g′(y| x∗)

)
=

−
(

I +
[
g
′
(x∗)

]−1
g
′
(x∗)

)
= −2I

(14)

As checked by (14), x∗ is a sink for the mapping (7), however, it is not asymptotically
stable. From the results obtained in this Section, it is concluded that the Weerakoon-like
techniques are more stable than the Darvishi-like approaches.

4. A Comparison of the Considered Cubic Techniques

Table 1 summarizes the main computations involved in an iteration of the mappings
(5)–(7).

Table 1. Main computations involved in PF solution using NR, 3OW and 3OD.

Computation PF Solution Method
NR (5) 3OW (6) 3OD (7)

Function evaluations (K1) 1 1 2
Jacobian evaluations (K2) 1 2 1

Factorizations (nLU) 1 2 1
Linear systems solved (q) 1 2 2

From Table 1 may look that the Newton-Raphson technique is the most efficient
mapping. However, the order of convergence should be also taken into account. In order
to properly consider this aspect, let us introduce the following efficiency index [39]:

µ = p
1

CO (15)

where, p ∈ R+ is the order of convergence and CO stands for the total computational cost
of an iteration in terms of flops. In this regards, the cost of a LU decomposition may be
estimated using the following Theorem.

Theorem 1. The number of products and quotients required for solving q linear systems of equations
with the same matrix of coefficients, by using LU factorization, is:

o(n, q) =
1
3

n3 + qn2 − 1
3

n (16)

The proof of the Theorem 1 can be found in [40].
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Finally, by considering the cost of each function o(g) = n and Jacobian evaluation
o
(

g
′
)

= n2, the total computational cost of an iteration might be expressed as follows:

CO = K1o(g) + K2o
(

g
′
)
+

m=nLU

∑
m=1

o(n, qm) (17)

where K1 ∈ N is the number of function evaluations, K2 ∈ N is the number of Jacobian
evaluations, nLU is the number of LU factorizations and qm indicates how many linear
systems are solved using the mth LU factorization. The value of these parameters for each
studied solver were summarized in Table 1. With this information, the following Theorems
are devoted on estimating the total computational cost of the maps (6) and (7), respectively.

Theorem 2. Computational cost of 3OW: for the mapping (3), one has µ = 3
1

2
3 n3+4n2+ 1

3 n .

Proof of the Theorem 2. From Table 1 we have that K1 = 1, K2 = 2 and K3 = 2. On the
other hand, each LU decomposition is devoted on solving a linear system, therefore, q = 1
for both LU decompositions. Finally, it is well-known that p = 3 for mapping (6) (a proof
is provided in [30]). Thus:

CO = n + 2n2 + 2
(

1
3

n3 + n2 − 1
3

n
)
=

2
3

n3 + 4n2 +
1
3

n (18)

Therefore:

µ = 3
1

2
3 n3+4n2− 1

3 n (19)

which completes the proof. �

Theorem 3. Computational cost of 3OD: for the mapping (7), one has µ = 31/1
3 n3 + 3n2 + 5

3 n.

Proof of the Theorem 3. From Table 1 we have that K1 = 2, K2 = 1 and K3 = 1. On the
other hand, the LU decomposition is devoted on solving two linear systems, therefore,
q = 2. Finally, it is well-known that p = 3 for mapping (7) (a proof is provided in [31]
and [37]). Thus:

CO = 2n + n2 +
1
3

n3 + n2 − 1
3

n =
1
3

n3 + 3n2 +
5
3

n (20)

Therefore:

µ = 3
1

1
3 n3+3n2+ 5

3 n (21)

which completes the proof. �

The results of the Theorems 2 and 3 allow to compare the methods 3OW and 3OD
with NR. In this sense, Figure 2 plots the value of (12) for the mappings (5)–(7). Clearly,
3OD is the most efficient solver, which was expected since this technique only requires one
LU factorization but achieves cubic convergence. In contrast, 3OW lower efficiency index
than NR. This low degree of efficiency is undoubtedly due to the extra LU factorization
in comparison with (5) and (7). One should note that, especially in large systems, the
factorization of the Jacobian matrix is the heaviest part of any PF calculation [10].
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Figure 2. Efficiency index (15) for the considered mappings.

5. Numerical Experiments

This Section is devoted on presenting some numerical results, which aim to illustrate
the advantages and disadvantages of the considered cubic methods in PF studies. For this
purpose, the considered families of cubic methods are compared with the conventional NR
and the PF solver based on the 4th order Runge-Kutta (RK4) developed in [10]. Throughout
this Section, the following cases will be considered:

• The IEEE 30-, and 300-bus test systems [41,42].
• The 1354-, 2869-, and 9241-bus portions of the European Transmission System from

the EU Pegase Project [43,44].
• The 2736-bus snapshot of the Polish Transmission System at summer 2004 peak [45].

For the sake of self-sufficiency, Table 2 summarizes the main characteristics of the
studied systems. Along NR and RK4 in polar coordinates, the iterative procedures defined
by (6) and (7) have been coded in Matpower [46]. In all cases, g(x)∞ < 10−6 has been
imposed as convergence criterion. The accuracy of the different techniques has been
compared with the so-established correct solution of each system (calculated by using NR
and the initial point defined in Matpower), concluding that solution achieved by all the
considered solvers in the case studies are in essence the same operational point. In this
sense, all considered techniques have been concluded to be accurate enough and a further
comparative analysis have not been included as it lacks of importance.

Table 2. Main characteristics of the studied systems.

System Buses Branches Generators
Load n

MW MVar

30-bus 30 41 6 283.4 126.2 53
300-bus 300 411 69 23,525.8 7788.0 530
1354-bus 1354 1991 260 73,059.7 13,401.4 2447
2736-bus 2736 3504 420 18,074.5 5339.5 5237
2869-bus 2869 4582 510 132,437.3 29,007.8 5227
9241-bus 9241 16,049 1445 312,354.1 73,581.6 17,036

5.1. Convergence Rates

The first test is focused on comparing the convergence rates showed by the considered
methods. A priori, one can guess that 3OW and 3OD solvers will exhibit higher conver-
gence rate than NR and RK4 due to their cubic convergence features. However, a deeper
comparison among 3OW and 3OD techniques has to be empirically carried out. Thereby,
Figure 3 plots the convergence profiles for the studied systems. As expected, the cubic
techniques required less iterations than NR and RK4. On the other hand, 3OW clearly
exhibited the highest convergence rate. It is worth mentioning that 3OD failed in the 2736-,
and 9241-bus cases, which confirms, to some extent, the conclusions drawn in Section 3.
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Figure 3. Convergence profiles in the studied cases.

5.2. Solution Times

Now, the efficiency of the different studied solvers is analyzed. To do that, solution
times employed by the different techniques for solving the cases studies are compared.
Table 3 reports the solution times in milliseconds, required by the studied techniques. These
results have been obtained on a 64-bit i5-9400F Intel Core personal computer (2.90 GHz,
8 GB of RAM). In order to avoid the influence of other computational activities, the reported
results have been calculated as the average values of 100 simulations. As observed, 3OD
was clearly the most efficient technique (even more than NR). Nevertheless, we have to
remark that this algorithm failed in the 2736-, and 9241-bus systems. On the other hand,
3OW resulted not competitive w.r.t. NR as it normally takes longer solution times. To get a
better overview, Figure 4 provides a comparison of the computational saving offered by
3OW and 3OD w.r.t. NR and RK4. As seen, while 3OD was able to improve by ~30% the
results obtained with NR, 3OW was usually inefficient in comparison with the mapping (5).
As expected, computational superior of cubic techniques is more noticeable in comparison
with RK4, because this solver requires 4 LU factorizations per iteration and presents a
very low convergence rate. These results empirically confirm the conclusions drawn in the
efficiency analysis performed in Section 4.

Table 3. Solution times [ms].

System NR (5) RK4 (10) 3OW (6) 3OD (7)

30-bus 3.30 70.50 3.84 2.56
300-bus 11.48 185.26 12.66 8.72

1354-bus 41.55 797.22 48.07 28.42
2736-bus 100.69 1902.75 99.35
2869-bus 93.91 1860.29 110.59 62.38
9241-bus 387.29 6052.44 384.23

Figure 4. Time savings of 3OW and 3OD w.r.t. NR (left) and RK4 (right).
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The reason behind the low degree of efficiency of the mapping (6), lies in the fact
that it requires two LU factorizations each iteration. As commented, the factorization of
the Jacobian matrix may be considered as the heaviest part of any PF calculation, due
to its computational cost is o

(
n3). As checked in Table 4, 3OW often required more LU

decompositions than the remainder techniques. At the same time, one can check that
3OD typically computed less factorizations than NR and RK4, which explains why this
technique resulted competitive compared with NR.

Table 4. Total LU Factorizations.

System NR (5) RK4 (10) 3OW (6) 3OD (7)

30-bus 3 64 4 2
300-bus 5 80 6 3

1354-bus 5 96 6 3
2736-bus 6 112 6
2869-bus 5 96 6 3
9241-bus 6 96 6

5.3. Influence of the Loading Level

Next, les us examine the influence of the loading level in the overall performance of
the studied algorithms. To do that, we have modified the power profiles of the studied
systems as follows:

Psch
i = λPsch

i , for all buses (22)

Qsch
i = λQsch

i , for PQ buses (23)

where λ ∈ R+ is the loading level. Figure 5 shows the total number of iterations required
by the different studied solvers for different loading levels. For the sake of simplicity, only
results in in the 30-, and 2869-bus systems have been reported, since similar conclusions
were observed by the authors in the other cases. As expected, 3OW and 3OD outperformed
NR in all studied systems. It is worth observing that 3OW is less affected by the loading
level than 3OD. Results for RK4 are not shown in Figure 5 for facilitating its visualization
(note that this technique employed many iterations even for solving the base case).

Figure 5. Total iterations for different loading levels.

5.4. Contractive Properties

Next, we aim to check the contractive properties of the analyzed mappings. Firstly, it
is suitable to present the following Theorem:

Theorem 4. Contraction map Theorem: Let x∗ be a root of the mapping G. If there exists a neigh-
bourhood S(x∗, δ) and a positive constant η ∈ (0, 1) such that ‖G(x)− G(x∗)‖ ≤ η‖x− x∗‖,
then the sequence {xk}∞

k=0 defined by xk+1 = G(xk) converges to x∗ for any x0 ⊂ S.

Proof of the Theorem 4 can be found in [47]. Theorem 4 provides sufficient (but not
necessary) conditions for convergence. Here, two aspects deserve to be remarked:
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• Convergence of a mapping is ensured if the following

η =
‖G(x)−G(x∗)‖
‖x− x∗‖ < 1 (24)

holds.
• Intuitively, one can guess that the lowest η the highest degree of robustness and stability.

This way, one can analyse the contractive properties (and indirectly the stability and
robustness features) of an iterative mapping by observing the value of η. This analysis has
been performed for the studied solvers in various cases studies and the results are shown
in Figure 6 plots the value of η for NR, RK4, 3OW and 3OD in the 30-, 2736-, and 9241-bus
cases. In this case, the point x∗ has been calculated using the Newton-Raphson technique
with the initial guess provided in Matpower with convergence tolerance equals to 10−9.
From Figure 6 it is clearly observed that 3OW presents better contractive properties than
the other solvers. Indeed, in the 2736-, and 9241-bus systems the ratio η is occasionally
greater than one for NR and 3OD, while the relation (24) holds in all cases when 3OW is
used. In the case of RK4, it still present good contractive properties due to the condition
(24) holds in all studied cases, however, the ratio η decreased very slowly due to this solver
presents a very low convergence rate.

Figure 6. Value of the ratio η in different cases using various solvers.

5.5. Influence of the Initial Guess

It is well-known that NR has local convergence [47]. This entails that successful
convergence of this algorithm is strongly influenced by the initial guess x0. Generally, one
can affirm that the mapping (5) converges if x0 lies sufficiently close to x∗. However, since
x∗ is normally unknown, choosing a suitable x0 might be a critical task. In this Section we
aim to discern if the considered cubic techniques are wider or narrower convergent that
NR technique. To do that, we have performed a statistical analysis, which a set of different
initial guesses is built as follows:

x0 ∼ N (x∗, σ) (25)

whereN (x∗, σ) is a Gaussian distribution with mean x∗ and standard deviation σ. We have
considered up to 100 different initial guesses for different standard deviations. Figure 7
plots the total number of scenarios successfully solved by different methods, in the 30-,
and 300-bus cases. As observed, NR and RK4 presented similar performance and were
outperformed by 3OW, which resulted to be the less sensitive method. In contrast, 3OD
has turned out to be scarcely reliable.
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Figure 7. Total scenarios successfully solved by NR, 3OW and 3OD using different initial guesses.

To complete the Section, we have considered the ill-posed versions of the 1345-, 2869-
and 9241-bus cases, which can be found in [48]. These cases present an initial point for
which NR fails to converge. Thereby, considering the definition provided in [10], these
cases can be considered ill-conditioned. In order to provide a better overview in such
systems, we have included RK4 (10) in the analysis, since this solver could be considered
robust. Figure 8 shows the convergence profiles in these cases. As observed, while NR
typically showed an oscillatory pattern 3OD diverged in all the studied cases, 3OW was
successful in all the studied cases. These results strengthen the ideas outlined in Section 3.
It is worth remarking that, despite RK4 could be considered a robust solver, it failed in the
2869- and 9241-bus cases. Finally, comparison of the computational burden between RK4
and 3OW is addressed in Table 5 for the ill-posed version of the 1354-bus case. As seen, RK4
consumed much more time than 3OW. A further insight allows to compare the average time
consumed in each iteration of both techniques. As observed, the computational burden of
RK4 is much higher than that observed for 3OW, which is expected as the RK4 requires up
to four LU factorizations each iteration.

Figure 8. Convergence profiles in the modified EU Pegase systems.

Table 5. Solution times [ms] in the ill-conditioned version of the 1354-bus system.

Method Total Iteration

3OW (6) 40.15 8.03
RK4 (10) 804.26 33.51

6. Concluding Remarks

This work has presented a comprehensive analysis of two families of HONL tech-
niques, in order to validate them for PF studies. This analysis has been supported on
theoretical findings and numerical results.

This way, The Weerakoon (3OW) and Darvishi (3OD) families of cubic techniques have
been considered, since they suppose the main background for developing multiple HONL
approaches. This way, this work aims at serving as valuable benchmark for developing
and applying other multiple HONL techniques for PF analysis in the future.
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The first block of this manuscript has developed various theoretical findings on the
basis of well-known theorems. This analysis has yielded as main conclusion that 3OW is
more stable but less efficient than 3OD.

In a second part, various numerical experiments have been performed to confirm the
theoretical findings encountered in the previous study. In these experiments, the considered
cubic methods have been compared with the well-known NR and RK4 techniques. The
results reported allow to assert that 3OW generally result to be more robust and presents
better convergence rate compared with NR and 3OD. In addition, this technique seems to
be less affected by the loading level and the initial guess. The main drawback of 3OW is
its low degree of efficiency. In this aspect, it has been usually outperformed by the 3OD,
which has turned out to be very efficient (even more than NR). However, 3OD has resulted
very weak and totally not suitable for ill-conditioned systems.

On the light of the results obtained, we believe that the Weerakoon-like techniques
may be fully competitive with the Newton’s scheme, due to their intrinsic robust features.
In this regard, future works should be focused on reducing its computational burden by
proposing alternative schemes.
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Abbreviations

PF Power-Flow
NR Newton-Raphson
HONL High-Order Newton-like
3OW Third-order Weerakoon method (3)
3OD Third-order Darvishi method (4)
LU Lower-Upper
RK4 4th-order Runge-Kutta technique (see [10])
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