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Abstract: In this paper, natural convection melting in a square cavity with gradient porous media
is numerically studied at pore-scale level by adopting the lattice Boltzmann method. To generate
the gradient porous media, a Monte Carlo technique based on the random sampling principle is
used. The effects of several factors, such as Rayleigh number, gradient porosity structure, gradient
direction, and particle diameters on natural convection melting are investigated in detail. Based
on the numerical data, it is observed that the thermal performance of the gradient porous media
always depends on the Rayleigh number and, specifically, as the Rayleigh number is set to 106, the
total melting time obtained for the case of the negative gradient porous media is always shorter
than the cases of positive gradient and uniform porous media. However, if the Rayleigh number
is equal to 104, at which the heat transfer is dominated by the heat conduction, it is noted that the
performance of the positive gradient porous media is better than the other cases. To have a better
understand on this point, various simulations are also performed and we found that there usually
exists a critical value of Rayleigh number to determine the thermal performance of the gradient
porous media. Moreover, our numerical results also show that the influence of the particle diameter
on the liquid fraction is insignificant as Rayleigh number is set to 104, while it has a great impact on
the liquid fraction when Rayleigh number equals 106.

Keywords: lattice Boltzmann method; solid–liquid phase change; gradient porous media; pore-scale study

1. Introduction

Thermal energy storage (TES) technology has attracted wide attention due to its
ability to solve the temporal and spatial imbalance between energy supply and energy
demand [1,2]. Among various TES methods [3,4], the latent heat thermal energy storage
(LHTES), which stores thermal energy in latent heat through the solid–liquid phase change
of phase change material (PCM), has drawn great attention due to its stable thermal energy
storage temperature, low cost, and high thermal density [5]. However, as pointed out
by some researchers, the low thermal conductivity of the PCMs (∼0.3 W ·m−1 ·K−1 for
solid paraffin [6]) in LHTES seriously limits the heat storage efficiency. In the past few
years, various heat transfer enhancement approaches have been proposed to improve the
thermal performance of phase change heat transfer in LHTES [7–12], such as employing fins
with high thermal conductivity [7,8], using multiple PCM methods [9,10], and embedding
PCMs in highly conductive porous media [11,12] and so on.

As a new material, high porosity cellular metal foams with open cells are a kind of
promising porous media with high thermal conductivity, high surface area to volume
ratio, and ultra lightweight to improve the heat transfer performance in the charging
and discharging process [13]. In such a case, recently some experimental and numerical
studies have been conducted to investigate the solid–liquid phase change heat transfer
in metal foams [14–20]. Chen et al. [14] used an infrared camera and microscope to
experimentally study the heat transfer performance of PCM in metal foam, and also used
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the double-distribution lattice Boltzmann method to carry out a numerical simulation. It
is found that the numerical values are in consistent with the experimental results and the
authors stated that the the existing of metal foam has a positive impact on the PCM melting.
Yang et al. [15] experimentally studied the influences of metal foam on solid–liquid phase
change and found that, compared with the case of pure paraffin, completely melting the
PCM in metal foam takes much less time under the same condition. Later, Yao et al. [19]
conducted a visualized experiment to study the melting of paraffin in high porosity copper
foam at pore scale. They concluded that the copper foam with a high porosity of 0.974
effectively extends the phase change interface and improves the heat storage of paraffin,
while the reduction in the amount of latent heat is only 2.6%. In addition, Zhao et al. [16]
numerically studied the melting behavior of paraffin in metal foam, and it is noted that
the Rayleigh number, porosity, and pore density have significant impacts on the melting
and solidification process. Tao et al. [17] used the lattice Boltzmann method to study the
heat storage performance of the metal foam filled with paraffin, and the influences of
porosity and pore density on the melting rate are both considered. Based on the numerical
results, the authors stated that increasing pore density could help dissipate the heat more
rapidly from the heat source, but weaken the natural convection heat transfer performance.
Zhu et al. [18] employed the finite volume method to discuss the heat loss, the liquid
melting rate and the efficiency of LHTES. The results show that the pores per inch (PPI)
of aluminum foam, the shape of cold wall, and the distribution of heat sources could
impact the heat conduction performance of the metal foam. More recently, Yang et al. [20]
numerically and experimentally explored the influence of the inclination angle and the
aspect ratio of the inclined cavity filled with metal foam. It is found that for a given aspect
ratio, the influence of the tilt angle is insignificant, while the case with a smaller aspect
ratio outperforms the one with a bigger ratio for different aspect ratios.

From the above literature review, one can find that embedding PCMs in highly conductive
porous media is an effective approach to enhance the performance of phase change heat
transfer. However, it should be noted that the pore structure appeared in these works are
usually fixed. Actually, in view of the evolution of the solid–liquid interface is usually
non-uniform during melting process, some researchers recently pointed out that the phase
change heat transfer can be further enhanced by vary the porosity or the pore density in the
porous media [21–27]. In this context, few attempts have been carried out to study the effect
of the non-uniform pore structure on phase change heat transfer [21–27]. Yang et al. [21]
numerically investigated the melting process of sodium nitrate inside porous copper foam
with linearly changed porosity. The numerical results show that porosity linearly increased
from bottom to top could improve the heat transfer performance and shorten the completely
melted time compared to that for constant porosity. Later, Zhu et al. [22] proposed an
improved metal foam structure, which is composed of metal foam and finned metal foam with
gradient pores. The finite volume method is also used to analyze the influence of structural
parameters on energy storage performance. It is found that this structure can shorten the
melting time by changing the melting sequence of the PCM. Zhang et al. [23] numerically
studied the melting behavior in gradient foam metal, which consists of three different
homogeneous porosity slices, and the results show that the gradient porosity structure can
overcome the bottom corner phenomenon to increase the heat storage rate. Yang et al. [24]
experimentally and numerically studied the effect of gradient porosity and gradient density
in tube latent heat thermal energy storage. Results indicated that the positive gradient design
of porosity can significantly reduce the melting time of PCMs filled in the pore space and
simultaneously obtain a better temperature uniformity. Ghahremannezhad et al. [25] used a
finite volume approach to numerically simulate the melting behavior of PCMs in gradient
foam metal under different heating modes. They found that the direction of gradient porosity
and PPI can affect the heat transfer rate. Hu et al. [26] used a three-dimensional model to
numerically simulate the melting behavior in a gradient metal foam saturated with PCM
and quantitatively explored the effect of gradient size and gradient difference on the heat
storage characteristics of PCMs. It found that gradient metal foam effectively improves and
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accelerates the heat storage efficiency and there is an optimal gradient difference under a
fixed average porosity. Marri et al. [27] experimentally and numerically studied the thermal
performance of cylindrical foam metal/PCM composite heat sinks with gradients of porosity
and density. The results show that the three-level gradient and the two-level gradient have
comparable thermal performance, which are 4.4 times and 4.0 times stronger than the thermal
performance of the uniform structure, respectively.

These exiting works show that the pore structure of the porous media has a significant
impact on solid–liquid phase change heat transfer, and it can be served as an effective
mean to enhance PCM melting. However, we note that most numerical studies on PCM
melting in gradient porous media are based on the representative elementary volume
(REV) models [21–29], and it is well known that in the REV model, the macroscopic
quantities, including permeability and effective thermal conductivity, are always obtained
by using some empirical correlations, which further affects the accuracy of the REV model.
In addition, since the pore structures are ignored in the REV model, it cannot capture the
detailed information of the fluid flow and heat transfer inside pores [30]. Further, we noted
that although some previous works stated that the employing of positive gradient pore
structures is always a good choice in enhancement of solid–liquid phase change [24,25],
some researchers have also stated that the negative gradient porous media has a better
melting performance than the positive one [26], and these contradictory statements most
likely arise from the various parameters used in REV model.

In this context, it is essential to conduct a pore scale study on solid–liquid phase
change in gradient porous media, and to the best of our knowledge, no systematical
investigations have been reported in the open literature for this issue. To fill this gap,
we intend to investigate natural convection melting in a square cavity with porosity
gradient at pore-scale in this work. In our simulations, the macroscopic equations are
numerically solved by using the lattice Boltzmann (LB) method, which has become a
promising pore-scale method for simulating complex fluid flow [31–35]. Compared
with the traditional computational fluid dynamics (CFD) methods, the LB method has
mesoscopic physical background and has advantages in mesh generation, boundary
processing, multi-factor coupling effects and massively parallel computation of complex
structures [36], which is very suitable for simulation studies of solid–liquid phase change in
porous media [37–40]. The remainder of this paper is structured as follows. The governing
equations for the melting problem and physical problem are presented in Section 2,
followed by the LB method for the enthalpy equation and the fluid flow and boundary
treatment in Sections 3.1–3.3, respectively. Subsequently, the model verification is given in
Section 4. Numerical results are presented and discussed in Section 5, and, finally, some
conclusions are summarized in Section 6.

2. Problem Statement and Governing Equations

In this work, we focus on the solid–liquid phase change in a square cavity filled with a
gradient porous media, and the schematic diagram of the two-dimensional physical model
is depicted in Figure 1, and the porous structure considered here can be viewed as a kind
of gradient metal foam [13]. As shown in this figure, a square cavity with side length of δ
encloses the gradient porous media, and the PCM is embedded inside the pores with the
melting temperature of Tm. In addition, the left side wall is set to be a high temperature of
Th (Th > Tm), while the temperature of the right side wall is kept at a low temperature of
Tm. Further, the two horizontal walls of the enclosure are assumed to be adiabatic.
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Figure 1. Schematic of solid–liquid phase change in gradient porous media, in which the porous
media consists of various solid particles denoted by black spots, and the dash line represents the
solid–liquid interface: (a) Case A: horizontal porosity gradient; (b) Case B: vertical porosity gradient.

In order to generate the gradient porous media, a Monte Carlo method based on the
random sampling principle is employed [41], and, for simplicity, the gradient porous media
considered here is a so-called two-layer structure [27], and it is obtained by varying the
porous media porosity in the horizontal direction (see Case A in Figure 1a) or the vertical
direction (see Case B in Figure 1b). In addition, the positive gradient porous media is gained
through increasing the porosity of porous media along the horizontal or vertical direction,
while the negative one is got by decreasing porosity in the corresponding direction. Further,
the grid resolution of per unit in following simulations is set to 512, which is fine enough
to give the grid-independence results. As stated in Reference [13], the value of metal foam
porosity is usually around 0.9, and without loss of generality, the average porosity of the
porous media used in this work is fixed at 0.875. Finally, in order to keep the distribution of
the porous media more uniform, the diameter of the particle is set to 7.5 l.u. (lattice unit).

The macroscopic governing equations are established by incorporating the following
assumptions [25]: (1) all thermophysical properties of the fluid and porous media are taken
to be constant except for the density variation in the buoyancy term, in which it is taken as
a function of the temperature by considering the Boussinesq approximation, (2) the volume
change during the phase transition is ignored, (3) all materials meet the assumptions of
uniformity and isotropy. In such a case, the governing equations for the solid–liquid phase
change in the gradient porous media can be expressed by [42]

∇ · u = 0, (1)

∂u
∂t

+∇ · uu = −∇p +∇ ·
[
υ
(
∇u + (∇u)T

)]
+ gβ(T − Tm), (2)

∂H
∂t

+∇ ·
(
CpTu

)
=

1
ρ0
∇ · (λ∇T), (3)

where g, u, T, p, λ, ρ0, υ, β,Cp are the gravity acceleration vector, velocity, temperature,
pressure, the thermal conductivity, the constant density, kinetic viscosity, thermal volumetric
expansion coefficient, and the heat capacity, respectively. Further, in order to close the
above governing equations, the popular formal to connect the relationship between the
enthalpy and temperature are adopted here, and it can be expressed as

H = CpT + fl L, (4)
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in which L and fl represent latent heat and liquid phase volume fraction of PCM, respectively.
Meanwhile, the energy equation in the porous media can be described as

∂
(
Cp,me

)
T

∂t
=

1
ρme
∇ · (λme∇T), (5)

in which the subscript me represents the porous media.
Based on the above equations, the present problem can be characterized by the

following three main dimensionless parameters, i.e., Rayleigh number (Ra), Prandtl number
(Pr), Stefan number (Ste), Fourier number (Fo), which are defined by

Ra =
|g|β(Th − Tm)δ3

υα
, Pr =

υ

α
, Ste =

Cp(Th − Tm)

L
, Fo =

αt
δ2 , (6)

where α and δ are the thermal diffusivity and length of the square cavity, respectively.

3. The Lattice Boltzmann Model for Solid–Liquid Phase Change
3.1. Lattice Boltzmann Method for Velocity Field

In the present study, the incompressible lattice Bhatnagar–Gross–Krook (LBGK) model
proposed by Guo et al. [43] is used to simulate the fluid flow, the evolution equation of the
particle velocity field is

fi(x + ci∆t, t + ∆t)− fi(x, t) = − 1
τf

[
fi(x, t)− f (eq)

i (x, t)
]
+ ∆tFi, (7)

where fi(x, t) is the probability density distribution functions with velocity at position x
and time t, ∆t is the time increment. τf is the dimensionless relaxation time determined by

ν = ρ0c2
s

(
τf − 0.5

)
∆t. In addition, f eq

i is the equilibrium distribution function given by [43]

f (eq)
i (x, t) = ηi p + ωi

[
ci · u

c2
s

+
uu :

(
cici − c2

s I
)

2c4
s

]
, (8)

where ηi is the model parameter satisfying η0 = (ω0 − 1)/c2
s + ρ0, ηi = ωi/c2

s (i 6= 0) with
the constant ρ0 being the fluid average density. ωi is the weight coefficient, represented as

ωi =


4/9, i = 0
1/9, i = 1, 2, 3, 4
1/36, i = 5, 6, 7, 8.

. (9)

The direction of the discrete velocity ci of the model in i direction is given by

ci =


(0, 0) i = 0
c(cos[(i− 1)π/2], sin[(i− 1)π/2]) i = 1, 2, 3, 4√

2c(cos[(2i− 9)π/4], sin[(2i− 9)π/4]) i = 5, 6, 7, 8
, (10)

where i is velocity direction, and c is the lattice speed satisfying c = ∆x/∆t, ∆x is the lattice
spacing. The body force term Fi is defined as [44]

Fi(x, t) = ωi

(
1− 1

2τf

)[
ci · F

c2
s

+
(Fu + uF) :

(
cici − c2

s I
)

2c4
s

]
, (11)

where cs = c/
√

3 is the sound speed of the model, F is the buoyancy force, and can be
calculated according to Boussinesq assumption:

F = ρgβ
(

T − Tre f

)
. (12)
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Finally, the macroscopic pressure and velocity can be obtained by

u = ∑
i

ci fi +
∆t
2

F, p =
c2

s
1−ω0

(
∑
i 6=0

fi −ω0
|u|2
2c2

s

)
. (13)

3.2. The Optimal Two-Relaxation-Time Lattice Boltzmann Model for Temperature Field

In recent years, various LB models have been proposed to simulate the solid-phase
change problems [37–40,42], and the most widely used model is the so-called total-enthalpy-
based LB model [45]. However, as pointed out by Lu et al. [46], the traditional total
enthalpy-based thermal LB model is usually accompanied by the numerical diffusion
across the phase interface. To address such drawback, Lu et al. [46] proposed an optimal
two-relaxation-time (OTRT) LB model for PCM melting, and the unphysical numerical
diffusion can be largely reduced without introducing any substantial complication with
respect to the original TRT model. In this context, the OTRT model is adopted here and the
evolution equation of the temperature distribution function can be described as

gi(x + ci∆t, t + ∆t) = gi(x, t)− 1
τs

g

[
gs

i (x, t)− gseq
i (x, t)

]
− 1

τa
g

[
ga

i (x, t)− gaeq
i (x, t)

]
, (14)

where gs
i (x, t) and ga

i (x, t) are the symmetric and anti-symmetric parts of the particle
distribution function, where the superscript s and a represent the symmetric and anti-
symmetric parts of distribution function, respectively. τg

s and τg
a are the symmetric

relaxation time and anti-symmetric relaxation time, respectively. The expressions of
gs

i (x, t), ga
i (x, t), gseq

i (x, t), gaeq
i (x, t) are defined by

gs
i =

gi + gī
2

, ga
i =

gi − gī
2

, gseq
i =

geq
i + geq

ī
2

, gaeq
i =

geq
i − geq

ī
2

, (15)

in which ī represents the opposite direction of i. The equilibrium distribution function is
expressed as

geq
i =


H − CpT + ωiCpT

(
1− |u|

2

2c2
s

)
, i = 0

ωiCpT
[

1 + ci ·u
c2

s
+ (ci ·u)2

2c4
s
− |u|

2

2c2
s

]
, i 6= 0

. (16)

In addition, the dimensionless relaxation time τs
g and τa

g are calculated by

λ

ρ0cp
= c2

s

(
τa

g − 0.5
)

∆t,
1
τs

g
+

1
τa

g
= 2. (17)

Further, the total enthalpy is given as

H = ∑
i

gi. (18)

Finally, the liquid fraction fl and the temperature T are calculated from the total
enthalpy H as [45]

fl =


0 H ≤ Hs
H−Hs
Hl−Hs

Hs < H < Hl

1 H ≥ Hl

, (19)

T =


H
Cp

H ≤ Hs
Hl−H
Hl−Hs

Ts +
H−Hs
Hl−Hs

Tl Hs < H < Hl

Tl +
H−Hl

Cp
H ≥ Hl

, (20)

in which Hs = CpTs and Hl = CpTs + L are total enthalpy of the solid phase and the liquid
phase, respectively. Ts and Tl denote the solid and liquid temperatures, respectively.
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3.3. Boundary Treatment

For the problem considered here, the no-slip boundary condition is adopted for the
solid–liquid interface, as well as the solid particles. In numerical simulations, an immersed
moving boundary scheme is used to treat the above boundary, and it can be expressed as [47]

fi(x + ci∆t, t + ∆t) = fi(x, t)− 1− B
τf

[
fi(x, t)− f eq

i (x, t)
]
+ BΩs

i + ∆tFi, (21)

where B is the weighting function which is expressed by

B =
(1− fl)

(
τf − 0.5

)
fl + τf − 0.5

. (22)

Ωs
i is an additional collision term and it can be given as

Ωs
i = f ī(x, t)− fi(x, t) + f eq

i (p, us)− f eq
ī (p, us), (23)

where us = 0 is the velocity of solid phase. In addition, the non-equilibrium extrapolation
scheme proposed by Guo et al. [48] is employed to the boundary of the cavity.

4. Model Validation

In order to demonstrate the ability of the present model in simulation of solid–liquid
phase change, the pure PCM melting at Ra = 2.5× 105, Ste = 0.01, and Pr = 0.02 in a
square cavity is selected to validate, and a grid resolution of 512 × 512 is employed in our
simulations, which is fine enough to give the grid-independent solution. As shown in
Figure 2, it can be clearly seen that the present numerical results are in good agreement
with previous studies, indicating that the present LB model and the simulation code is
accurate and reliable. Additionally, to improve the computational efficiency, the code for
each case is performed on the graphics processing unit (GPU) by using “Compute Unified
Device Architecture (CUDA)” programming.
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Figure 2. Comparisons of liquid fraction fl , average Nusselt number Nuave (a) and phase interface
position (b) between present numerical results and Huang et al. [45].

5. Results and Discussion

We now turn to study the natural convection melting in a square enclosure with
gradient porous media, and the influences of Rayleigh number, gradient pore structure,
gradient direction, as well as the particle diameter are investigated in detail. In addition,
unless otherwise stated, the Stefan number and the Prandtl number are selected as 0.1 and 0.2,
and the thermal conductivity ratio between the PCM and the porous media is set to 500.0.

We first examine the effect of the gradient porosity on melting behavior at Ra = 106.
Figure 3 illustrates the variations of the liquid fraction fl with dimensionless time Fo at
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Ra = 106, in which the numerical results obtained for the uniform pore structure are also
included. According to the melting curve, one can find that no matter which case we studied,
the melting curves obtained for all pore structures are completely overlap at the early stage
due to the fact that heat conduction is the main mode of heat transfer in this stage. However,
as the dimensionless time Fo increases further, the melting rate is first increased significantly
and then decreased slightly, which indicates that a gradually slow propagation rate for melting
interface. In addition, it is noted that the heat transfer performance obtained for negative
gradient in case A is usually better than those gained for positive and uniform pore structures,
which is caused by the fact that the remanent space near the hot wall is larger than the other
cases such that the convection is more easily to be activated at this Rayleigh number of 106.
However, as shown in Figure 3b, it is find that for case B, only when the dimensionless time
Fo is larger than 1.0, the melting rate obtained for negative pore structure is always larger than
the other two cases, while the melting rates gained for uniform and positive pore structure
are comparable. Finally, no matter which case we studied, it is observed the total melting
time for negative gradient porous media is shorter than the other two cases, which further
indicates that for this relatively larger Rayleigh number, applying the negative porous media
for natural convection melting is suggested.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Positive gradient

Negative gradient

Uniform

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Positive gradient

Negative gradient

Uniform

(b)

Figure 3. Comparisons of liquid fraction fl in three gradient structures for (a) case A and (b) case B
at Ra = 106, in which Ste = 0.1, and Pr = 0.2.

In order to intuitively understand the flow transition process in different gradient
structures. Figure 4 shows streamline and total liquid fraction distributions with three
different gradient structures at Ra = 106, where the liquid and solid phase zone are
represented by the white and blue region, and the porous media is denoted by black
region. Due to the influence of the heat conduction in porous media, the flow regime in
the enclosure is actually determined by the combined effect of convection and conduction
during melting, and the final heat transfer performance relies on which mechanism is
the dominant mode during the melting process. As shown in Figure 4, at the early stage
of melting (Fo = 0.2), since there is not enough molten PCM that can support natural
convection in the enclosure, the heat conduction is the main mode of heat transfer, such
that as the general trend of the solid–liquid interface is roughly perpendicular to the
upper and lower wall for all the three different gradient structures. As the dimensionless
time Fo increases to 0.9 (see Figure 4 at Fo = 0.9), the gradual increase in molten PCM
provides a larger carrier for natural convection resulting the main heat transfer mechanism
gradually changed from heat conduction to natural convection. As shown in Figure 4,
due to the impact of the buoyancy force, the molten PCM is first move upward until it
reaches the top side wall of the cavity, and then the heat is transferred to the vicinity of
the solid–liquid interface. As a consequence, the solid–liquid interface moves forward
and is gradually titled at a certain angle. However, in the final stage of the melting (see
Figure 4 at Fo = 3.0), since the strength of the convection at the lower right corner of the
enclosure is small enough that the PCM in this place melting slowly. Actually, as pointed
out by Zhu et al. [18], this phenomenon is the so-called “bottom corner phenomenon”,
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which will worsen the conduction heat transfer at the bottom region and reduce energy
storage efficiency. Another point worth being mentioned is that due to the conductivity of
porous media is much higher than that of PCM, the PCM near the solid particle is always
preferentially melt, leading the solid–liquid interface shows a sign of fluctuation.

(a)

(b)

(c)

(d)

(e)

Fo = 0.2 Fo = 0.9 Fo = 3.0
Figure 4. The distribution of the liquid fraction for different gradient structures at Ra = 106, in which
Ste = 0.1, and Pr = 0.2: (a) Case A: negative gradient; (b) Case A: positive gradient; (c) Uniform
gradient; (d) Case B: negative gradient; (e) Case B: positive gradient.
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The above discussion is mainly focused on the overall tendency of melting, and in what
follows, the influences of the pore structure are investigated in detail. As shown in Figure 4,
although the average porosities used in the three pore structures are the same to each other,
one can clearly find that the variations of the porosity in the horizontal or vertical direction
have a great impact on both the solid–liquid interface and the streamlines. Specifically,
compared to the case of uniform pore structure, the negative gradient pore structure in case
A provides a lower thermal conductivity and a smaller convection resistance in the left area
since it has the highest porosity in the left region. As a result, a stronger natural convection
is formed in the left area, bringing more heat near the solid–liquid interface, such that the
negative gradient always has a faster melting rate during PCM melting (see Figure 3a).
In addition, since the negative gradient has the lowest porosity and the highest thermal
conductivity at the right side, the heat is transferred more effectively to the right side of the
cavity during the final melting phase resulting in a shorter total melting time (see Figure 3a).
Further, due to the positive gradient porous media has a completely opposite porosity
gradient direction in contrast to the negative gradient pore structure, it provides the higher
resistance to natural convection at the left area and also the lower thermal conductivity
at the lower right corner of the enclosure, leading a lower melting rate in such a case (see
Figure 3a). Furthermore, since the heat transfer is mainly controlled by the heat conduction
at the early stage of melting, it is noted that the difference of the melting rates obtained
for all these three cases in this stage are insignificant (see Figure 3a). On the other hand,
as far as the positive pore structure in case B is considered, it is find that the enhancement
of the PCM melting is just remarkable at the upper side of the cavity due to the smaller
porosity in this region. For the lower side, since the distribution of the solid particle is
compact, the convection effect in this area is not significant such that the melting efficiency
is relatively smaller in contrast to that of the upper side. Moreover, since the porosity at
the upside (downside) of the cavity for negative pore structure in case B is smaller (larger),
the heat at the upside of the cavity is more easily to be transferred by the conduction and
the convection on the downside of the enclosure is more inclined to be activated. As a
consequence, the two main heat transfer mechanisms are all effectively present in the cavity,
and specially, it is also noted that although the “bottom corner phenomenon” exists for
other structures (see Figure 4), it does not appeared for the negative pore structure in case B
as a result of the convection at final stage in such a case is stronger than the others. Finally,
compared with the structures used in case A (see Figure 3), the negative gradient structure
of case B has a shorter melting time due to the elimination of bottom corner phenomenon.

The thermal Rayleigh number in the above discussion is just set to Ra = 106 at which
the effect of the convection is usually larger than that of the conduction, however, we note
that if the thermal Rayleigh number in our simulations are fixed at 104, the evolution of
the solid–liquid interface, as well as the impact of the gradient pore structure are largely
different from that of Ra = 106. To this end, in what follows, we intend to study the natural
convection melting in the enclosure with gradient porous media at Ra = 104. Figure 5
illustrates the variations of the liquid fraction fl with dimensionless time Fo for all the
three different gradient structures in case A and case B at Ra = 104. To begin with, due
to the convection effect in such a Rayleigh number being insignificant, the melting rates
obtained for case A and case B are both smaller than that gained for the case of Ra = 106.
Additionally, we also find that the PCM in the positive gradient structure of case A is the
first to fully melted, and the melting performance in such a case is usually better than
that of the uniform and negative gradient structures. This phenomenon can be explained
by the following two aspects. As shown in Figure 6, because the solid–liquid interface is
nearly parallel to the vertical direction, it is easy to understand that conduction is the main
mode of the heat transfer for this small Rayleigh number. On the other hand, since the
porosity near the left side of the enclosure for positive gradient structure is smaller, such
that the conduction effect in this area is stronger than that of the negative gradient structure
(see Figure 6a,b), which, in turn, enhances the total conduction effect in the enclosure.
As a result, the total melting time in this case is smaller than that of the uniform and
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negative gradient pore structures. However, as seen from Figure 5b, one can find that the
melting performance for all the three pore structures in case B are nearly the same, which
is largely different from that of case A. In fact, considering conduction is the main mode
of heat transfer at this Rayleigh number, the effect of the gradient direction for case B is
insignificant as a result of the porosity gradient direction (see Figure 1b) is vertical to that
of the temperature in this situation. Further, it is interesting to note that there are obvious
steps in the solid–liquid interface, and the steps are always located exactly at the interface
where the porosity changes (see Figure 6), and this phenomenon can be explained by the
fact that the lower porosity area always has higher conductivity, such that the the PCM in
this areas melts more quickly than the regions with higher porosity.
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Figure 5. Comparisons of fl in three gradient structures for (a) case A and (b) case B at Ra = 104,
in which Ste = 0.1, and Pr = 0.2.

The above discussions illustrate that the influence of the gradient pore structure on
melting performance depends on the thermal Rayleigh number, and it brings us a new
question: whether there is a critical Rayleigh number to determine the performance of
the gradient pore structure? To this end, we also conduct various numerical simulations
to investigate the effect of the Rayleigh number on the total melting time and the results
are plotted in Figure 7, in which the numerical data obtained for case A and case B are
both included. As shown in this figure, one can observe that no matter which case we
studied, the performance of the positive gradient pore structure is usually better than that
of the negative gradient porous media up to a critical Rayleigh number Rac, at which the
influences of the positive and negative gradient pore structures are comparable, and then
the melting performance of the negative gradient is better than that of the positive one.
In fact, as discussed previously, the heat transfer in the enclosure is mainly controlled
by the conduction and the convection, and as the Rayleigh number is smaller than the
critical number Rac, conduction is then the main mode of heat transfer for both cases.
For the positive gradient structure in case A, since the dispersal particles near the left
side wall is more tightly grouped than that for the negative one, therefore, the conduction
effect is more significant, meaning that the total melting time in such a case is much
shorter than the negative gradient pore structure, and this statement can also be verified
by Figure 6a,b. In addition, as far as the pore structures in case B is considered, it is
noted that the last melting PCMs for positive and negative gradient pore structures are
mainly distributed over the top-right and the bottom-right corners, respectively (also see
Figure 6d,e), and since the porosity of the positive gradient pore structure at the upper part
of the cavity is relatively larger, the buoyancy force effect in this area is more significant
than that of the negative gradient porous media. As a consequence, the total melting time
used for the positive gradient pore structure is a little smaller in contrast to the negative one.
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(a)

(b)

(c)

(d)

(e)

Fo = 0.2 Fo = 0.9 Fo = 3.0
Figure 6. The distribution of the liquid fraction for different gradient structures at Ra = 104, in which
Ste = 0.1, and Pr = 0.2: (a) Case A: negative gradient; (b) Case A: positive gradient; (c) Uniform
gradient; (d) Case B: negative gradient; (e) Case B: positive gradient.

On the other hand, as illustrated in Figure 7, it is found that as the thermal Rayleigh
number is higher than the critical number Rac, the melting performance of the negative
gradient pore structures is always better than the positive gradient porous media, and this
is because that the heat transfer in the enclosure is mainly dominated by the convection,
and the “bottom corner phenomenon” in negative gradient pore structures are less likely
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to be induced; this statement can also be validated by Figure 4. Another point that needs
to be emphasized is that the total melting times obtained for the positive gradient porous
media in both case A and case B are always increased with the increasing of Rayleigh
number. To have a better understanding of this abnormal phenomenon, we also present
the distributions of the liquid fraction with dimensionless time Fo for different thermal
Rayleigh numbers in Figure 8. As shown in this figure, it is noted that for both cases,
although the melting rate increases with increasing Rayleigh number at the early stage, it
is decreased with the growing of the thermal Rayleigh number at the final stage. Actually,
as shown in Figure 9, one can observe that although the convection effect is more significant
as Ra increases, the “bottom corner phenomenon” tends to become more obvious, and the
volume of the remaining PCMs at the bottom corner is increased significantly with the
increasing of Ra, such that the total melting time increases, which further indicates that the
elimination of the bottom corner phenomenon in the PCM melting problem is significant.
Further, the above numerical results show that the performance of the gradient porous
medium relies on various parameters, and the statement of positive gradient pore structure
is better than that of the negative one in some previous works [24–26] is somewhat arbitrary.
Finally, based on the present numerical data, it can be concluded that there are two ways to
eliminate the bottom corner phenomenon for the PCM melting problem, and it is usually
related to the Rayleigh number. As Ra > Rac, since the heat transfer is dominated by the
convection, the bottom corner phenomenon can be eliminated by increasing the porosity of
the lower part of the cavity to increase the convection strength at the lower right corner.
However, when Ra < Rac, due to the main mode of heat transfer is conduction, the bottom
corner phenomenon can be prevented by minimizing the porosity of the corner, such that
heat conduction at the bottom corner increases.

Positine gradients

Negative gradient

Ra
c

8.0 10
4

(a)

Positine gradients

Negative gradient

Ra
c

3.6 10
5

(b)

Figure 7. Comparisons of total melting time in two different gradient structure for different Ra,
in which Ste = 0.1, and Pr = 0.2: (a) Case A; (b) Case B.
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Figure 8. Comparisons of total melting time for positive gradient structure at different Ra, in which
Ste = 0.1, and Pr = 0.2: (a) Case A; (b) Case B.
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Ra = 2.5× 104 Ra = 1.0× 105 Ra = 2.0× 105

Ra = 3.0× 105

Figure 9. Comparisons of temperature, streamlines and liquid fraction distributions in turning point
for positive gradient of case A at Fo = 3.0, in which Ste = 0.1, and Pr = 0.2.

Finally, the influence of the particle diameter d is also explored, and the corresponding
numerical results are presented in Figures 10 and 11, in which the average porous porosities
of the porous media for different cases are set to the same value, i.e., 0.875. As seen from
Figure 10, it is noted that the influence of the particle diameter on the melting performance
in both case A and case B can be neglected, and the total melting time obtained for
different cases are nearly identical, and the reasons for this phenomenon are attributed
to the following two aspects. For one thing, the conduction is the main mode of heat
transfer, and for another, since the average porosities of different particle diameters are
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identical, the total areas of the solid particle in the enclosure are also the same. As a result,
the conduction effects in such a case are comparable and the melting rates of different
particle diameters are more likely to be identical. However, as the Rayleigh number
increases to 106, it is found that for the positive gradient structures, the melting rate
increases with increasing particle diameter (see Figure 11), which is caused by the fact that
as the particle diameter increases, there is more space to induce the natural convection,
and a better melting performance is expected. In addition, for the negative gradient pore
structures in both case A and case B at this Rayleigh number, it is found that the liquid
fraction obtained for d = 3.5 l.u. is always smaller in contrast to the cases of d = 7.5
l.u. and d = 15 l.u. Actually, as the particle diameter is set to 3.5 l.u., the porosities of
the porous media near the right sidewall in case A and the upside wall in case B are
smaller, relatively, which further induces a more significant flow resistance during the
melting process, causing the melting performance decreases. However, for d = 7.5 l.u. and
d = 15 l.u., since the average porosity in these two cases is the same as that of d = 3.5 l.u.,
the distribution of the particle in the whole domain is very sparse, and the local porosities
in different layers are comparable, resulting in the difference of the liquid fraction in such
cases is insignificant.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Positive gradient

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Negative gradient

(a)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Positive gradient

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Negative gradient

(b)

Figure 10. Comparisons of liquid fraction at different particle diameters for Ra = 104, in which
Ste = 0.1, and Pr = 0.2: (a) Case A; (b) Case B.
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Figure 11. Comparisons of liquid fraction at different particle diameters for Ra = 106, in which
Ste = 0.1, and Pr = 0.2: (a) Case A; (b) Case B.

6. Conclusions

In this paper, a pore scale study is conducted to investigate the solid–liquid phase
change in a square cavity filled with gradient porous media by using the total enthalpy-
based LB model, and the present LB model is verified by simulating the natural convection
in a square enclosure, and the numerical results agree well with the benchmark data.
Additionally, in order to improve the computational efficiency, the present algorithm is
performed on the GPU by using NVIDIA’s CUDA, and the influences of gradient porosity,
Rayleigh number, gradient direction and particle diameter on the phase change heat
transfer performance are all investigated in detail.

Based on the present numerical results, it turns out that the porous media with
gradient porosities has a significant effect on the melting performance, and it is noted
that there is a critical Rayleigh number Rac to determine the performance of the gradient
pore structure, and as Ra < Rac, the total melting time for the case of negative gradient
structures are always shorter than the cases of positive gradient and uniform porous media.
On the contrary, the performance of the positive gradient porous media is better than
the other cases as Ra > Rac, and it is interesting to note that since the bottom corner
phenomenon is more easily to be induced at a relatively larger Rayleigh number, the total
melting time obtained for the positive gradient porous media increases in thermal Rayleigh
number. Furthermore, no matter which the gradient structures we study, the impact of the
particle diameter on the melting performance in both case A and case B can be neglected
at Ra = 104. However, increasing particle size has a great impact on the liquid fraction
when Rayleigh number equals 106 and this phenomenon is more distinct for the positive
gradient pore structures.

Further, we would like to give some suggestions in eliminating the bottom corner
phenomenon, which has a significant influence on the melting performance. As Ra > Rac,
since the heat transfer is dominated by the convection, the bottom corner phenomenon
can be eliminated by increasing the porosity of the lower part of the cavity to increase the
convection strength at the lower right corner. However, when Ra < Rac, due to the main
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mode of heat transfer is conduction, the bottom corner phenomenon can be prevented
by minimizing the porosity of the corner such that heat conduction at the bottom corner
increases. Finally, the present work just focuses on the two-dimensional case, and we will
conduct some three-dimensional simulations on the similar problem in our future work,
which is more close to the real problem.
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