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Abstract: One of the basic conditions for the successful implementation of energy demand-side
management (EDM) in smart grids is the monitoring of different loads with an electrical load
monitoring system. Energy and sustainability concerns present a multitude of issues that can
be addressed using approaches of data mining and machine learning. However, resolving such
problems due to the lack of publicly available datasets is cumbersome. In this study, we first
designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly
available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then
we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset
(TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the
proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with
sensors and Node-Red software installations were established to collect data in the research. In the
context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify
household appliances according to TEAD data. A highly accurate supervised ED is introduced,
which was designed to raise awareness to customers and generate feedback by demand without the
need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require
much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM
tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep
learning (DL) architecture based on bidirectional encoder representations from transformers (BERT).
In this paper, an improved training function was designed specifically for tuning of NILM neural
networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-
sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art
adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly,
we evaluated the TEAD dataset using BERT-NILM training.

Keywords: energy disaggregation; deep learning; adaptive gradient descent optimization with
exponential long-term memory; smart grid; Internet of things; GPUs

1. Introduction

To meet the ever-growing energy demand, it is essential to monitor electricity power
consumption and moderate its usage while increasing the production capacity. Indeed,
load and energy management are essential; thus, demand-side management (DSM) with
higher potentials and better results is more common. The introduction of DSM into the
household sector can enable load management by both the user and the electric utility
company through distinguishing the loads. For instance, controlling appliances such as
cooling and heating devices with great power demand during peak hours by DSM would
enable us to supply a minimum level of energy to a larger group of users. In addition,
DSM [1] can help the user to understand the behavior of each device connected to the
grid, facilitating both the grid and the user to better manage their energy use. The DSM
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intervention in large industries has also yielded good results in the form of accurate control
of the load during peak hours, maximum demand control, preventing illegal actions, and
implementing more accurately tariffs [2].

Nonintrusive load monitoring (NILM) of DSM is a method commonly used to predict
the individual usage of home appliances on the basis of a home aggregated consumption
pattern. This practically offers the ability to monitor the consumption of home appliances
without the use of expensive sensors. The disaggregation of energy loads running from
the power measurement over the time can be used by the electricity distribution services,
as well as by the power utilities themselves, ensuring an improved user need estimation
while delivering personalized services to the consumers [3]. The NILM method, introduced
by Garcia et al. [4] in the mid-1980s, was the first to use transient analysis of active and
reactive power for identifying the on and off states of home appliances. To date, many
original research articles including several comprehensive reviews have been published on
the topic [5,6]. The disaggregation process, as explained by Souza et al. [7], includes three
phases: (1) the identification of events, (2) the synthesis of optimal features for classification,
and (3) the energy disaggregation by real load classification.

The events related to changes in the state of home appliances were employed to
synthesize features that were used for classifying the loads. Massidda et al. [8] presented a
characterization based on the features sampling rate themselves, which are split to (1) less
than 1 min, (2) between 1 min and 1 s, higher than 1 Hz in fundamental frequency, up
to 2 kHz, and (3) between 2 and 40 kHz. The features of the categories of between 1 min
and 1 s and less than 1 min can be used directly, as the statistical characterization of sub-
sequences of time series [9]. Moreover, when considering the signal processing [10] in the
context of previous sampling rate categorization, the high-frequency sampling rate allows
characterizing more detailed transients in the consumption of home appliances [11].

In the high-frequency sampling rate, the application of signal transformation methods
such as fast Fourier transform (FFT) or discrete wavelet transform (DWT) would result in
the recovery of major new features fundamental for the classification [12]. The rate of high
sampling frequency provides load waveform data regarding home appliances. For instance,
in the trajectories of voltage—current calculation reported by Wang et al. [13], high rates of
sampling allowed getting an intensive harmonic set along with the electric noise [14]. Few
studies have integrated the features reproduced from the measurements of consumption
with other datasets such as home appliance usage frequency [15] or weather conditions [16].
The final phase of the disaggregation operations comprises load identification from the
extracted features. Many approaches have been introduced in the literature regarding this
phase, which indicated challenges in the related research communities. The community
first used optimization algorithms for combinatorial search [17], but the necessary compu-
tational resources limited these algorithms. The community consequently concentrated on
supervised and unsupervised machine learning methods. Some methods of supervised
learning with neural network (NN) architectures have been previously presented such as
multilayer perceptron (MLP) [18], extreme learning machine [19], convolutional neural
network (CNN) [20], and recurrent neural network (RNN) [21], as well as methods based
on K-nearest neighbor (KNN) [22], support vector machine (SVM) [23], random forest clas-
sifier [24], naive Bayes classifiers [25], and conditional random fields [26]. Unsupervised
learning was principally based on the hidden Markov model (HMM) used in a related
area [27]; however, clustering algorithms were also used [28]. Modern NILM methods
are generally carried out by employing machine learning or optimization algorithms [29].
The strategies of pattern recognition usually fit to one-to-one matching, and yet these tech-
niques are sensitive to noisy signal edges that can result in false detection. Optimization
algorithms allow enhanced NILM performance with less sensitivity to the detection of
false edges.

Machlev et al. [30] proposed evolutionary optimization approaches to identify appli-
ances according to their given load profile. The idea of the program was that the potential
appliance profiles have to be matched with the given load profile within minimum er-



Energies 2021, 14, 4649

3of21

ror [31]. The introduced problem concerned the Knapsack problem, which is NP-hard [32];
however, the computational performance limited its use in real-time cases because of
NP-hard problem complexities. In addition, Ref. [33] introduced a DL-based NILM for
edge computing on a low-cost board using the latest inference library called uTensor;
this method can support any Mbed electronic board and does not require DL web API
connection. In this paper, we aimed to implement BERT-based NILM (BERT-NILM) tuned
by the most effective optimizer for energy disaggregation. BERT is a transformer-based
machine learning technique for natural language processing and pretraining developed
by Google (see Section 2); thus, two optimization models of BERT-NILM (BERT-NILM
Adam and BERT-NILM AdaX) were implemented and compared for energy disaggregation
systems. In training the deep learning models, Adam was used as a substitute optimization
algorithm for stochastic gradient descent, whereas AdaX improved upon Adam by propos-
ing a novel adaptive gradient descent algorithm. Unlike Adam, which ignores the past
gradients, AdaX exponentially accumulates the long-term gradient information during
training to adaptively tune the learning rates (see Sections 2.4 and 2.5). The REDD and
TEAD datasets were used for training and validating the effectiveness of the designed
models. This study introduced ED methods that track energy efficiency, using detailed
energy data to take measures to reduce consumption through nonintrusive “energy aware-
ness”, which can be activated if smart meters are already installed. It can also provide
information on domestic activities that are becoming an alternative emerging technology
for use in healthcare sectors.

The manuscript is organized as follows: Section 1 reviews the architecture of BERT-
NILM, Section 2 deals with the NILM benchmark datasets; Section 3 presents several model
evaluations and metrics; Section 4 provides a discussion of the results and conclusions of
the important characteristics of the study.

1.1. Architecture of BERT-NILM

As shown in Figure 1, the proposed BERT [34] architecture consists of an embedding
module, layers of transformers, and a multilayer perceptron output layer (MLP). The
network was supplied with fixed-length sequential data to categorize individual home
appliances with the same shape output. In addition, threshold values were calculated
by comparison of electrical appliances. The features were initially extracted from the
architecture by adopting a convolutional layer to increase the hidden size of the one-
dimensional input array prior to feeding the input data to the blocks of transformers.
We then pooled the convolutional output with increased hidden size using a learned L2
norm pooling operation. The operation enforces squared-average pooling over the input
sequence to better maintain the features while reducing the length by half. We then added
the pooled input to a learnable positional embedding matrix. The matrix takes sequence
positional encoding into account, where Embeddi(X) = LPPooling (conv(X)) + epose.

1d
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Figure 1. The Bert architecture.

Furthermore, we operated the analysis by supplying the bidirectional transformer
with the final embedding matrix. The transformer consisted of I layers of transformers
and } attention heads within each layer. The single-head self-attention (scaled dot-product
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attention) could be formulated with Q(Query), K(Key), and V(Value) matrices (obtained by
linear transformation of the input matrix). Q and K (initially multiplied and divided by
the squared root of the hidden size) were processed by a softmax operation to build soft
attention prior to being multiplied by V, yielding a weighted value matrix. Comparably;,
multi-head attention would divide the hidden space into multiple subspaces with parame-
ter matrices performing identical computation, resulting in several Q, K, and V matrices.
Each of the factors with individual attention could retrieve information from different
subspaces. Outcomes were integrated and transformed to form the attentive output, where
attention (Q) = softmax (QKT //dk)V.

Multi-head (Q, K, V) = concat(headl, head?2, ..., headh) WO, where headi = at-
tention(QWQi, KWKi, VWVi). Additionally, we supplied a position-wise feed-forward
network (PFFN) with the previous matrix after the multi-head attention in each transformer
layer. It is of note that the layer processes input elements with linear transformations and
Gaussian error linear unit (GELU) activation. UC Berkeley’s Dan Hendrycks and Kevin
Gimpel introduced the GELU activation function in 2018 from the Toyota Technologi-
cal Institute at Chicago [35]. An activation function is the “switch” that triggers neuron
output, and its importance has grown as networks have deepened. To preserve input
features, following the attention and feed-forward modules, residual connections were
applied. Subsequently, we performed layer normalization (LayerNorm) to stabilize the
hidden state dynamics between various layers. The operation can be formulated as follows:
LayerNorm(x + Dropout (Module (x))), PFEN (X) = GELU(0,XW7 + b1)W; + b,.

After passing the values through transformer layers, the output MLP can be found,
including a deconvolutional layer and two linear layers. The deconvolutional (inverse
to convolution) layer first develops the output to its previous length with transposed
convolution. Subsequently, a two-layer MLP with Tanh activation in between would
reinstate the hidden size of the input to the desired output size. Output values (preferably
in the interval [0, 1]) were multiplied with the maximal device power and then secured to
construct reasonable energy prediction, while attaining the status of appliance by matching
corresponding on thresholds, where Ou(X) = Tanh(Deconv(X)W; + b1)W; + bs.

1.2. Energy Disaggregation NILM Background

Given a smart meter (SM), with an aggregate power consumption series P = {p1, p2,
p3, ..., ptHfortime T=1{1,2,3,...,t}, the NILM problem can formulated as follows [36]:

M .
PT=Y v\ + o(t), 1)
i=1

where o(t) is unaccounted noise, used to infer the consumption power yEZ) of home appli-
ancei € {1,2,3,...,M] of the M active appliances.

An NILM system includes four stages, as illustrated in Figure 2: signal power acquisi-
tion with preprocessing, event detection with feature extraction, inference with learning,
and appliance classification. The first stage of energy disaggregation is signal power acqui-
sition, and its task is acquiring aggregated load measurements at varying sampling rates.
The event detection and feature extraction stage involves setting the transient or steady
state in the preprocessed power measurements. Features related to the extracted events are
unique patterns of consumption related to each appliance activity. In the stage of learning
and inference, the essential supervised /unsupervised techniques are applied to identify
the appliances. At the final stage, the classification of appliances consists of splitting the
total aggregate recordings into the power consumption and individual appliance states
related to that appliance state [37].
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2. NILM Benchmark Dataset

In this study, we used the Residential Energy Disaggregation Dataset (REDD) [38]
for energy disaggregation. This NILM dataset is publicly available containing measured
power consumption data from real-world environments such as houses or buildings. The
dataset includes smart metering data and may have an individual device ground truth for
power consumption data based on the dataset goals. To evaluate the performance of an
NILM algorithm, with respect to an appliance for which the disaggregation is performed,
it is necessary to have the ground truth. Figure 3 shows the plot of refrigerator data for the
first 2 days of REDD house 1.

refrigerator
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Figure 3. Plot of refrigerator data for the first 2 days of REDD house 1.

Figure 4 illustrates the data separation for training and testing. The refrigerator was
chosen as a known device for training the BERT network of NILM. In house 1, data were
separated into training and testing. The training data involved 17 usage days of power
data, whereas testing data involved 6 days. After training the disaggregation network, we
used the data from house 2 to validate the performance efficiency of the NILM network as
an unknown device.

House 1 House 2
s1(n) = s2(n) \ sk (n) s1(n) | s2(n) sk(n)
' l | | [ l
; | .
l ;
. . i .
Training } Testing

T T s | S —

Figure 4. Test dataset separation.
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2.1. IOT Structure of Data Collecions

In this study, a data collection architecture was designed using the IoT. Node-Red was
used in the software part of the system. Node-Red is built on top of NodeJS and takes
full advantage of its event-driven, non-blocking model, running on web browsers. We set
up a port forwarding structure as illustrated in Figure 5 on a Linux Ubuntu PC using the
NGINX server to access the system from any web browser over the internet remotely.

Figure 5. Port forwarding structure.

The IoT structure consisted of sensors and actuators for monitoring and control;
accordingly, we measured the power consumed by current sensors attached to electrical
household appliances in this research and created a dataset for classifying devices with
artificial intelligence.

The materials used were as follows:

- NodeMCU ESP8266 (WiFi),

- Modem (WiFi),

- Ubuntu PC (server) or Raspberry Pi,

- ACS-712 (30A and 5A current sensors).

2.2. Loss Function

Another parameter of evaluating such models is the loss or error function. When the
prediction output diverges too much from the real target results, the loss function can be
used to optimize target results. The loss function learns to minimize the error in predictions
when an optimization algorithm is applied. In this study, we used the mean square error
(MSE) [39], which is the sum of squared distances between the predicted and target results
to reduce the errors.

2.3. Optimization Function

Many studies have used the state-of-the-art adaptive moment estimation (Adam)
algorithm as the optimization function. Adam is an optimization method used to improve
the gradient descent (GD) with iterative neural weights, which is updated on the basis of
the training data. Adam is the preferred algorithm for DL since it can rapidly produce
fine results and boost the computation efficiency. Although Adam demonstrates fast
convergence when using many machine learning (ML) approaches, this study aimed to
improve Adam using a novel adaptive gradient descent named AdaX. Adam ignores the
past gradients, but AdaX exponentially accumulates the long-term gradient data during
training while adjusting the learning rate adaptively. We demonstrate the convergence of
AdaX in BERT disaggregator settings.
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2.4. Adam Optimization Algorithm

The Adam [40] optimizer computes the learning rate (LR) as a function of data by
storing the exponential mean reduction in previous gradients sums (v¢) such as AdaDelta
and RMSprop [41], which keeps the exponential mean reduction in m; gradients similarly
to an acceleration technique.

my = Bymy_q1 + (1 —B1)gt, 2

v = Bovr1 + (1 - B2)g7, 3)

where m; and v; are the first moment estimates as means and second moment estimates as
the decentralized variance of gradients, respectively. Since the primary state of the vectors
m; and v; is zero, the developers found that the results are tilted toward zero. This was
more evident in early steps with a small reduction rate (i.e., 81 and B, were close to 1). To
solve the problem, they used corrected estimates of the first and second estimates [41].

A mg

my = s (4)
1- B}

” Ot

O = ——. ®)
1-p3

These two formulas, similarly to AdaDelta and RMSprop, were used to compute
changes in the parameters, thus obtaining the following formula of changes:

n N
. 6
N ©)

The proposed default values of 1, B, and € are 0.9, 0.999, and 10~8, respectively. The
developers experimentally showed that the Adam method outperforms other adaptive
learning methods.

Orp1 = 01 —

2.5. AdaX Optimizer Algorithm

This study introduces a novel BERT energy disaggregator by adjusting the adaptive
learning rate. According to the discussions by Li et al. [42], small gradients can produce
an unstable second moment and, thus, past memory should be highlighted similarly to
the max operation in AMSGrad [43]. Furthermore, the highlighted operation should not
be duty-dependent to prevent the exponential reduction in gradients. Unlike the Adam
algorithm, in the proposed NILM-AdaX, adjustment was done by assigning exponentially
greater weights to the past gradients and progressively reducing the current gradients in an
adaptive manner, as presented in Algorithm 1 by Li et al. The most significant differences
between AdaX and Adam can be seen in the lines six and seven, where, instead of using an
exponential moving average, (82, 1 — ) was changed to (1 + B, B2) in the design.

Algorithm 1. AdaX Algorithm

—_

L BB =09,10

: Initialize my =0, vy =0
:fort=1to T do

: &t = Vfi(xy)

my=Pyme — 1+ (1 — B1)ge

tor = (1+ Bo)or—1 + og?

20 =v/[(1 + Bp) t — 1] and V; = diag(?;)
L X+ 1 ZHF, \/Vt (xt — octmt/\/z?t)

: end for

: Input: x € F, {o}

O 0 NO U WN
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Line 6 shows that the past gradients are multiplied by a constant greater than one,
which means that past data have been accumulated rather than overlooked. Every g7
is multiplied by a small number and added to the past memory. The idea behind the
algorithm is to progressively reduce the second moment adaptively toward the newest
gradients as they scatter and become noisy, while the parameters stay near the optimal
values, as presented in the synthetic model by Li et al. In the current study, the proposed
design ensures the noninterference of small gradients on the update steps when v; is kept
large. Accordingly, with the bias correction term, the proposed 9; progressively becomes
big and stable. In line 7, to achieve an unbiased prediction of the second moment, v;
was divided by the term of bias correction. As shown in the derivation of Kingma and
Ba [44], the gradient g; at time step t can be drawn from a g;~p (g;) stationary distribution,
thus yielding

E () =Y, = (1+82) 7 BaE (&) [(1+B2) — 1] E (gF)- )

Hence, to maintain the accuracy of the second moment, v; was divided by (1 + ;)" — 1
in line 7. Nevertheless, in Kingma and Ba, the first term of moment correction (1 — B})
was not involved for the above reason. The stochastic gradient descent with momentum
(SGDM) and the first moment of Adam can be calculated as

SGDM : m; = ymy_1+ gt = 25:1 Yt_igi/ 8)

Adam : my = Bym_1 + (1 — ‘Bl)gt = (1 — ‘31) Z::l ‘Btl_lgi. 9)

2.6. Proposed Disaggregator on Supervised Learning Structure

The proposed BERT-NILM model features a supervised learning method to calcu-
late the minimum prediction error using an iterative process for the given training data.
The error is generally expressed as the difference between model-predicted output and
actual/target output, which is given as a part of training data. The proposed disaggregator
consists of a loss function, an optimization method, and the BERT-NILM model. The loss
function proposed by Cimen et al. is presented in equation, the optimization algorithm is
explained in Section 2.5, and the designed BERT architecture is illustrated in Figure 6.

Target output ERROR / Loss Function Predicted output

Mean Squared Error

-

Historical Data Prediction

AdaX Optimizer

N\ *~—l |
1

R~ —=— = T

BERT-NILM

= e |

o \" Parameter Tuning

Pl W g May A Ad Ay S O3 Nw D

Figure 6. Parameter tuning of BERT-NILM by AdaX.
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3. Model Evaluations and Metrics

Metrics [44] of model evaluation allow quantifying model performance. In this study,
we used root-mean-square error (MSE) and accuracy. The RMSE defined as follows [45]:

2

RMSE = /MSE = /1/n Y1 (v —y™)". (10)

Different metrics can be used to evaluate NILM methods, making it difficult to com-
pare evaluations on the basis of different methods and algorithms for load monitoring. At
first, when the algorithms are applied with two modes (on/off), the evaluation criteria are
based on the percentage of correct load classifications for a notable change in total used
power. There are various criteria [46] used for this purpose, and the following variables
need to be defined before introducing them:

TP (total number of real positives): when both the device and ground truth are on.

FP (total number of fake positives): when the device is on and ground truth is off.

TN (total number of real negatives): when both the device and ground truth are off.

EN (total number of fake negatives): when the device is off and ground truth is on.

P: total number of positives on ground truth.

N: total number of negatives on ground truth.

Accuracy: the ratio of real results in all cases.

TP+ TN

P+N (1)

accuracy =

Regarding precision and ED, this metric indicates what percentage of the total energy
assigned to a device is actually used by that device.

TP
precision = TP+ EP (12)
The F1 score is the harmonized mean accuracy and recall.
vecall — 2 x precision x recall (13)

precision + recall”
Recall, regarding the ED, is part of the correctly classified and measured energy.

true positives

recall = — —.
true positives + false negatives

(14)

3.1. Experiments

To determine the impact of adaptive learning rate (LR) on neural network (NN)
performance, we first evaluated the performance of ADAM as a recent optimization
algorithm in comparison with AdaX on the proposed BERT-NILM model using the REDD.
We evaluated the AdaX technique as a function of performance metrics for the ADAM-
trained BERT-NILM [47], where the results showed that AdaX was superior to Adam
for the BERT-NILM disaggregation problem. AdaX performance was also evaluated for
BERT-NILM using the TEAD [48].

In the context of efficient backpropagation, LR is a hyperparameter that controls how
much the NN model is changed in response to the predicted error each time the NN model
weights are updated. Selecting the LR rate is a challenging issue [49], whereby choosing too
small LR rates may result in long training procedures that could become stuck, and choosing
too large LR rates may result in an unstable training procedure or learning a suboptimal
set of weights too fast. With respect to BERT, while the model architectures are evolving
continually, the training algorithms have remained rather constant, i.e., stochastic gradient
descent (SGD) methods. SGD is a method for optimizing a cost function in an iteration
loop with convenient smoothness properties [50]. The momentum technique was later
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naturally integrated into SGD algorithms, and this method remains the standard training
regime for BERT [51]. Despite the improvements of implementation, SGD algorithms have
disadvantages that limit further improvements in training. The first disadvantage is that
hyperparameters such as LR and convergence criteria need to be tuned manually. The
second disadvantage is that, unlike batch learning, SGD algorithms have little room for
serious optimization because one sample with a noisy nature per iteration renders the
output unreliable for further optimization. The third disadvantage is that SGD algorithms
are inherently sequential and are exceptionally challenging to parallelize using GPUs or to
be distributed with a computer cluster [52].

For validating the proposed model, we split the REDD data into a validation set for
training and testing the obtained model. In Table 1, the metrics presented are the mean
accuracy (MA), mean precision (MP), mean recall (MR), mean F1 score (MF1), mean relative
error (MRE), and mean absolute error (MAE) of the fridge, washer/dryer, microwave, and
dishwasher. Table 3 presents the model performances using the REDD, where the MP and
MR metrics are not included in the comparison.

Table 1. BERT-NILM average performance on test set of REDD house 2.

Average MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.95 0.54 0.74 0.58 0.24 26.49
BERT-NILM Adam 0.94 - - 0.57 0.23 26.35

The data chosen for training the BERT-NILM from house 1 involved 17 usage days
of power data, whereas 6 days of data were used for testing. Table 1 indicates that the
BERT-NILM network with the AdaX optimizer could achieve a better average performance
for all devices using the test data from house 2, presenting an MA of 0.95, MP of 0.54, MR
of 0.74, MF1 of 0.58, MRE of 0.24, and MAE of 26.49. The BERT-NILM network with Adam
obtained an MA of 0.94, MF1 of 0.57, MRE of 0.23, and MAE of 26.35.

Table 2, highlighting the fridge metrics, indicates that the BERT-NILM tuned with
AdaX could achieve a better performance than that tuned with Adam using the test data
from house 2, presenting an MA of 0.89, MP of 0.71, MR of 0.98, MF1 of 0.82, MRE of 0.81,
and MAE of 29.75. The BERT-NILM tuned with Adam obtained an MA of 0.84, MF1 of
0.75, MRE of 0.80, and MAE of 32.35.

Table 2. Washer/dryer metrics according to AdaX and validation on REDD house 1.

Washer Dryer MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.971 0.68 0.36 0.47 0.04 25.16
BERT-NILM Adam 0.969 - - 0.52 0.039 20.49

Table 3, highlighting the washer/dryer metrics, shows that the BERT-NILM trained
by AdaX performed better than that trained by Adam using the test data from house 2,
presenting an MA of 0.971, MP of 0.68, MR of 0.36, MF1 of 0.47, MRE of 0.04, and MAE
of 25.16. The BERT-NILM trained by Adam obtained an MA of 0.84, MF1 of 0.52, MRE of
0.039, and MAE of 20.49.

Table 3. Fridge metrics according to AdaX and validation on REDD house 1.

Average MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.89 0.71 0.98 0.82 0.81 29.75
BERT-NILM Adam 0.84 - - 0.75 0.80 32.35

Table 4, highlighting the microwave metrics, demonstrates that the BERT-NILM
trained by Adam performed better than that trained by AdaX using the test data from
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house 2, presenting an MA of 0.97, MP of 0.32, MR of 0.71, MF1 of 0.45, MRE of 0.07, and
MAE of 20.56. The BERT-NILM trained by Adam obtained an MA of 0.88, MF1 of 0.47,
MRE of 0.05, and MAE of 17.58.

Table 4. Microwave metrics according to AdaX and validation on REDD house 1.

Microwave MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.97 0.32 0.71 0.45 0.07 20.56
BERT-NILM Adam 0.98 - - 0.47 0.05 17.58

Table 5, highlighting the dishwasher metrics, indicates that the BERT-NILM trained
by AdaX performed equally to that trained by Adam using the test data from house 2,
presenting an MA of 0.96, MP of 0.68, MR of 0.36, MF1 of 0.47, MRE of 0.04, and MAE of
25.16. The BERT-NILM trained by Adam obtained an MA of 0.96, MF1 of 0.52, MRE of 0.03,
and MAE of 20.49. The proposed model tuned the hyperparameters to run on an Nvidia
2070 RTX Super GPU.

Table 5. Dishwasher metrics according to AdaX and validation on REDD house 1.

Dishwasher MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.96 0.68 0.36 0.47 0.04 25.16
BERT-NILM Adam 0.96 - - 0.52 0.03 20.49

Graphics shows the training progress of BERT-NILM based on REDD. Figure 7: Shows
Fridge losses of training process and validation sets on house 1. Figure 8: About Fridge
metrics according to AdaX and validation on house 1. Figure 9: Graphs washer/dryer
losses of BERT training and validation sets on house 1. Figure 10: Shows washer/dryer
metrics of AdaX and validation on house 1. Figure 11: About microwave losses of BERT
training and validation sets on house 1. Figure 12: Is microwave metrics of AdaX and
validation on house 1. Figure 13: Graphs dishwasher losses of BERT training and validation
sets on house 1. Figure 14: About dishwasher metrics of AdaX and validation on house 1.

BERT-NILM Losses tuned by ADAM and Validation on REDD house 1

—— Loss by ADAM

es in Every Batch

Refrigerator Loss

0 500 1000 1500 2000 2500 3000 3500
Epoch

Figure 7. Fridge losses of BERT-NILM training and validation sets on house 1.

3.2. TEAD Evaluations on BERT-NILM

For evaluating the proposed dataset, we split the TEAD data into validation and
training sets. Table 6 presents the metrics for the TV, washing machine, lights, and fridge.

Table 6 indicates that the TEAD-based BERT-NILM trained by AdaX performed better
than that trained by Adam in terms of MA and MP, presenting an MA of 0.86, MP of 0.86,
MR of 0.93, MF1 of 0.89, MRE of 0.35, and MAE of 23.42.
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Table 7, highlighting the TV metrics, indicates that the TEAD-based BERT-NILM
tuned by AdaX performed almost equally to that trained by Adam, presenting an MA of
0.92, MP of 0.92, MR of 0.99, MF1 of 0.96, MRE of 0.18, and MAE of 5.47.

Table 6. BERT-NILM average performances on test set of TEAD house 2.

Average MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.86 0.86 0.93 0.89 0.35 23.42
BERT-NILM Adam 0.84 0.84 0.97 0.89 0.27 16.35

Table 7. TV metrics according to AdaX and validation on TEAD house 1.
TV MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.92 0.92 0.99 0.96 0.18 5.47
BERT-NILM Adam 0.92 0.92 1 0.96 0.17 4.99

BERT-NILM Performance Metrics trained by AdaX and Validation on REDD house 1
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Figure 8. Fridge metrics according to AdaX and validation on REDD house 1.
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Figure 9. Washer/dryer losses of BERT-NILM training and validation sets on house 1.
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Figure 10. Washer/dryer metrics according to AdaX and Validation on REDD house 1.
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Figure 11. Microwave losses of BERT-NILM training and validation sets on house 1.
Table 8, highlighting the fridge metrics, indicates that the TEAD-based BERT-NILM
tuned with AdaX performed almost equally to that tuned with Adam, but better in terms

of MR, presenting an MA of 0.92, MP of 0.92, MR of 1, MF1 of 0.96, MRE of 0.43, and MAE
of 54.22.

Table 8. Fridge metrics according to AdaX and validation on TEAD house 1.

Fridge MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.92 0.92 1 0.96 0.43 54.22
BERT-NILM Adam 0.92 0.92 0.98 0.95 0.27 28.66

Table 9, highlighting the metrics for lights, indicates that the TEAD-based BERT-
NILM tuned with AdaX performed almost equally to that tuned with Adam, presenting
an MA of 0.99, MP of 0.99, MR of 1, MF1 of 0.99, MRE of 0.29, and MAE of 20.69. The
increased activities of lights during the day with a resistive load profile could provide good
training results.
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Table 9. Metrics for lights according to AdaX and validation on TEAD house 1.

Lights MA MP MR MF1 MRE MAE
BERT-NILM AdaX 0.99 0.99 1 0.99 0.29 20.69
BERT-NILM Adam 0.99 0.99 1 0.99 0.27 18.32

BERT-NILM Performance Metrics trained by AdaX and Validation on REDD house 1
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Figure 12. Microwave metrics according to AdaX and validation on REDD house 1.
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Figure 13. Dishwasher losses of BERT-NILM training and validation sets on house 1.

Table 10, highlighting the washing machine metrics, indicates that the TEAD-based
BERT-NILM tuned with Adax performed better than that tuned with Adam in terms of
MA and MP, presenting an MA of 0.60, MP of 0.61, MR of 0.72, MF1 of 0.66, MRE of 0.51,
and MAE of 13.32. The washing machine in TEAD was less active during the day, resulting
in a lack of feature data representing the target device; thus, REDD was better than TEAD
in terms of the model training experiments.

Table 10. Washing machine metrics according to AdaX and validation on TEAD house 1.

Washing Machine MA MP MR MF1 MRE MAE

BERT-NILM AdaX 0.60 0.61 0.72 0.66 0.51 13.32
BERT-NILM Adam 0.54 0.54 0.91 0.68 0.40 13.44
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Figure 14. Dishwasher metrics according to AdaX and validation on REDD house 1.

Graphics shows the training progress of BERT-NILM based on TEAD. Figure 15:
Shows TV losses of BERT training and validation sets on house 1. Figure 16: About TV
metrics of AdaX and validation on house 1. Figure 17: Graphs fridge losses of BERT
training and validation sets on house 1. Figure 18: About fridge metrics of AdaX and
validation on house 1. Figure 19: Shows losses for lights of BERT training and validation
sets on house 1. Figure 20: Are metrics for lights according to AdaX and validation on
house 1. Figure 21: Graphs washing machine losses of BERT training and validation sets
on house 1. Figure 22: About washing machine metrics of AdaX and validation on house 1.
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Figure 15. TV losses of BERT-NILM training and validation sets on TEAD house 1.
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Figure 16. TV metrics according to AdaX and validation on TEAD house 1.
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Figure 17. Fridge losses of BERT-NILM training and validation sets on TEAD house 1.
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Figure 18. Fridge metrics according to AdaX and validation on TEAD house 1.
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Figure 19. Losses for lights of BERT-NILM training and validation sets on TEAD house 1.
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Figure 20. Metrics for lights according to AdaX and validation on TEAD house 1.
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Figure 21. Washing machine losses of BERT-NILM training and validation sets on TEAD house 1.
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Figure 22. Washing machine metrics according to AdaX and validation on TEAD house 1.

4. Conclusions

In summary, this paper reviewed the literature on the deep neural net-based NILM.
The review comprised several studies that used deep learning and efficient optimization
methods for the ED of home appliances through low-frequency data, i.e., sampling rates
data lower than the alternative current (AC) frequency. Our motivation for this study
was that many of papers could benefit from a well-trained NILM, integrated with IoT
developments, as low-frequency data will be available at scale in the near future and
there has been tremendous deep learning success in other application domains. Energy
and sustainability issues can be addressed using data mining and machine learning ap-
proaches. However, such problems have been resolved slowly due to the lack of publicly
available datasets. In this study, the Turkey Electrical Appliances Dataset (TEAD) was
presented, which includes electricity usage information collected from houses aimed at
advancing energy disaggregation (ED) research in smart grids. In the context of smart
metering, a NILM model was proposed to classify household appliances as a function of
TEAD information. The NILM system enables using production assets more efficiently
via reducing the energy demand of users by providing detailed feedback and awareness
during demand-side heavy loads. Thus, end users will be able to obtain detailed billing
with highly accurate supervised ED by demand, without the need for expensive smart
socket sensors. Benefits of the proposed ED are its energy efficiency and itemized energy
data used to reduce energy consumption through a system of energy awareness with
NILM, which can be deployed on already installed smart meters. Disadvantages are that
continuously variable appliance cannot be detected, electrically identical (similar in every
detail) appliances cannot be distinguished, there is a greater potential for undetected error,
and it is difficult to recognize unusual appliances.

In this paper, we presented an efficient energy disaggregator with a BERT model
tuned with the AdaX optimization algorithm to improve the performance of conventional
NILM methods. We first extend Adam’s fast convergence by considering AdaX. We then
propose AdaX (an optimizer with “long-term memory”) applied to BERT-NILM, analyze its
convergence, and evaluate its performance in learning signals of the energy disaggregation
task. Our analysis and experimental results demonstrated that the designed disaggregator
model tuned with AdaX performed better than the recent Adam optimizer in the energy
disaggregation task based on BERT. It is of note that more research is warranted for the
evaluation of total performance of NILM. Additionally, the current study represents but
the first step in designing efficient energy disaggregation methods beyond the simple
NILM approaches. However, other novel designs should also be examined for a concrete
statement. In the context of modern deep leaning and efficient backpropagation, we believe
that new optimization algorithms with a long-term cache of gradients for performing
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adaptive learning may outperform AdaX on NILM tasks; however, their its convergence
and performance need to be thoroughly investigated.
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Nomenclature

MA Mean accuracy

Mpr Mean precision

MR Mean recall

MF1 Mean F1 score

MRE Mean relative error

MAE  Mean absolute error

o(t) Unaccounted noise

y (;) Consumption power

MSE Mean square error

LR Learning rate

my First moment

U Second moment

B1, B2 Initial decay rates in the first and second moments of the gradient
qt Gradient of losses

\/1%7% “Cache” of past weight values which decay over time

l Learning step size
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