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Abstract: Hybridization of sources is spreading worldwide by utilizing renewable sources and
storage units as standard parts of every grid. The conjunction of energy source and storage type
open the door to reshaping the sustainability and robustness of the mains while improving system
parameters such as efficiency and fuel consumption. The solution fits existing networks as well as
new ones. The study proposes the creation of an accurate optimal sizing procedure for setting the
required rating of each type of source. The first step is to model the storage and energy sources by
using real experimental results for creating the generic database. Then, data on the mission profile,
system constraints, and the minimization target function are inserted. The mission profile is then
analyzed to determine the minimum and maximum energy source rating. Next, the real time energy
management system controller is used to find the set of solutions for each available energy source
and the optimal compatible storage in the revealed band to fulfil the mission task. A Pareto-curve is
then plotted to present the optimal findings of the sizing procedure. Ultimately, the main research
contribution is the far more accurate sizing results. A case study shows that relying on the standard
method leads to noncompliance of sizing constraints, while the proposed procedure leads to fulfilling
the mission successfully. First, by utilizing experimentally based energy and a storage unit. Second,
by using the same real time energy management system controller in the sizing procedure.

Keywords: sizing; hybrid sources; experimental base modelling; real time energy management
system

1. Introduction

The reality of global warming and climate change caused by gas pollutants is no
longer controversial [1]. However, the rise in energy demand has led to increased coal and
oil production [2]. At the same time, governments across the world are encouraging the
transition to renewable sources such as photo-voltaic (PV) [3], wind turbine (WT) [4,5],
thermo-solar [6], fuel cell (FC) [7], hydropower [8], geothermal [9] and tidal & wave [10].
Some renewable sources (e.g., PV and WT) are stochastic and are not reliable. Moreover,
from a grid stability point of view, when suppling energy from an electronic inverter and
not from a synchronous machine, there is a lack of inertia and simple droop control is
insufficient to stabilize the grid. Adding a grid-tied storage system solves the stochastic
problem, and by adding a virtual inertia control loop [11] the stability issue is solved.
The most common storage method worldwide is hydropower [12,13]. Today, the price
of electrochemical storage is rapidly dropping, while the lithium-ion battery affords the
highest energy density [14]. However, its lifetime and power density are limited. A super-
capacitor contains the highest available power density and life cycle of 106 [15,16]. For
improving the versatility of an energy storage system (ESS), it is common to connect both
sources together in a single ESS [17,18]. When connecting two types of sources, there are
some available topologies [14] of power converters [19]. Renewable sources with a varying
maximum power point must be attached to a maximum power point controller [5] for
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increasing the harvested energy while integrating different types of sources is a common
approach to benefit energy and power capabilities. Characterizing a source type can be
easily done using a Ragone plot as presented in Figure 1. The chart presents a set of
sources: as the source location is further to the right side, the source energy density is
higher. As the source location is higher, then the power density is higher. For instance, FC
is located on the far right and, therefore, contains very high energy density. However, the
height of FC is low and, therefore, suffers from lack of power density. The outcome of this
analyzation is that FC as a single source is sufficient to supply a very highly efficient energy
source. Nonetheless, the FC is incapable of supporting an impulsive load. An alternative
solution for long endurance load demand with a high-power burst is a combination of a
high-energy source such as FC with a high-power density source such as a super-capacitor.
The conjunction of source topology, whether it is passive or active, is set by the overall
system requirement and the source operation range as elaborated in [14].

Figure 1. Ragone chart [20].

The Tellegen theorem [21] forces a power equality of generating/sourcing on any
operating grid. Until the late 20th century, the penetration rate of renewable sources
was insignificant, and the grid stability was not dramatically affected by it. The constant
increase of source mixture rate [22] along with stochastic energy production arose from the
stability issue. Grid instability takes place when unfix frequency and/or voltage deviation
occurs, therefore, nowadays an ESS is a mandatory element in any energy network. The
big question that arises is how to determine the size of each source to face the load curve,
as the size of any source decreases the device cost, fuel-consumption, maintenance, and
operation prices. The design ambition is to set the minimum system according to the target
minimization function. In systems where several requirements are applied, the weight
of each one determines the overall target. The process for setting each source quantity
is known as sizing [23–26]. The procedure’s methodologies [27,28] are well known and
based on traditional methods such as the graphic construction method, iterative method,
numerical method, probabilistic methods, and analytical method. More advanced methods
are based on artificial intelligence such as genetic algorithms, particle swarm optimization,
simulated annealing, ant colony optimization, artificial bee colonies, harmony searches,
and cuckoo searches. Since any method/algorithm is imperfect, hybrid methods [29] are an
effective combination of several different techniques, which utilize the positive influence of
these techniques in obtaining optimal results for a specific design problem.

In a standard grid, the maximum load demand sets the rating of all summed possible
available source loads plus system reserves. However, most of the points on the load
curve are lower than the maximum power value. Therefore, some of the generation units
operate far from the minimum fuel consumption point [30]. Moreover, the operation
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and maintenance cost increases in inefficient generation systems [30] along with the need
to keep high-cost revolving reserves for an immediate response [31]. The analysis of a
standard grid load curve in Figure 2 presents a decomposing of the power curve to an
average power component and high-frequency harmonic components. The average load
determines the minimum noncompulsory generator rated power where the ESS is at its
highest rating. When selecting the minimum generation point (average power) together
with a minimum required ESS, the source is obligated to engage in continuous operation,
otherwise the load will fall. However, by increasing the ESS rating, the generation unit
can operate at a minimum specific fuel consumption point with a start/stop mechanism.
Hybridization of supply requires a real time control managing system for governing the
operation of each unit and determines whether to run/idle the generators/sources and
charge/discharge/idle the ESS. Stochastic sources complicate the management task. One
of the approaches to stabilize the Tellegen equation is by transferring the stochastic source
into the negative load [14], then all unknown parameters are summed into a single variable.

Figure 2. Decomposing of typical load curve.

The sizing methods/algorithm is utilized for solving different kinds of problems; for
instance, the hybrid vehicle energy system [32] and the hybridization of microgrids [33,34]
and grids [35,36]. The sizing algorithm produces a set of minimal solutions that derive
from the minimization target function known as the Pareto optimal curve [37]. Performing
a sizing procedure for an energy system produces a two axis Pareto curve where the
horizontal line presents an energy source’s nominal power rating and the perpendicular line
represents the energy storage capacity in most cases, as presented in Figure 3. Every point
in the sizing curve represents the minimum storage capacity required for a given generator
rating. The curve divides the entire space into regions, a feasible and an infeasible region
where the region above the curve represents the feasible region as any set of combinations
for a generator power rating and battery capacity. The entire feasible region, including the
sizing curve, is the design space for a given problem. It may be noted that the point where
the sizing curve intersects with the horizontal axis represents the peak demand of the
system where there is no need for an ESS and, therefore, the corresponding storage capacity
is zero. On the other side, the curve ends at the average required power that reflects the
minimum size of the generator, which guarantees to finish the power profile with the same
state of charge (SoC) at the ESS. In a non-repetitive power system, the ESS could fulfill the
load mission without any long endurance energy source (e.g., diesel generator). At the end
of the process, the ESS is empty/near empty and cannot support another cycle. However,
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when performing a sizing procedure for a sustainable grid, the minimum generator size is
mandatory.

Figure 3. Typical sizing Pareto curve.

Although the sizing procedure is a well-known technique, its results are insufficient
and inaccurate since researchers [33–36] use the rated power of sources and rated capacity
of ESS. However, the real power and efficiency of any source are a function of the operating
point and include internal parasitic elements that affect their performance. For instance,
when using the gross ESS data of capacity, the actual amount of energy is much lower.
According to the manufacturer’s datasheet [38], the rated capacitance is stated at discharg-
ing of 0.2C-rate, while at 1C-rate the cell will lose all energy within less than one hour.
Therefore, the planned task will go unfulfilled. Moreover, in standard sizing procedures,
sources such as internal-combustion generators are utilized as a nominal rated source.
However, the generator operating point sets the generator output impedance, which has
a great impact on generator efficiency as well as on other operating sources on the same
grid. Since the present sizing procedure is inexact and increases the probability to failure in
fulfilling the mission task, a revised procedure is required. The objectives of this research
are to create a generic tool for sizing and operating hybrid energy sources based on a
statistical load profile while respecting a set of certain optimization constraints. This study
will demonstrate an optimal mix of electrical sources while enabling a fuel-consumption
minimizing energy management strategy. In contrast to the majority of methods aiming
to tackle a similar problem, here the expected contribution is two-fold: (a) a realistic in-
stantaneous performance of each source will be utilized in the design and (b) a sizing
process exhibits an energy management strategy expected to be executed during real-time
hybrid energy source exploitation. The former will be accomplished by investigating
characteristics of the representative line of batteries and generators in order to link figures
of merit provided in the datasheet to instantaneous performance of these devices under
various operating conditions and derive the generic performance of each source. The
most important characteristics are charge/discharge curves for different temperatures and
discharge rates, allowing for the performance estimation for a wide range of operating
conditions at various life cycle stages.

In this paper, a new method for a sizing procedure based on actual performance
of modeled energy units is presented. First, a generic model for an ESS and for a high
endurance energy source (diesel generator) is presented. Then, a sizing procedure is
performed based on the proposed models and the results are verified in a system level
simulation. Thus, experimental results are generated to validate the proposed theory
versus the conventional one.
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2. Energy Unit Modeling

By transferring the sources to a digital model, examination of possible lists of solutions
for the sizing procedure is expedited. The first step is creating a trustworthy model of
each simulated source. Researchers have developed several approaches for energy source
modeling. Each method brings different levels of accuracy and complexity with pros
and cons. These models can be generally divided into three groups: the electrochemi-
cal [39]/electromechanical [40] model, the equivalent electric circuit models [41,42], and
the mathematical model (analytical or stochastic) [43,44]. Theoretical models that are solely
based on manufacturer data are insufficient to accurately imitate an actual operation of any
energy source at all operating points [16]. To improve model accuracy, a new combination
of methods of the dominant electric models along with interpolation and extrapolation
approximation are herein applied. The method utilizes actual energy unit performance
with probabilistic analyzation and an equivalent electrical circuit.

2.1. ESS Modeling

The first step for ESS modeling for creating a generic ESS model is the algorithm
procedure. The models that are founded on electrochemical equations or equivalent
electrical circuits are inherently inaccurate within a production series. Thus, a lookup table
based on average experimental results is more efficient in prognosticating ESS parameters
and behavior. The high-level ESS model algorithm includes the following steps: It begins
in block 1 (Figure 4), the model receives the load power demand and in the case of external
sources the produced power by the source. This is shown by using the power balancing
Equation (1) determining the ESS status for charging or discharging. Where PESS(n) is
the discrete actual power value of ESS (supplied or accumulated), Pload(n) is the discrete
present load power demand, and Pgen(n) is the discrete generator power.

PESS(n) = Pload(n)− Pgen(n) (1)

Then, the model processes the absolute value of power and divides it by the ESS
presented internal voltage value (Vbatt.(n)) and verifies that the model operates within the
allowed ESS current. With each cycle/start of operation, the SoC and depth of discharge
(DoD) values can be modified to a specific value, otherwise the model inherits their values
from the previous stage (n − 1). The ESS model can also receive any desired ambient
temperature (within the allowed boundaries) or a varying temperature profile or a constant.
In block 2, the model translates the power demand into an instruction for charging or
discharging. The model inspects the instantaneous current by sensing the ESS internal
voltage. Before starting a charge or discharge procedure, the model examines the following
conditions (2a,b) in blocks 3, 4.

SoC(n− 1) < Qnom. (2a)

Qmin < DoD(n− 1) (2b)

where SoC(n− 1) is the discrete previous SoC value, Qnom. is the ESS nominal capacity,
Qmin is the minimal capacity, and DoD (n− 1) is the discrete previous DoD value. The
calculated ESS current (IESS(n)) and internal voltage (EESS(n)) are then processed in blocks
5, 6 (discharging and charging, respectively). The model shows the following parameters:
instantaneous terminal voltage, battery power, energy, capacity, wasted power and energy,
the remaining energy, and the updated capacity. If the ESS is fully loaded, the process
ends. Otherwise, the linear interpolation/extrapolation begins in block 6. The charging
process ends where the algorithm calculates the updates for the ESS parameters in block
8 and starts the next cycle. The second option is the discharge path: the model verifies
that the status of the ESS is not beyond the DoD boundaries in block 3. If the ESS is fully
discharged, the process ends. Otherwise, the linear interpolation/extrapolation begins in
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block 5. The discharging process ends where the algorithm calculates the updates for the
ESS parameters in block 7 and starts the next cycle.

The internal voltage and ESS current are now processed and supply data on the
momentary ESS capacity, ESS supply energy, energy loss, and energy remaining. The
forward Euler method is a first-order method, which means that the error per step is
proportional to the square of the step size, and the error at a given time (global error) is
proportional to the step size. The momentary ESS capacity is estimated by the discrete
forward Euler method [45] as presented in (3). The ESS current is accumulated and
adds/subtracts from the present capacity in charge/discharge mode, respectively.

Qmom(n) = Qmom(n− 1)± k1·[t(n)− t(n− 1)]·IESS(n− 1) (3)

where Qmom(n) is the discrete momentary capacity value, Qmom(n− 1) is the previous dis-
crete momentary capacity value, k1 is the ESS constant, t(n) and t(n− 1) are the previous
and actual time steps, and IESS(n− 1) is the discrete previous ESS supplied current value.
The ESS supplied/sourced (momentary) energy is also estimated by the forward Euler
method. The ESS internal voltage is multiplied by the ESS current resulting in ESS power
that has accumulated into ESS energy, as presented in (4). Where Emom.(n) is the discrete
internal momentary ESS energy, Emom.(n− 1) is the previous discrete internal momentary
ESS energy value, k2 is the ESS constant, t(n) and t(n− 1) are the previous and actual time
steps, VESS(n− 1) is the discrete previous ESS external voltage value, and IESS(n− 1) is
the discrete previous ESS supplied current value.

Emom.(n) = Emom.(n− 1)± k2·[t(n)− t(n− 1)]·[VESS(n− 1)·IESS(n− 1)] (4)

The ESS energy loss is similarly defined by the forward Euler method. The ESS current
is squared and multiplied by the interpolated ESS internal resistance resulting in ESS
energy loss as presented in (5).

Eloss.(n) = Eloss.(n− 1) + k3·[t(n)− t(n− 1)]·
[
(IESS(n− 1))2·rESS

]
(5)

where Eloss.(n) is the ESS internal energy losses, Eloss.(n− 1) is the previous ESS internal
energy losses, k3 is the ESS constant, t(n) and t(n− 1) are the previous and actual time
steps, IESS(n− 1) is the discrete previous ESS supplied current value, and rESS is the ESS
internal resistance. Now, the remaining stored energy is revealed in (6):

EESS(n) = Einitial ± Emom.(n)− Eloss.(n) (6)

where EESS(n) is the ESS energy, Einitial is the initial ESS energy, Emom.(n) is the discrete
internal momentary ESS energy, and Eloss.(n) is the ESS internal energy losses. The model
receives the mentioned parameters and produces the ESS terminal voltage by the linear-
point slope algorithm (Vterminal. ∈ {IESS., T, PESS}). The approximation procedure output
is the ESS terminal voltage. With the use of approximation of the internal resistance (rESS),
the internal ESS is revealed. The ESS internal voltage (VESS) is the keystone for showing
the above parameters and, therefore, the heart of this model. The approximation of the ESS
internal resistance is also based on the linear-point slope algorithm. The database contains
rows, columns, and pages of measured values on impedance, current, temperature, and
calculated SoC. The approximation procedure collects data on three mentioned parameters
and supplies the present value of the ESS internal resistance (rESS ∈ {IESS, T, SoC}). The
ESS SoC calculation is made by the discrete forward Euler method for the momentary
capacity (3) and the initial capacity summation. In this method, the actual capacity value is
set as the ESS SoC, with another option to present the SoC in percentage as shown in (7a,b).
Where SoC is the SoC value that is equal to the ESS actual capacity, the QESS(n), Qinitial is
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the initial ESS capacity, Qmom(n) is the discrete momentary capacity value, SoC(%) is the
SoC value in percentage, and Qnom. is the ESS nominal capacity.

SoC = QESS(n) = Qinitial ±Qmom(n) (7a)

SoC(%) =
Qinitial ±Qmom(n)

Qnom
(7b)

2.2. Generator Modeling

Generator modeling is a very complicated and non-trivial task; the model is con-
structed by two key elements: a synchronous generator (SG) and a diesel engine. As
for the ESS, the generator model also utilized fuel consumption from experimental re-
sults into lookup table. Then, the actual fuel consumption is estimated by the discrete
forward Euler method [45]. The SG model comprises a mechanical and an electrical part:
the mechanical side receives the torque and the mechanical power. Then, analyzation is
carried out exhibiting the electric power, electrical torque, electrical frequency, and the
grid angle theta (θ). These parameters are processed in the electrical part by performing
a park transformation [46] that expresses three-phase voltages and current in terms of
the orthogonal basis in R3 (abc to dq). The results of the park transformation define the
synchronous machine equations for the stator voltage ed and eq as

eq = ed
′′ − Raid + Xq

′′ iq (8a)

ed = eq
′′ − Xd

′′ id − Raiq (8b)

where ed
′′ and eq ′′ are the d-axis and q-axis voltages behind the subtransient reactances,

id and iq are the d-axis and q-axis currents, and Xd
′′ and Xq ′′ are the d-axis and q-axis

subtransient reactances. The model requires data about SG rating (nominal voltage, current
and frequency) and also parameters such as the synchronous reactances Xd, Xq, the
transient reactance Xd

′, Xq
′, the d-axis and q-axis subtransient open-circuit time constants

Td0
′′ and Xq0 ′′ , and the d-axis transient open-circuit time constant Td0

′. The SG model
supplies the set of parameters: for instance, the mechanical rotor speed ωm, stator terminal
voltage vd, vq, and stator line current id, iq. The rotor speed is fed into the diesel engine
governor. Then, by referring it to the synchronous velocity and performing an analysis
of the new engine, mechanical torque is revealed and, therefore, the required mechanical
power for driving the SG. The SG line power is revealed by processing the mentioned
stator voltages and currents. Using the forward Euler method, the fuel diesel engine
consumption is:

CHFC(n) = CHFC(n− 1)± k·[t(n)− t(n− 1)]·
(

a·PSG(n− 1) + b·(PSG(n− 1))2
)

(9)

where CHFC is the hourly fuel consumption, PSG is the SG source power, and a, b are
parameters of the SG source power curve. The generator model algorithm is presented in
Figure 5. The model receives the mechanical velocity (ωm) and the reference ωm−REF, then
analyzes the error, adjusts the diesel engine velocity, and supplies the mechanical power to
the SG. The SG produces line voltages and currents, then the excitation controller adjusts
the field current to balance the power demand. By using the generator measurements,
the generator’s electrical power is calculated, and the data is formulated with a linear
point-slope method (interpolation and extrapolation). Based on the generator experimental
results, the fuel consumption is then estimated.
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Figure 4. Generic ESS model algorithm.
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Figure 5. Generic ESS model algorithm.

3. Sizing Procedure

For performing proper hybrid energy source sizing, the load profile is defined first. In
contrast to most previous works [24–27], we will consider a statistical rather than analytical
load profile to approach as close as possible a realistic situation. The minimization target
function is defined next for one or more variables as minimum fuel, maintenance cost,
operating cost, initial cost, volume, weight, etc. Then, the system constraints such as
load voltage range, generator power, variation rate, or ESS charge/discharge rate, etc.
are determined to prevent unrealistic solutions proposed by sizing procedures. The real
device’s database is also presented to allow for inclusion of existing devices into the
hybrid source and connecting these via realistic power converters. The sizing procedure
is decoupled from the load profile into static and dynamic components. The energy
source is utilized as the supply source of the static component while the power source
requires the absorbing and releasing of the dynamic component. Every power system is
governed by a real time energy management controller that behaves in a specific manner
according to its design rules. A sizing algorithm from previous works [24–27] does not
utilize the real time system management controller in the analysis procedures. Since the
real time controller dramatically affects the operation of each source, it must take place
as a system manager in the sizing procedure as well. The proposed sizing is presented
in Figure 6 and operates as follows: The first step is establishing a database with units of
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energy sources and storage units as elaborated in the second paragraph. Then, a statistical
power curve is applied as the referenced load profile. In contrast to traditional sizing
approaches, the procedure is centered on a statistical rather than analytical load profile
as close as possible to a realistic situation. The constraints are introduced preventing
unrealistic solutions proposed by the sizing algorithm. The minimization target function
is added into the algorithm with a specific weight for each target. The algorithm calls the
modeled real devices from the introduced database. Gathering all system information and
requirements leads to the data processing stage where the algorithm verifies all acceptable
source solutions with the specific selected path for solution by running the system real time
energy management algorithm. The energy management strategy is a real-time high-level
supervising routine aimed at commanding the instantaneous operating power of each
hybrid source component. Referring to a general fully controlled energy-storage source
system, the energy management strategy calculates reference power commands for each
component based on instantaneous load demand, operating mode, and feedback from each
component, considering each component’s constraints in both time and frequency domains.
The controller, executing the energy management strategy, must determine the amount
of power instantaneously drawn from each component to minimize the target function
(e.g., fuel consumption). To accomplish this, the procedure requires as much available data
as possible such as a consumption map of the energy/storage source that is accurately
determined for all the expected operating points and is included in the sizing database.

Figure 6. Sizing process.

The proposed sizing methodology offers two types of sources, power, and energy. The
analyzation of power curves reveals the average power and maximum required power. For
sustainable and reliable energy supply, the energy source’s minimum rating is the average
power, otherwise the cyclic mission criterion will not be completed. The minimum energy
source (MES) is, therefore, set at the lower boundary for the sum of all energy sources.
On the other hand, the peak power demand sets the upper boundary for the total energy
source rating. Thus, the feasible solutions for utilization of energy source (ES) exist in this
band as formulated in (10).

MES ≤ ∑n
i=1ES(i) ≤ max{|P(t)|} (10)

The rating of an energy storage is derived from the size of the energy source. The
minimum energy storage (MEST) source is set at the maximum power demand and,
therefore, the maximum size of storage at the minimum energy source. Performing the
analysis on real modeled sources governed by a real time energy management system
controller (EMSC) reveals the optimal fitness solution for all available rated energy sources
specific to the MES point. Thus, the possible solutions for employing an energy storage
system (ESS) source with a specific energy source exist in these borders as explicated in (11).
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MEST ≤ ∑m
j=1ESS(j) ≤ max{Q·VESS} (11)

The proposed sizing algorithm presented in Figure 7 operates as follows: the operator
inserts information regarding the mission profiles (e.g., power), the required constraints
(e.g., DoD), and the minimization target functions (e.g., fuel). Then, the subprocess of
sizing analyzation takes place where the search is based on existing modeled sources from
the sizing database, beginning at the MES point and evaluating the optimal solution route
managed by the EMSC for fulfilling the mission criterion. Then, the procedure continuously
increases the energy source value for the next available modeled energy source. The cyclic
calculating fitness for optimal sizing ends at the point where the routine incremental energy
source reaches the maximum power demand value of the mission profile where the energy
storage unit is useless. Then, the algorithm collects all minimal sets of solutions and plots
the Pareto-curve as an aggregation of optimal energy storage units with energy source
units (e.g., Figure 3).

Figure 7. Generic sizing algorithm.

4. Design Example

To validate the proposed theory, a case study was conducted. A synchronous fuel-
based generator was utilized as an energy source and a lithium iron phosphate (LiFePO4)
battery was employed as an energy storage system. First, the family of sources were
modeled based on experimental results at different currents and power rates while varying
the environmental temperature. The basic cell parameters are presented in Table 1. The
ANR26650M1-B of the A123 cell was tested under different power and current levels
for charging and discharging at different temperatures. The experimental results were
assembled into a collected database as a base for predicting the battery’s exact terminal
voltage and current.
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Table 1. The ANR26650M1-B of A123 cell parameters.

Parameter Value Unit

Nominal voltage 3.3 [V]
Maximum charging voltage 3.6 [V]

Cutoff voltage 2 [V]
Nominal capacity 2.5 [Ah]
Internal resistance 6 [mΩ]

Maximum discharge current 50 [A]
Maximum charging current 10 [A]

The battery model was designed using a MATLAB-SIMULINK simulation tool. The
model receives the load power demand and the generator supply power, and using Equa-
tions (1)–(7) it produces the following parameters: the requested battery power, produced
battery power, battery power, battery terminal voltage, battery internal voltage, battery
capacity, battery instantaneous power, battery SoC, battery state of health (SoH) and bat-
tery power dissipation. All parameters are presented in the operator workspace and are
available for use for sizing simulation tools. Since most loads source a specific power,
when the battery voltage starts to drop, the battery current rises. Verification of the model’s
behavior was made under a constant power demand and equates with the experimental
results and other available models for charging at a constant power of 16.6 W and dis-
charging for 16.6 W, as presented in Figures 8 and 9. The model predicts the battery’s
behavior very accurately and offers excellent performance as a reliable simulation tool for
the sizing algorithm. The generator family was based on a family of HATZ diesel engines
driving a three-phase generator (VL−L = 400 V) while using Equations (8) and (9). Then, a
load power profile (Figure 10) was loaded into the sizing procedure that showed the load
average power.

Figure 8. Battery model versus experimental results: Battery discharge voltage at 16.6 W (black–
experimental, and red–simulation).
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Figure 9. Battery model versus experimental results: Battery charge voltage at 16.6 W (black–
experimental, and red–simulation).

Figure 10. Normalized load power profile.

The algorithm then allocates from the database the available suitable generator with
a nominal operating power equal or near equal to the average load power 7.6 kW. Next,
the algorithm searches for an optimal storage system to fulfil the required load curve
based on the real time system EMSC. In the next step, the following (increase) available
generator model in the database is utilized as the energy source. Again, the algorithm
searches for optimal storage by using EMSC. The procedure continues until the energy
source is equal to the maximum power load and a Pareto curve is then generated. The
sizing result of the proposed new procedure is presented (red) in Figure 10 versus the
conventional approach (blue). The traditional procedure results are a set of a particular
generator along with the required ESS; however, in the new procedure, for a specific rated
generator, the ESS is slightly higher than what is habitual. These results are reasonable
since every device contains parasitic elements that create internal losses, requiring the
increase of ESS to compensate for the missing energy. Since the load average power is
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7.6 kW, the minimum generator rating is equal to this value. The peak load power is 20 kW,
therefore, this is the value of the maximum rated generator. To validate the findings, a
case study was conducted. By selecting a scenario of continuous generator operation with
a constraint of minimum fuel consumption a selection of two sets of points is presented.
A 9.6 kW generator point is selected and two ESS revealed from the Pareto curve are
presented in Figure 11 (red). To validate the proposed theory, a standard sizing procedure
was conducted, with the results presented in Figure 11 (blue).

Figure 11. Pareto curve results.

Based on the sizing results, the initial point of optimal fuel consumption was selected
as well as the complementary storage unit, as shown in Figure 11. The setup includes a
12.6 kVA generator utilized as the energy source, a three phase Vienna rectifier, a three
level DC bus (+400 V, 0 V, −400 V), two bi-directional isolated H-Bridge ZVS converters
connecting the 23 Ah, LiFePO4 battery storage system to the DC bus, and a neutral clamp
point three phase inverter that feeds the load. The system signals were captured by a four
channel Rohde & Schwarz RTM3004 digital oscilloscope equipped with differential voltage
probes and AC+DC current probes. Moreover, a Fluke n-daq data logger collected all
required system data (voltages, currents and temperatures), as presented in Figure 12.

The experimental results of the sizing procedure based on real unit modeling show
that the generator power is constant at the minimum fuel consumption point across the
entire load curve. When the generated power is higher than the load demands, the energy
storage unit absorbs the surplus power. In the case of lack of power generation, the ESS
supplies the missing amount of power, as presented in Figure 13a,b. Battery SoC at the
end of the load cycle is the same as at the beginning (Figure 14), therefore, the system can
continuously run while keeping the load operation.
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Figure 12. System setup.

Figure 13. Experimental results based on the new sizing procedure: (a) system voltage currents and power on oscilloscope.
(b) MATLAB processed power system balancing (blue–load, green–battery, and red–generator).

Figure 14. Battery SoC during the load cycle based on the new sizing procedure.
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However, when performing standard sizing based on manufacturer data while going
through the load profile with a different EMSC, the sizing results show that the ESS
has reached its minimum SoC point with the DoD attaining the lowest level. To avoid
load shedding the EMSC increases the generator power (Figure 15b—circled in red) to
compensate for the missing requirement power, EMSC also allow the ESS to get under
the DoD. When the load demand is dropped, the EMSC returns to the minimum fuel
consumption mode and recharges the ESS, as presented in Figure 15a,b and Figure 16.

Figure 15. Experimental results based on standard sizing procedure: (a) system voltage currents and power on oscilloscope.
(b) MATLAB processed power system balancing (blue–load, green–battery, and red–generator).

Figure 16. Battery SoC during the load cycle based on standard sizing procedure.

5. Conclusions

A new sizing method was presented in this paper. The proposed procedure was
examined with a case study of normalized residential load profile. A hybrid generator with
a storage system was modeled and utilized as the sizing database source. Based on sizing
algorithm results, a Pareto curve was plotted, presenting the optimal set of solutions for
each source together with results of the standard sizing method. It was shown that the new
procedure that includes unit modeling based on experimental results and an algorithm
that utilized the original EMSC within the sizing procedure supplies accurate results with
respect to the standard method. The real system experiment shows that the new procedure
enables minimum fuel consumption while operating inside the SoC boundaries and finishes
the load cycle at the same point of SoC as the initial value. Additionally, in the case of using
a standard known sizing procedure that does not consider the real behavior of sources,



Energies 2021, 14, 4685 17 of 19

the hybrid system cannot finish the load cycle while keeping the generator minimum fuel
consumption point, as well as the initial ESS SoC. The proposed solution is optimal only for
the specific load profile, target function, and system constraints. Presuming an additional
target function of minimum volume with the same load profile could lead to a higher
rating generator and smaller ESS. On the other hand, the same case with a modified DoD
constraint equal to 0.5 would decrease the ESS capacity while keeping the generator at the
same operating point. Moreover, additional sources such as PV, WT, super-capacitor, etc.
that are not included in this research would have a major influence on sizing results and
are left for future research.
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:

ωm mechanical rotor speed
ωm−REF mechanical velocity reference
CHFC hourly fuel consumption
DoD depth of discharge
ed d-axis voltage
ed
′′ d-axis voltage behind the subtransient reactances

EESS ESS internal voltage
Einitial initial ESS energy
Eloss ESS internal energy losses
Emom. internal momentary ESS energy
EMSC energy management system controller
eq q-axis voltage
eq ′′ q-axis voltage behind the subtransient reactances
ES energy source
ESS energy storage system
FC fuel-cell
id d-axis stator line current
IESS ESS supplied current
iq q-axis stator line current
LiFePO4 Lithium Iron Phosphate
MES minimum energy source
MEST minimum energy storage
PESS power value of ESS
Pgen generator power
Pload present load power
Pmec power mechanical axis
PSG SG source power
PV photo-voltaic
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QESS actual capacity
Qinitial initial ESS capacity
Qmin ESS minimal capacity
Qmom momentary capacity value
Qnom. ESS nominal capacity
SG synchronous generator
SoC state of charge
SoH state of health
Td0
′ d-axis transient open-circuit time constant

Td0
′′ d-axis subtransient open-circuit time constant

Tq0
′′ q-axis subtransient open-circuit time constant

Vbatt. Battery internal voltage
vd d-axis stator terminal voltage
VESS external voltage value
Vf generator field voltage
vq q-axis stator terminal voltage
Vt generator terminal voltage
WT wind-turbine
Xd d-axis synchronous reactances
Xd
′ d-axis transient reactancae

Xq q-axis synchronous reactances
Xq
′ q-axis transient reactance

ZVS zero voltage switching

References
1. Manowska, A.; Nowrot, A. The Importance of Heat Emission Caused by Global Energy Production in Terms of Climate Impact.

Energies 2019, 12, 3069. [CrossRef]
2. Rokicki, T.; Perkowska, A. Diversity and Changes in the Energy Balance in EU Countries. Energies 2021, 14, 1098. [CrossRef]
3. Sitbon, M.; Aharon, I.; Averbukh, M.; Baimel, D.; Sassonker, M. Disturbance observer based robust voltage control of photovoltaic

generator interfaced by current mode buck converter. Energy Convers. Manag. 2020, 209, 112622. [CrossRef]
4. Jung, C.; Schindler, D.; Laible, J. National and global wind resource assessment under six wind turbine installation scenarios.

Energy Convers. Manag. 2018, 156, 059. [CrossRef]
5. Gadelovits, S.; Kuperman, A.; Sitbon, M.; Aharon, I.; Singer, S. Interfacing renewable energy sources for maximum power

transfer—Part I: Statics. Renew. Sustain. Energy Rev. 2014, 31, 501–508. [CrossRef]
6. Ullah, I.; Rasul, M.G. Recent Developments in Solar Thermal Desalination Technologies: A Review. Energies 2019, 12, 119.

[CrossRef]
7. Aharon, I.; Shmilovitz, D.; Kuperman, A. Multimode power processing interface for fuel cell range extender in battery powered

vehicle. Appl. Energy 2017, 204, 572–581. [CrossRef]
8. Zhang, Z.; Wang, Z.; Chen, Z.; Wang, G.; Shen, N.; Guo, C. Study on Grid-Connected Strategy of Distribution Network with High

Hydropower Penetration Rate in Isolated Operation. Processes 2019, 7, 328. [CrossRef]
9. Zhang, L.X.; Pang, M.Y.; Han, J.; Li, Y.Y.; Wang, C.B. Geothermal power in China: Development and performance evaluation.

Renew. Sustain. Energy Rev. 2019, 116, 9431. [CrossRef]
10. Aderinto, T.; Li, H. Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250. [CrossRef]
11. Kerdphol, T.; Rahman, F.S.; Mitani, Y. Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power

Systems with High Renewable Energy Penetration. Energies 2018, 11, 981. [CrossRef]
12. Simla, T.; Stanek, W. Reducing the impact of wind farms on the electric power system by the use of energy storage. Renew. Energy

2020, 145, 772–782. [CrossRef]
13. Bullich-Massagué, E.; Cifuentes-García, F.J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.;

Gomis-Bellmunt, O. A review of energy storage technologies for large scale photovoltaic power plants. Appl. Energy 2020, 274,
5213. [CrossRef]

14. Aharon, I.; Kuperman, A. Topological Overview of Powertrains for Battery-Powered Vehicles With Range Extenders. IEEE Trans.
Power Electron. 2011, 26, 868–876. [CrossRef]

15. Mellincovsky, M.; Kuperman, A.; Lerman, C.; Aharon, I.; Reichbach, N.; Geula, G.; Nakash, R. Performance assessment of a
power loaded supercapacitor based on manufacturer data. Energy Convers. Manag. 2013, 76, 137–144. [CrossRef]

16. Mellincovsky, M. Performance and Limitations of a Constant Power-Fed Supercapacitor. IEEE Trans. Energy Convers. 2014, 29,
6792. [CrossRef]

17. Aharon, I.; Kuperman, A. Design of semi-active battery-ultracapacitor hybrids. In 2010 IEEE 26th Convention of Electrical and
Electronics Engineers in Israel; IEEE: Piscataway Township, NJ, USA, 2010; p. 2148.

http://doi.org/10.3390/en12163069
http://doi.org/10.3390/en14041098
http://doi.org/10.1016/j.enconman.2020.112622
http://doi.org/10.1016/j.enconman.2017.11.059
http://doi.org/10.1016/j.rser.2013.12.039
http://doi.org/10.3390/en12010119
http://doi.org/10.1016/j.apenergy.2017.07.043
http://doi.org/10.3390/pr7060328
http://doi.org/10.1016/j.rser.2019.109431
http://doi.org/10.3390/en11051250
http://doi.org/10.3390/en11040981
http://doi.org/10.1016/j.renene.2019.06.028
http://doi.org/10.1016/j.apenergy.2020.115213
http://doi.org/10.1109/TPEL.2011.2107037
http://doi.org/10.1016/j.enconman.2013.07.042
http://doi.org/10.1109/TEC.2013.2296792


Energies 2021, 14, 4685 19 of 19

18. Kuperman, A.; Aharon, I. Battery–ultracapacitor hybrids for pulsed current loads: A review. Renew. Sustain. Energy Rev. 2011, 15,
981–992. [CrossRef]

19. Aharon, I.; Kuperman, A.; Shmilovitz, D. Robust UDE controller for energy storage application. In 2015 International Conference on
Renewable Energy Research and Applications (ICRERA); IEEE: Piscataway Township, NJ, USA, 2015; pp. 1269–1274.

20. Christen, T.; Carlen, M.W. Theory of Ragone plots. J. Power Sources 2000, 91, 210–216. [CrossRef]
21. Soonee, S.K.; Baba, K.V.S.; Narasimhan, S.R.; Porwal, R.K.; Jain, S.; Reddy, P. An Indian case study of Power System Network

Planning proposed on Tellegen’s theorem. In 2018 20th National Power Systems Conference (NPSC); IEEE: Piscataway Township, NJ,
USA, 1868.

22. Loureiro, M.V.; Schell, K.R.; Claro, J.; Fischbeck, P. Renewable integration through transmission network expansion planning
under uncertainty. Electr. Power Syst. Res. 2018, 165, 45–52. [CrossRef]

23. Ali, A.; Padmanaban, S.; Twala, B.; Marwala, T. Electric Power Grids Distribution Generation System for Optimal Location and
Sizing—A Case Study Investigation by Various Optimization Algorithms. Energies 2017, 10, 960. [CrossRef]

24. Müller, N.; Kouro, S.; Zanchetta, P.; Wheeler, P.; Bittner, G.; Girardi, F. Energy Storage Sizing Strategy for Grid-Tied PV Plants
under Power Clipping Limitations. Energies 2019, 12, 1812. [CrossRef]

25. Kuperman, A. Supercapacitor Sizing Based on Desired Power and Energy Performance. IEEE Trans. Power Electron. 2014, 29, 2674.
[CrossRef]

26. Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on
PBIL and PSO Techniques. Energies 2018, 11, 1018. [CrossRef]

27. Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A review on recent sizing methodologies of hybrid renewable energy systems.
Energy Convers. Manag. 2019, 199, 2027. [CrossRef]

28. Huang, Y.; Wang, H.; Khajepour, A.; Li, B.; Ji, J.; Zhao, K.; Hu, C. A review of power management strategies and component
sizing methods for hybrid vehicles. Renew. Sustain. Energy Rev. 2018, 96, 132–144. [CrossRef]

29. Upadhyay, S.; Sharma, M.P. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew.
Sustain. Energy Rev. 2014, 38, 47–63. [CrossRef]

30. Miceli, R. Energy Management and Smart Grids. Energies 2013, 6, 2262–2290. [CrossRef]
31. Ribó-Pérez, D.; Larrosa-López, L.; Pecondón-Tricas, D.; Alcázar-Ortega, M. A Critical Review of Demand Response Products as

Resource for Ancillary Services: International Experience and Policy Recommendations. Energies 2021, 14, 846. [CrossRef]
32. Zou, Y.; Sun, F.; Hu, X.; Guzzella, L.; Peng, H. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle. Energies 2012,

5, 4697–4710. [CrossRef]
33. Li, J.; Wei, W.; Xiang, J. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids. Energies 2012, 5,

5307–5323. [CrossRef]
34. Quintero Pulido, D.F.; Hoogsteen, G.; Ten Kortenaar, M.V.; Hurink, J.L.; Hebner, R.E.; Smit, G.J.M. Characterization of Storage

Sizing for an Off-Grid House in the US and the Netherlands. Energies 2018, 11, 265. [CrossRef]
35. Nimma, K.S.; Al-Falahi, M.D.A.; Nguyen, H.D.; Jayasinghe, S.D.G.; Mahmoud, T.S.; Negnevitsky, M. Grey Wolf Optimization-

Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids. Energies 2018, 11, 847.
[CrossRef]

36. Martins, R.; Hesse, H.C.; Jungbauer, J.; Vorbuchner, T.; Musilek, P. Optimal Component Sizing for Peak Shaving in Battery Energy
Storage System for Industrial Applications. Energies 2018, 11, 2048. [CrossRef]

37. Arun, P.; Banerjee, R.; Bandyopadhyay, S. Optimum sizing of battery-integrated diesel generator for remote electrification through
design-space approach. Energy 2008, 33, 1155–1168. [CrossRef]

38. Soto, A.; Berrueta, A.; Sanchis, P.; Ursúa, A. Analysis of the main battery characterization techniques and experimental comparison
of commercial 18650 Li-ion cells. In Proceedings-2019 IEEE International Conference on Environment and Electrical Engineering and
2019 IEEE Industrial and Commercial Power Systems Europe; IEEE: Piscataway Township, NJ, USA, 2019.

39. Mousavi, G.S.M.; Nikdel, M. Various battery models for various simulation studies and applications. Renew. Sustain. Energy Rev.
2014, 32, 477–485. [CrossRef]

40. Xiong, L. Static Synchronous Generator Model: A New Perspective to Investigate Dynamic Characteristics and Stability Issues of
Grid-Tied PWM Inverter. IEEE Trans. Power Electron. 2016, 31, 8933. [CrossRef]

41. He, H.; Xiong, R.; Fan, J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an
Experimental Approach. Energies 2011, 4, 582–598. [CrossRef]

42. Mouni, E.; Tnani, S.; Champenois, G. Synchronous generator modelling and parameters estimation using least squares method.
Simul. Model. Pract. Theory 2008, 16, 678–689. [CrossRef]

43. Barcellona, S.; Piegari, L. Lithium Ion Battery Models and Parameter Identification Techniques. Energies 2017, 10, 2007. [CrossRef]
44. Varganova, A.V.; Panova, E.A.; Kurilova, N.A.; Nasibullin, A.T. Mathematical modeling of synchronous generators in out-of-

balance conditions in the task of electric power supply systems optimization. In International Conference on Mechanical Engineering,
Automation and Control Systems; IEEE: Piscataway Township, NJ, USA, 2015.

45. Pak, L.; Dinavahi, V. Real-Time Simulation of a Wind Energy System Based on the Doubly-Fed Induction Generator. IEEE Trans.
Power Syst. 2009, 24, 1200. [CrossRef]

46. Liu, X.Z.; Verghese, G.C.; Lang, J.H.; Onder, M.K. Generalizing the Blondel-Park transformation of electrical machines: Necessary
and sufficient conditions. IEEE Trans. Circuits Syst. 1989, 36, 2414. [CrossRef]

http://doi.org/10.1016/j.rser.2010.11.010
http://doi.org/10.1016/S0378-7753(00)00474-2
http://doi.org/10.1016/j.epsr.2018.07.037
http://doi.org/10.3390/en10070960
http://doi.org/10.3390/en12091812
http://doi.org/10.1109/TPEL.2013.2292674
http://doi.org/10.3390/en11041018
http://doi.org/10.1016/j.enconman.2019.112027
http://doi.org/10.1016/j.rser.2018.07.020
http://doi.org/10.1016/j.rser.2014.05.057
http://doi.org/10.3390/en6042262
http://doi.org/10.3390/en14040846
http://doi.org/10.3390/en5114697
http://doi.org/10.3390/en5125307
http://doi.org/10.3390/en11020265
http://doi.org/10.3390/en11040847
http://doi.org/10.3390/en11082048
http://doi.org/10.1016/j.energy.2008.02.008
http://doi.org/10.1016/j.rser.2014.01.048
http://doi.org/10.1109/TPEL.2015.2498933
http://doi.org/10.3390/en4040582
http://doi.org/10.1016/j.simpat.2008.04.005
http://doi.org/10.3390/en10122007
http://doi.org/10.1109/TPWRS.2009.2021200
http://doi.org/10.1109/31.192414

	Introduction 
	Energy Unit Modeling 
	ESS Modeling 
	Generator Modeling 

	Sizing Procedure 
	Design Example 
	Conclusions 
	References

