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Abstract: The study targeted towards drying of cantaloupe slices with various thicknesses in a
microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and
540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations
were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems
(ANFIS) were exploited to investigate energy and exergy indices of cantaloupe drying using various
afore-mentioned input parameters. The results indicated that a rise in microwave power and a decline
in sample thickness can significantly decrease the specific energy consumption (SEC), energy loss,
exergy loss, and improvement potential (probability level of 5%). The mean SEC, energy efficiency,
energy loss, thermal efficiency, dryer efficiency, exergy efficiency, exergy loss, improvement potential,
and sustainability index ranged in 10.48-25.92 M] /kg water, 16.11-47.24%, 2.65-11.24 M] / kg water,
7.02-36.46%, 12.36-42.70%, 11.25-38.89%, 3-12.2 M] / kg water, 1.88-10.83 M] / kg water, and 1.12-1.63,
respectively. Based on the results, the use of higher microwave powers for drying thinner samples can
improve the thermodynamic performance of the process. The ANFIS model offers a more accurate
forecast of energy and exergy indices of cantaloupe drying compare to ANN model.

Keywords: cantaloupe; improvement potential; energy efficiency; exergy; ANN; ANFIS

1. Introduction

Cantaloupe (Cucumis melo) belongs to the family of Cucurbitaceous. Cantaloupe
is one of the important agricultural crops of Iran, having the fifth rank after tomato,
cucumber, watermelon, and Persian melon. It is more cultivated in the Khorasan Razavi,
Khuzestan, and Semnan provinces. Based on FAO reports in 2018, Iran was rated third in
the production of various types of cantaloupes [1,2]. Moreover, the agricultural product of
cantaloupe possesses medicinal value. In this regard, there is a need to minimize crop loss
after harvesting [3].

However, the structure and moisture content of the agricultural products play a
decisive role in their life length. In this context, researchers have tried to use various
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methods to increase the durability of these products while maintaining their quality [4].
Drying with the sun is one of the most primitive methods of keep agricultural products.
This method, however, suffers from several drawbacks such as the need for large spaces,
environmental pollution, sudden climate change, long drying times, and so on [5]. Various
industries have emerged to facilitate the production and processing of crops. Drying is
one of these industries which can prolong the life of products, hence enhancing their use
in a better and simpler way [6]. The high latent heat of water evaporation and the low
efficiency of industrial dryers have led to high energy consumptions. Therefore, attempts
have been focused on declining the energy consumption and drying time while enhancing
the efficiency of industrial dryers.

To include the mentioned points in the design of industrial dryers, thermodynamic
science should be exploited. The first and second laws of thermodynamics analyze energy
efficiency [7]. The first law of thermodynamics states that energy is not lost but rather
converts from one form to another. The second law of thermodynamics indicates the
quality and image of this energy conversion. As this energy conversion is accompanied
by a decline in quality, a parameter called exergy is introduced which is defined as the
maximum useful work obtained from the energy flow from one system at equilibrium with
the environment [7,8].

Drying by microwave (MW) power is one of the drying methods with optimal energy
consumption which helps in saving the longevity and quality of products [9]. In this
method, products are exposed to electromagnetic waves focused on the products. These
waves have a high frequency and can penetrate into the product texture and vibrate the
polar molecules such as water and salts. The vibrations of these molecules can lead to heat
which will result in the transfer of humidity to the surface and finally its evaporation [10].
Owing to the energy concentration on the product, moisture elimination occurs at higher
paces. The use of MW can decline the drying time up to 50% depending on the product
type and drying conditions [11]. The drying time and MW power are two important factors
in the drying of products by MW method which can influence the drying parameters such
as drying time, drying efficiency, and quality of the final product.

Exergy and energy analyses of an assorted dryer for different agricultural produce
appears in the literature. For instance, Jafari et al. [11] investigated exergy analyses and
mathematical modelling of a rice barn in a semi-industrial MW dryer. Their results showed
that the energy and exergy efficiency increased by enhancing the thickness of the seeds.
The researchers further highlighted that at constant power, the energy and exergy efficiency
increased by enhancing the thickness of the seeds. For the same layers, the rise in MW
power declined the energy and exergy efficiencies.

Surendhar et al. [5] examined the kinetics of drying, energy, and exergy parameters for
curcumin drying in a microwave dryer. Their results indicated that a rise in the MW power
can accelerate the drying process and decline drying time. Energy and exergy values were
reported to be enhanced by increasing the MW power.

In another study, Azadbakht et al. [12] studied the energy and exergy of drying in
orange slices using an MW dryer with ohmic pretreatment. Their results indicated that
the amount of the absorbed energy exceeded the lost energy at higher powers. The exergy
efficiency was reported to improve with an increase in MW power and ohmic time.

Darvishi et al. [6] and Al-Harahsheh at al. [13] hinted that modelling of drying equip-
ment enables designers to select suitable operating conditions and ensures effective drying
operation. Among high-level optimization methods, a hybrid of an Artificial Neural Net-
work (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) has been the chosen
option. The choice of the hybrid is motivated by the amalgamation having mathematical
recompenses, emphasized elsewhere [14,15]. The ANFIS is a governing data-driven and
adaptive computational means having the fitness of plotting non-linear and multifaceted
data [16]. Conversely, the constraint of ANN is its black box which flops to relation input
parameters with the response. Jang and Sun [17] related the fiasco of the black box method
of the ANN model to the incapacity of the model to accommodate linguistic information
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unswervingly. On the other hand, Yaghoobi et al. [18] ascribed the preeminence of the
ANFIS model to its capacity to handle lapses in the ANN model.

Presently, the use of ANN and ANFIS techniques have boosted modelling and simulat-
ing food processing. These nonlinear modelling methods have been extensively employed
for the evaluation of energy, exergy, and quality of the food industry due to their accuracy,
robustness, and high speed [19]. ANNSs are powerful computational methods to predict
the responses of complex systems. The main idea of these types of networks originates
from the biological nervous system performance for processing the data and information
to learn and create knowledge [8].

ANFIS has recently drawn a considerable deal of attention. This method is a combi-
nation of the fuzzy structures with ANN to identify the systems and predict time series.
This model has several advantages, among which the ability to simulate nonlinear systems,
high precision, and shorter time of model development can be mentioned [20].

Several researchers have presented various models using ANN and ANFIS to pre-
dict the energy and exergy parameters of different dryers for drying various products.
Abbaspour-Gilandeh et al. [21] used ANFIS and ANN to predict the energy and exergy
of the fruits dried by a convective dryer. Kariman et al. [22] applied ANN to predict
the energy and exergy of dried kiwi using MW dryer. Azadbakht et al. [4] optimized
and predicted the energy and exergy of drying potato slices by fluid substrate dryer, and
Nikbakht et al. [8] modelled the drying of pomegranate in the convective drier with MW
pretreatment using ANN and a surface response method at the industrial scale. Kaveh
et al. [23] used the ANFIS system for the prediction of the energy and exergy of drying
green peas using a convective-rotary dryer.

Taghinezhad et al. [24] investigated the application of ANN and ANFIS in energy and
exergy analysis of an infrared-convective dryer with ultrasonic pretreatment for drying
blackberry samples. To predict the energy and exergy parameters of the blackberry drying
process, the ANN (with one or two hidden layers and two Lonberg-Marquardt algorithms
and Bayesian regulation) and the ANFIS model (membership function for each input:
trimf and Gaussian, membership function for each output: linear and hybrid algorithm)
were explored. Drying time, inlet air temperature, and ultrasonic time in the dryer were
considered as inputs, while exergy efficiency, exergy loss, energy consumption, and energy
consumption ratio were selected as outputs. The statistical parameters showed that the
ANFIS network was more successful than ANN in predicting the energy and exergy
of the drying blackberry. The prediction of energy efficiency, exergy efficiency, energy
consumption ratio and energy consumption at any time were successfully accomplished
with the aid of ANFIS approach. The high speed of obtaining the answer makes this
method suitable for modelling and controlling the processes.

Azadbakht et al. [10] employed ANN method to predict osmotic pretreatment based
on energy and exergy analysis in drying orange slices using a microwave dryer. An
increase in MW power enhanced energy and exergy efficiency and reduced drying time.
Moreover, a multilayer perceptron (MLP) neural network model was utilized to predict
energy efficiency, specific energy loss, exergy efficiency, and specific exergy loss. MW
power and osmotic time were considered as inputs, while energy efficiency, specific energy
loss, exergy efficiency, and specific exergy loss were regarded as outputs. The studied
artificial neural network in osmotic times and microwave power with 6 neurons in the
hidden layer was employed to predict the regression coefficient (R?) for energy efficiency
and specific exergy loss as 0.999 and 0.871, respectively.

Liu et al. [7] adopted a multilayer feed-forward neural network to predict the energy
and exergy of a convective dryer to dry mushroom slices. Their study entailed four input
variables (drying time, air temperature, air velocity, and thickness of the samples) and
four responses (energy consumption, energy consumption ratio, exergy loss, and exergy
efficiency). The researchers further adopted the sigmoid tangent activator function as
a transfer function and the Levenberg—Marquardt algorithm for network training. The
researchers attributed the capability of the ANN model in predicting energy and exergy
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parameters of convective dryers due to that maximum R? (0.966) and the lowest value of
MSE (0.001261) and MAE (0.02208).

The drying process is an important operation and observing the technical and scientific
principles in the cantaloupe drying process will increase its quality and efficiency. The
evaluation of energy and exergy parameters of cantaloupe drying and its modelling in
different modes leads to further understanding of how the product dries. Such information
can be used in designing and optimizing the drying process. In this study, the effect of MW
power and sample thickness on the drying kinetics of cantaloupe slices, effective moisture
diffusion coefficient, and energy and exergy parameters are investigated. Then, to model
the drying behavior of cantaloupe pieces under different powers and thicknesses in an
MW dryer, the ANN and ANFIS models were are used. Finally, the performances of these
two models in predicting the energy and exergy parameters of cantaloupe drying in a
microwave dryer were evaluated. Likewise, integrating ANN and ANFIS models has been
very interesting among researchers since it reinforces the performance of the model and
aids robust modelling for actual productivity and sustainability [24-27]. Inopportunely,
the scrutiny of the survey disclosed that there are (1) no recognized ANN models for the
prediction of thermodynamic parameters of a microwave dryer (MD) for cantaloupe slices
and (2) comparison capacity of hybrid models such as ANN and ANFIS models for the
exergetic parameters of a microwave dryer for cantaloupe slices in the literature is scarce.
Henceforth, there is a need to trim the lapses in the knowledge of such reports and launch
robust models capable of improving thermodynamic performance and decreasing the
environmental penalties of the drying process.

Based on the above mentioned descriptions and the targets of the study, the hypotheses
of the study are as follows: (1) higher microwave power increases energy and exergy
efficiencies, and (2) higher microwave power and the lower slice thickness reduces drying
time, exergy improvement potential, and specific energy consumption.

2. Materials and Methods
2.1. Sample Preparation

Cantaloupe was purchased from a local market in Sardasht (West Azerbaijan, Sardasht,
Iran). To prevent initial moisture loss, the product was stored at 4 & 1 in the refrigerator. To
perform the experiments, the product was removed from the refrigerator 2 h before cutting
to reach ambient temperature. Cantaloupes were cut to 2, 4, and 6 mm thickness using a
cutter. To determine the initial moisture content of the samples, the product was placed in
an oven (Memmert, UFB 500, Schwabach, Germany) at 70 °C for 24 h [2]. Finally, the initial
moisture content of cantaloupe pieces was obtained at 17.94% on a wet basis.

2.2. Dryer Conditions

In the present research, a programmable domestic microwave oven (Sharp R-196T,
Bangkok, Thailand) was used to perform the experiments that were capable of generating
microwave waves in the range of 100 to 900 W. The oven has an internal compartment with
dimensions of 350 x 350 x 220 mm? and a rotating plate with a diameter of 180 mm. For
experiments, sliced cantaloupe samples with similar thicknesses were weighed and placed
on the rotating plate of the machine. The proposed method was performed in such a way
that the samples with three thicknesses of 2, 4, and 6 mm were subjected to MW powers of
360, 180, and 540 W. The drying of 60 g cantaloupe slices (ca. 14 samples) continued until
the relative humidity of the samples approached about 0.2 on a wet basis. The temperature
of the samples was measured by IR temperature sensor (accuracy of £1.5 °C). The reference
dead state conditions were considered as T = 22 °C and Py = 101.325 kPa. Each experiment
was performed in three replications.
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2.3. Drying Kinetics
The moisture ratio of cantaloupe was determined using Equation (1) [10].
M; — M,
MR = ———— 1
M, M, @

The moisture propagation coefficient was assumed to the same at all directions
(isotropic material) with negligible shrinkage. Under such conditions, the moisture transfer
from the solid phase in the descending period of the rate can be estimated by Equation (2)
as described by Fick law [28].

oM *M
T @

Assuming constant effective moisture diffusion coefficient and by the analytical so-
lution of Fick’s second law, the effective moisture diffusion coefficient can be determined
using Equation (3) [21].

MR =

Mt _Mg Dgff(2n+1)27l'2t> (3)

Mo S g 1
My—M, 2= (2n+1) F 412

By increasing ¢, all the terms will tend to zero except the first one. The effective
moisture diffusion coefficient (D, % f) can be obtained from the slope (k) of Ln (MR) vs. ¢

using Equation (4) [20].
Deff7T2
k= ( 412 @
2.4. Energy Analysis

2.4.1. Specific Energy Consumption, Dryer Efficiency, and Thermal Efficiency

SEC refers to the ratio of the total energy consumption during the drying of can-
taloupe slices to the water loss during the drying process. The SEC of cantaloupe slices by
microwave method can be determined by Equation (5) [29].

SEC = (5;) ®)

w

Dryer and thermal efficiencies, as well as the vaporization latent heat, can be deter-
mined by Equations (6)—(9), respectively [23,30].

Eevap + Eheating
D, = [ —p___heating
e ( . ) ©)

p_ DARg (M~ M) )
~ 3600.Z.£.(100 — M,)
Eeva = hfg-Mw (8)

g = 2.503 x 10° — 2.386(T,p, — 273.16)
hpg = (7.33 x 106 — 1672, )™

©)

2.4.2. Energy Efficiency and Energy Loss

A thermodynamic analysis is essential for the optimization and design of thermal
systems. Based on the first law of thermodynamics, the general mass conservation equation
can be expressed by Equation (10) [31].

Zmin = Zmout (10)
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Energy equilibrium can be expressed by Equation (11), which states that the input
energy is equal to the output energy [32].

ZEin = ZEout (11)

The dryer chamber is considered as the control volume, and the mass conservation
energy can be determined by Equation (12) [33].

Myp = Mgy + Myt (12)
The mass of the evaporated water can be calculated by Equation (13) [10].
Myt = mdp(Mo - Mt) (13)

The energy conservation for the tangible heat, latent heat, and heat source of the
microwave can be determined by Equation (14) for the cantaloupe slices [34].

Pin = Paps +Pref+Ptra (14)

In the above equation, Ejyss = Prer + Pira is the lost energy.
The input energy to the microwave can be determined by Equation (15) [35].

P, xt= ((mCPT)out — (meT)in> + Apmy + (Eref + Etm) (15)

Equation (15) contains three terms including the absorbed energy, reflected energy,
and transmitted energy. Equation (16) shows the energy absorbed by the product [33].

((mC,T) (mCpT),,) + Agmay) (16)

out

The latent heat of the cantaloupe slices can be also determined by Equation (17) [6].
M= Aws(1+23exp(—0.4M;)) (17)

The latent heat of evaporation was determined by Darvishi et al. [35] based on Equa-
tion (18) [10]:
Af = 2503 — 2.386(T — 273) (18)

According to Brooker et al. [36], the heat capacity is a function of the moisture content
and can be described by Equation (19).

M; )
1+ M,

Cp = 840 + 3350 x ( (19)

Based on Darvishi et al. [6] and Jafari et al. [33], the energy efficiency in the MW dryer
can be calculated by Equation (20).

o — (m.Cp.T),,; + Mew + Yup
(m.Cp.T), + Pt

(20)

The specific energy loss for drying cantaloupe slices can be determined by either
Equations (21) or (22) [9].

P.t
Ejoss = (1 - ’7671-;) (21)
w
E,, — E
Eloss = mTahs (22)
w

The total input and output energy and exergy loss were determined according to
the second law of thermodynamics. The main method to analyze the exergy of the dryer
chamber relied on the calculation of the exergy values in stable points and the determination
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of the reason for the changes in the exergy of the process. Generally, Equation (23) shows
the exergy balance for an MW dryer [12].

~EX 0ss
—_—
EXin = EXaps + EXper + EXira (23)
The input exergy of the MW dryer can be determined by Equation (24) [35].

exergy absorption

exergy input exergy of dry poduct  exergy of wetproduct exergy evaporation ~EXpss
—_—— —N— —_——— ; —_—
Py xt = (Tl’l X ex)dp (m X ex)wp + €Xeoxap X t +EXref + EXira (24)

The exergy rate (J/s) of the evaporation in the dryer chamber can be determined

by [5]:
/ TO ®
EXoxap = (1 — Tp> X Mo Awp (25)
° m —m
Myy = 4t+AAtt i (26)

The specific exergy (J/s) can be calculated by Equation (27) [19].

T

Ex = T—Tw) = Toln| — 27
¥ =Gy |(T=To) = Tun( 1 )| @)

The exergy efficiency of the MW dryer can be estimated by Equation (28) [5].

_ EX/zbs
Hex = P (28)
The specific exergy loss can be also expressed by Equation (29) as reported by Kariman
etal. [22].
EXjpss = EXin = EXaps (29)
Myy

The exergetic sustainability index is defined to express the performance of the exergy.
The use of the improvement potential can also be helpful in the evaluation of economic
activities [37]. The exergy improvement potential and the exergetic sustainability index
can be expressed by Equations (30) and (31), respectively [32].

IP=(1- 7’]@:6) X EXjp — EXout (30)

1
Sl= —— 31
(1= 17ex) D
2.5. Statistical Analysis

SPSS (V.19) and the Duncan test (at the probability level of 5%) were used to investigate
the effect of Mw power and thickness of cantaloupe slices on the studied indices.

2.6. Experimental Uncertainty Analysis

Experimental uncertainty was calculated by Equation (32) [38]:

1
OR .. > 9R. . 7?2 oR . 2|*?

Ug = (E 1) +(EU2) +---+(Eun) (32)

All uncertainties are displayed in Table 1.
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Table 1. Uncertainties in measurement of parameters during onion drying.

Parameter Unit Value
Inlet microwave power \ *1.5
Slice thickness mm +0.02
Uncertainty in the measurement of moisture quantity G +0.018
Uncertainty in the measurement of relative humidity of air RH +0.65
Drying Rate (DR) g water/g dry matter min +0.17
Uncertainty in Moisture Ratio (MR) Dimensionless +0.14
Uncertainty in Specific Energy Consumption (SEC) M]/kg +1.01
Uncertainty in energy efficiency Dimensionless +1.4
Uncertainty in specific energy loss M]/kg +0.004
Uncertainty in exergy loss M]/kg +0.005
Uncertainty in exergy efficiency Dimensionless +1.55

2.7. Artificial Neural Network (ANN)

An artificial neural network is composed of countless artificial neurons operating as
interconnected, parallel networks. Each neuron acts as a processor in the network and
receives and processes neural signals (input) from other neurons or their surroundings.
Similar to the human brain, an artificial neural network can learn everything on its own [39].
Neurons are trained by applying a training algorithm to the network. An artificial neural
network consists of 3 layers: the input layer that receives the primary data, the hidden
layer that processes the received data, and the output layer. Each layer contains a group
of neurons, each of which is connected to all the neurons in the other layers, but the
neurons in each layer are not in contact with other neurons in the same layer. In this
way, neurons act independently, and a superposition of the neurons” behavior reflects the
network behavior [40]. The latent layer may be monolayer (perceptron neural networks) or
multilayer (multilayer perceptron (MLP) networks).

In this study, a multilayer perceptron artificial neural network was selected for mod-
elling energy parameters (SEC, energy loss, energy efficiency, dryer efficiency, and thermal
efficiency), exergy parameters (exergy drop, exergy efficiency, and exergy recovery poten-
tial) and duration of heating and drying cantaloupe by a microwave dryer considering
different thicknesses. The perceptron multilayer neural network is a feed-forward network
with three inputs, one or two hidden layers, and one output layer. This network was se-
lected by one or two hidden layers for the experiment, in which 2-15 neurons were placed
in each layer by trial and error. Moreover, Tansig, Logsig, and Purelin activation functions
were used in the hidden input and output layer. In this research, the Levenberg—Marquardt
optimization was used to train the network. Three iterations were considered the average of
the learning cycle for simulation of artificial neural network data to minimize the error rate
and maximize network stability. The error estimation algorithm in the formed networks
was performed using the error propagation algorithm.

2.8. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy inference system formulates the behavior of a process us-
ing descriptive if-then rules. This system includes 4 main parts: rule base, fuzzification,
inference engine, and defuzzification. Each ANFIS model consists of 5 layers which in-
clude inputs, membership functions corresponding to inputs, rules, membership functions
related to outputs, and outputs [19]. In this study, a hybrid method was used to train
ANFIS, which is a combination of the least-squares method and the post-diffusion method.
The error limit used to create a training stop criterion was set to zero. To optimize the
model, different types and numbers of membership functions were used to determine
the optimal number and type. A Sugeno-type fuzzy inference system was employed to
find the optimal model; triangular, trapezoidal, and Gaussian membership functions were
examined. Regarding the two-variable nature of the model input, 2-2 and 3-3 membership
functions were investigated.
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30% of the data were used for testing while 70% of them were applied for training.
Microwave power, the thickness of samples, and drying time were regarded as inputs
of both models (ANN and ANFIS) while SEC, energy loss, energy efficiency, thermal
efficiency, dryer efficiency, exergy drop, exergy efficiency, exergy improvement potential,
and exergetic sustainability index during microwave drying were the outputs. In this study,
Matlab software (Matlab R2019a) was used to model ANN and ANFIS.

To evaluate the network, two criteria of coefficient of determination (R?) and root
mean square error (RMSE) were taken into account. The coefficient of determination
determines the degree of correlation between the output data of ANN and ANFIS and the
observed data which can be calculated from Equation (34); its ideal value is one. The root
mean square of the error determines the difference between the predicted and the actual
data and can be calculated by Equation (33) [7]. The goal of a good network is to minimize
the amount of this error, and its ideal value is zero.

RMSE = | & 3 X; — X,)?
=\ v (Xi—Xp) (33)

i=1

(Xi — xmm)z] - [% (Xi — Xp)]

i=1

i=1

R? = (34)
N 2
{Z (Xi - Xmean) ]
i=1
N X — X
MRE = %2 d < P (35)
p=1 !

3. Results and Discussions
3.1. Kinetics of Drying

The diagram of moisture reduction in cantaloupe pieces with different thicknesses
during drying at various MV powers is depicted in Figure 1. MW drying reduced the
moisture content of cantaloupe pieces from 17.99 to 0.20 w.b., and the drying time varied
from 55 to 180 min (Figure 1). According to Figure 1, a rise in the microwave power and a
decrement in the sample’s thickness enhanced the slope of the moisture reduction. The
time required to reach the moisture content of 0.2 w.b. showed a significant decline by
increasing the microwave power and decreasing the sample thickness (Table 2). This time
was decremented from 180 min for the power of 180 W and thickness of 6 mm to 55 min
for the case of the power of 540 W and thickness of 2 mm.

The mass and heat transfer are faster in higher MW powers and thinner thicknesses.
Higher powers, indeed, enhance the kinetic energy and absorbed energy, giving rise to a
higher difference in the vapor pressure between the center and surface of the samples; this
will eventually increase the rate of moisture elimination [9]. In a similar study, Darvishi
et al. [6] dried white mulberry using an MW dryer and declared that the high humidity
of the samples led to elevated friction against the rotation of dipoles, resulting in high
heat generation within the white mulberries. This phenomenon accelerated the vapor
motion, guiding the water toward the surface of the samples. For constant microwave
power, a rise in the sample thickness will increase the path the moisture has to pass to
reach the surface which will eventually enhance the drying time [41]. Other researchers
also addressed the effect of the MW power and sample thickness on the drying time of
the agricultural products, among which the works by Beigi and Torki [29] on onion slices,
Cinkir and Siifer [42] on red meat radish, and Darvishi et al. [43] on sweet potato can
be mentioned.
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Figure 1. Variation of moisture ratio for different thicknesses and microwave power levels.



Energies 2021, 14, 4838

11 of 19

Table 2. Variation of drying time, effective moisture diffusivity and specific energy consumption of cantaloupe slices at

various slice thickness and microwave power levels.

Microwave Power (W)  Slice Thickness (mm) Drying Time (min) Degs SEC
2 95+ 54d 3.15 x 10712 + 8.04 x 107138 171+1.014
180 4 140 + 10° 9.05 x 10711 +9.11 x 10~ 13¢ 2326 4+ 0.92P
6 180 £ 102 1.85 x 10711 +1.31 x 10~ 13¢ 2592 4+ 1.14 2
2 75+ 5¢f 422 x 10712 £ 751 x 1071318 13.5 +0.88 ¢
360 4 95 +54d 1.48 x 10711 +1.41 x 10124 1725 +1.214
6 120+ 10°¢ 2.83 x 10711 4+ 1.48 x 10712P 21.60 & 0.80 ©
2 55458 6.00 x 10712 + 7.04 x 10~ 13f 10.48 + 057 f
540 4 70+ 5" 2.05 x 10711 + 1,51 x 10~12¢ 13.34 4+ 0.98 ¢
6 80+5¢ 4.04 x 10711 £ 1.77 x 107122 16.20 + 0.79 4

Different letters for the same segment represent statistically significant differences at a confidence level of 95%.

3.2. Effective Moisture Diffusion Coefficient

The D of all samples lie within the range reported by Kaveh et al. [44] for the
food products (10712-107 m?/s) as indicated in Table 2. The analysis of the Dgg values
indicated that at a specific thickness, the microwave power has a significant influence
(p < 0.05) on the moisture diffusion. As observable in Table 2, a rise in the Mw power
enhanced the value of D¢ which can be assigned to the increment of the heat energy
which declined the viscosity of the water present in the samples and hence increased its
activity and accelerated the evaporation [29]. Sharabiani et al. [39] and Raj and Dash [45]
also reported similar results in drying apple and dragon fruit slices using an MW dryer.
Moreover, the statistical analysis indicated that at a given MW power, the sample thickness
significantly affected the effective diffusion coefficient (p < 0.05); however, the increase in
the thickness from 2 to 6 mm elevated the diffusion coefficient, which can be attributed to
the surface hardness of the samples as surface hardening occurs more rapidly in thinner
samples while the evaporation rate of thinner samples is far higher [46]. The faster surface
hardening in the thinner samples can limit the displacement of humidity, hence declining
the moisture propagation in the thinner samples [47]. Studied on drying kiwi fruit [19,43]
and eggplant slices [48] with various thicknesses also led to similar results.

3.3. Specific Energy Consumption

Table 2 lists the SEC of drying cantaloupe slices using an MW dryer at various
thicknesses. The lowest required SEC (10.47 M]/kg) was achieved at the MW power
of 540 W and thickness of 2 mm. The increase in the energy consumption by changing
the power from 180 to 540 W was significant at all thicknesses (p < 0.05); the results
indicated that a rise in the MW power and a decrement in the sample thicknesses can
decrement the energy consumption. The reason could be the enhanced destruction of the
product thickness and accelerated moisture release [39,41]. Moreover, with increasing MW
output power, the thermal gradient inside the sample increased, followed by an increment
in evaporation rate and a decrease in drying time. By reducing this time, the energy
consumption also decreased [49]. In a study by Azimi-Nejadian and Hoseini [47], a specific
energy consumption between 0.68 to 2.59 MJ/kg was obtained for drying potatoes in a
microwave dryer at power range of 200-800 W. In another study, Khan et al. [50] reported
specific energy consumption for drying fenugreek leaves in various MW powers (30 to
100 W) in the range of 1.86-2.47 MJ /kg.

Furthermore, the energy required to remove one kilogram of water from the can-
taloupe pieces during the microwave drying process significantly increased (with a proba-
bility level of 5%) by enhancing the thickness of the samples. The rise in energy consump-
tion by increasing the thickness of the sample can be attributed to the processing time. In
thicker samples, the water must travel a longer distance inside the product to reach the
surface, i.e., it takes longer to remove moisture. Such an increment in drying time led to
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higher energy consumption [41]. Similar reports were also emphasized by researchers
elsewhere [29,43,51] for drying kiwi, apple, and onion by microwave dryer, respectively.

3.4. Dryer Efficiency and Thermal Efficiency

Table 3 depicts the dryer efficiency and the thermal efficiency of the microwave dryer
for the cantaloupe slice. As shown, the highest and lowest dryer efficiency and heat
efficiency were observed at the power level of 540 and 180 W and thickness of 2 and
6 mm, respectively. Furthermore, by increasing the microwave power and decreasing
the sample thickness, both efficiencies (heat and drying) exhibited an increasing trend,
which can be due to the high drying rate. Such a high drying rate can be assigned to the
difference in thermal gradient between the product and the drying temperature. Moreover,
microwave energy penetrates the cantaloupe samples and generates heat by inducing
polarity in the water molecules, hence improving drying and uniformity of heat and
water distribution in the sample [28]. Similar results have been reported for drying rice
paddy [33], chamomile [30], dragon fruit slicess [45], and apple [52].

Table 3. Variation of drying efficiency, thermal efficiency, energy efficiency, and exergy efficiency of cantaloupe slices at

various slice thickness and microwave power levels.

Microwave Power Slice Thickness Drying Efficiency Thermal Energy Efficiency = Exergy Efficiency
(W) (mm) (%) Efficiency (%) (%) (%)
2 2464+12¢ 17.40 4 0.57 < 28.18 +1.97 <d 2459 +1.77¢
180 4 14.64 +1.24 8 10.40 + 0.88 °f 19.19 + 1.36 ¢ 1522 £1.22°¢
6 12.36 4+ 0.99 8 7.02+74f 1691 +1.02f 1125 +1.01f
2 32.69 +1.34P 30.45 + 0.54 P 37.24 +2.12° 32.59 +2.01°P
360 4 21.36 £ 0.88°¢ 17.12 £ 0.77 4 2591 + 1.154 22.36 4+ 1.54 ¢
6 17.35 +0.912 12.91 +0.88¢ 2190 +1.22¢ 18.88 + 1.08 4
2 4270 +1.44¢ 36.46 £ 0.902 4724 +2312 38.89 £2.042
540 4 30,14 +1.12¢ 25.90 +1.01° 36.69 +1.88P 29.99 +1.48°
6 2631 £1.054 2240 £ 0.88¢ 30.86 + 1.55¢ 24.66 +1.11°¢

Different letters for the same segment represent statistically significant differences at a confidence level of 95%.

3.5. Energy Efficiency

The energy efficiency of microwave drying of the cantaloupe slices was calculated
from the experimental data using Equation (17). The mean energy efficiency obtained
in this study (Table 3) varied from 16.91 to 47.24%, which was in line with the reported
drying efficiency for various products by microwave as such as chrysanthemum (29.98 to
62.52%), green peas (28.36 to 57.98%), and chamomile (35.83 to 49.99%) reported by Wang
et al. [28], Kaveh et al. [31], and Motevali et al. [30], respectively. The experimental results
and statistical analysis revealed a significant improvement in the energy efficiency of the
process (at a probability level of 5) with increasing microwave power and decreasing the
thickness of the samples. Shortening the duration of the drying process at higher MW
powers in thinner samples incremented the energy efficiency. This phenomenon may be
due to the fact that the moisture content of cantaloupe pieces is generally high, and since
the thickness of the samples are low and their surface is higher compared to their mass,
they have a high rate of moisture transfer to their surface; thus, a decline in the thickness
of the samples will accelerate moisture transfer to the surface. Therefore, reducing the
thickness of the samples will increase energy efficiency [53].

Darvishi et al. [43] reported that the energy efficiency of drying kiwifruit slices with
different thicknesses (3, 6, and 9 mm) by microwave (at power levels of 200, 300, 400, and
500) were in the range of 15.15 to 32.27%. Their results also established that the increase in
the thickness of the samples led to a significant reduction (at a probability level of 5%) in
energy efficiency [51].
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3.6. Specific Energy Loss

The mean specific energy loss during the MW drying process of cantaloupe slices at
different thicknesses and power levels was calculated by Equation (18) as shown in Table 4.
Darvishi [35] and Koubhila et al. [9] highlighted that the lost energy for MW-dried soybean
and Dosidicus gigas ranged from 8.89-5.04 MJ/kg and 12.9-59.47 M]/kg, respectively.
This implies that the increase in the microwave power of the dryer investigated led to a
significant reduction of specific energy loss at the probability level of 5%. Additionally,
the lost energy during the drying of thicker samples was significantly higher than the
thinner samples at a probability level of 5%. Owing to the governing mechanism of product
heating during the MW drying process, the use of higher powers for thinner samples (as
much as possible) can decrement the specific energy loss. Since the specific energy loss is
inversely related to water discharged from the product, the specific energy loss decreased
by enhancing the amount of water discharged from the product [10].

Table 4. Average values of energy and exergy loss of microwave drying process of cantaloupe slices.

MICI‘OV:E‘IA\;)G Power Slice (Ff:l:)k ness Energy Loss MJ/kg Exergy Loss MJ/kg
2 744 +0.32°¢ 8.14 +041°¢
180 4 10.22 + 0.42b 10.83 £ 0.35P
6 11.24 £ 0522 12.20 + 0.44 2
2 47940278 5.73 +£0.278
360 4 839 4+ 0.394 8.88 +0.394
6 929 +044° 10.11 + 0.29 ¢
2 265+031h 3.00+0.24h
540 4 524 4+ 0338 6.26 +£0.338
6 6.67 040 f 741 +0.28f

Different letters for the same segment represent statistically significant differences at a confidence level of 95%.

3.7. Specific Exergy Loss

Table 4 summarizes the influence of drying conditions (microwave power and slice
thickness) on the specific exergy loss. As noticed, the reduction in the microwave power
led to the exergy loss by 3.008 to 12 M]/kg water. Moreover, the changes in the specific
exergy loss with decreasing thickness exhibited a descending trend in various MW powers.
This implies that the use of thinner samples reduces the contact time of the product with
the microwave power. As the rate of mass and heat transfer increases, the drying time
decreases, and less energy is transferred out of the dryer chamber, resulting in reduced
specific exergy loss [47]. Additionally, the exergy loss declined with increasing microwave
power due to the shorter process time. The lowest exergy loss (3.008 MJ/kg water) was
observed at the MW power of 540 W and thickness of 2 mm. Higher microwave powers
had lower exergy, and this exergy increased water evaporation or exergy consumption,
hence reducing exergy loss [43].

The result is consistent with findings reported elsewhere [10,35]. For instance, Azad-
bakht et al. [10] reported a reduction in the exergy loss of the MW drying process of orange
slices at the power levels of 90 to 900 W, with the osmotic pretreatment ranging from 19.85
to 3.71 MJ /kg water with an increase in microwave power. They stated that the intensity
of the process reduction is much greater at higher powers, which reduced the exergy loss.

3.8. Exergy Efficiency

Table 3 shows the mean exergy efficiency. As detected, the exergy efficiency of the
cantaloupe slice drying varied from 11.25 to 38.89%. This implies that the adoption of
higher powers significantly improved the thickness of the slice samples at the probability
level of 5%, implying the lowest exergy efficiency (11.25%) obtained at the power of 180 W
and a thickness of 6 mm while the highest exergy efficiency (38.89%) released at the power
of 540 W and a thickness of 2 mm. The reduction in the drying process time at higher
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microwave powers reduced the energy loss and ultimately increased the exergy efficiency
of the system [12]. In thinner samples, the drying process occurred faster due to the low
internal strength of the specimens, increasing the exergy efficiency [43]. This finding was
further corroborated by other researchers [43,51].

3.9. Improvement Potential

Table 5 presents the average exergy improvement rate, as determined from Equation (27).
The minimum average value of the exergy improvement ability (1.83 MJ/kg) was obtained
with the 2-mm thick samples at the microwave power of 540 W, while the maximum value of
the exergy improvement ability (10.83 MJ/kg) was observed with 6-mm-thick samples at
the power of 180 W. Furthermore, the increase in the microwave power and decrease in the
thickness of the samples enhanced the rate of exergy improvement ability.

Table 5. Average improvement potential and exergetic sustainability index of microwave drying
process of cantaloupe slices.

Drying Conditions IP SI
2 6.14 + 044 ¢ 1.32 +£0.05¢
180 4 918 £ 0.49P 1.17 + 0.06
6 10.83 +£0.382 1.12 £ 0.04f
2 3.86 +0.28 f 1.48 4+ 0.07P
360 4 6.89 +0.334 1.28 + 0.05 <d
6 820 +0.42°¢ 1.23 £ 0.04 de
2 1.83 +£0.338 1.63 + 0.062
540 4 438 +0.271 1.42 4+ 0.05P
6 5.58 & 0.46 © 1.34 4+ 0.04¢

Different letters for the same segment represent statistically significant differences at a confidence level of 95%.

Microwave power enhancement and the sample’s thickness decline, indeed, increased
the enthalpy around the dryer chamber. The results are comparable to observations
reported elsewhere [35]. For instance, Darvishi et al. [35] reported that the average exergy
of soybean ranged from of 1.31 to 5.35 M] /kg as the microwave power increased from 200
to 600 W. The enhancement is attributed to the increase in the microwave power.

3.10. Exergetic Sustainability Index

Table 5 presents the mean exergetic sustainability index and varied from 1.12 to 1.63.
Similar reports were reported by Okunola et al. [54], Arslan and Aktas [37], and Beigi
et al. [40] for the exergetic sustainability index range for the drying of okra at 2.14 to 2.77,
1.07 to 1.21, and 1.05 to 1.42, respectively. As the value of the exergetic sustainability index
is proportional to the exergy efficiency, the highest exergetic sustainability index values
showed a slight impact on the environment, resulting in environmental imbalance and
improvement of exergy efficiency.

3.11. Artificial Neural Network

Tables 6 and 7 highlight the data simulated from the predicted values of the ANN
and ANFIS models. Table 6 presents the values of R?, MSE, and MAE as well as network
type, network topology, algorithm, and threshold functions for predicting data by ANN to
easily understand the consistency between real data and simulation. As noticed, the ANN-
obtained values of R? for the effective moisture diffusion coefficient, SEC, dryer efficiency,
energy efficiency, energy loss, energy efficiency, exergy efficiency, exergy loss, improvement
potential, and exergetic sustainability index were 0.8917, 0.9040, 0.9188, 0.9441, 0.8894,
0.9258, 0.9008, 0.9321, 0.8998, and 0.9139, respectively. These results indicated that the
points predicted by ANN are less accurate. The statistical indices of ANN obtained from
the finding are consistent with those of researchers elsewhere [7,10,22].
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Table 6. Performance indices for the ANN models.

P Train Test
Parameters Network Training Function Epoch
Topology Algorithm RMSE MAE R2 RMSE MAE R2
D 3-10-10-1 Ta“ST’agrgf‘g“&g' LM 277 x 1072 395x 10712 08812 357 x 1072 506 x 107 0.8917 67
SEC 3-10-1 Tansig-Tansig LM 0.2994 0.1362 0.8892 0.2642 0.1469 0.9040 39
Energy 3-5-1 Tansig-Logsig LM 1.0851 03311 0.9077 0.7925 0.2839 0.9188 25
efficiency
Drying 3.8-8-1 Tansig-Logsig- BR 0.7046 0.2669 0.9376 0.7873 0.2827 0.9441 93
efficiency Tansig
Thermal . .
. 3-8-1 Tansig-Tansig BR 1.2081 0.3605 0.8797 1.1318 0.3464 0.8894 29
efficiency
Energy loss 3-5-5-1 Tans}gj; ‘i‘greh“' LM 0.1009 0.0885 0.8978 0.1045 0.0876 0.9258 59
Exergy 310101 lansig-Logsig- LM 12561 0.3469 0.8917 0.8423 0.3000 09015 55
efficiency Logsig
Exergy loss 3-15-1 Tanﬁflagr'éﬁgg“g' M 0.0995 0.0962 0.9036 0.0749 0.0787 09321 38
P 3-15-10-1 TansTlagrgfg“&g' LM 0.1783 0.1236 0.8896 0.0911 0.0909 0.8998 44
s 3-10-1 Tansig-Tansig BR 0.0003 0.0060 0.8791 0.0003 0.0056 09139 97
Table 7. Performance indices for the ANFIS models.
Number of MF Type of MF Train Test
Parameters
Input Cycle Input Output RMSE MAE R? RMSE MAE R?
D 3-3-3 100 Trimf Linear 2,62 x 10724 3.92 x 10-13 09076  208x 1072 396 x 1073  0.9445
SEC 3-3-3 100 Trimf Linear 0.1759 0.1296 09315 0.1662 0.1230 0.9599
Energy efficiency ~ 3-3-3 100 Trimf Linear 0.4938 02222 0.9702 0.2977 0.1744 0.9763
Drying efficiency 3-3-3 100 Gaussmf Linear 0.2291 0.1432 0.9775 0.1879 0.1350 0.9811
Thermal efficiency 3-3-3 100 Trimf Linear 0.4074 0.2098 0.9633 0.4030 0.2106 0.9698
Energy loss 3-3-3 100 Gaussmf Linear 0.0232 0.0469 0.9804 0.0180 0.0414 0.9830
Exergy efficiency ~ 3-3-3 100 Trimf Linear 0.0837 0.0938 0.9910 0.0601 0.0777 0.9927
Exergy loss 3-3-3 100 Trimf Linear 0.0090 0.0283 0.9908 0.0061 0.0225 0.9946
P 333 100 Gaussmf  Linear 0.0605 0.0741 0.9390 0.1148 0.0959 0.9507
SI 3-3-3 100 Trimf Linear 0.00005 0.0019 0.9806 0.00002 0.0016 0.9890
3.12. ANFIS

To obtain the best ANFIS model capable of predicting the kinetics, energy, and exergy
indices of cantaloupe drying, different ANFIS structures were tested. Then, the best ANFIS
structure with the best results is presented in Table 7. To achieve the best ANFIS structure
with the highest precision in predicting kinetics, energy, and exergy indices, changes were
applied in various parameters such as number and type of input and output membership
functions, optimization methods, and number of epochs. The best ANFIS model had the
input and output membership functions, the number of epochs, and the learning algorithm
type of Trimmf, linear, 100, and hybrid, respectively. The values of R2, RMSE, and RMSE
of the best ANFIS model for predicting kinetic, energy, and exergy indices are shown in
Table 7.

As shown in Table 7, R2 values of effective moisture diffusion coefficient, SEC, dryer
efficiency, energy efficiency, energy loss, energy efficiency, exergy efficiency, exergy loss,
improvement potential, and exergetic sustainability index were 0.9445, 0.9599, 0.9763,
0.9811, 0.9698, 0.9830, 0.9927, 0.9946, 0.9507, and 0.9890, respectively.

3.13. Comparison of ANFIS and ANN Models

The prediction capabilities of the statistical indices for the ANN and ANFIS models of
exergy based of microwave dryer for the cantaloupe were compared. Owing to the higher
value of R? and lower values of other statistical indices of ANN compared to ANFIS, the
accuracy of the ANFIS model is better than that of the ANN model. Similar results were
observed by [21,24,31] for the ANN-ANFIS based prediction of exergy parameters of onion
drying with continuous industrial dryer, quince under hot air dryer, and of blackberry
drying by an infrared-convective dryer, respectively. The higher prediction ability of the
latter model compared to the former can be attributed to the use of fuzzy inference system.
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3.14. Certainty Analysis

For the purpose of certainty, sensitivity tests are often conducted to determine the
relative importance of each independent variable in affecting the dependent variables. All
independent variables are, in turn, taken into consideration in the analysis of sensitivity.
To obtain the sensitivity level of each input variable in the determination of different
parameters by ANNs and ANFIS, the omission of each input variable (microwave power,
slice thickness, and drying time) was used as a technique [25]. The results of the sensitivity
analysis of the input parameters in the drying process of cantaloupe are given in a set of
classified data in Table 8. These results indicate that drying time and microwave power
had the highest and lowest effects on different parameters of cantaloupe, respectively.

Table 8. Analyzing the effects of indirect independent variables in predicting different parameters in cantaloupe slices.

ANN ANFIS
Parameters Without Without Without Without Without Without
Total Microwave Slice Drying Total Microwave Slice Drying
Power Thickness Time Power Thickness Time
Deff 0.8917 0.8898 0.8823 0.8323 0.9445 0.9325 0.9301 0.9090
SEC 0.9040 0.8952 0.8878 0.8657 0.9599 0.9511 0.9421 0.9237
Energy 0.9188 0.8995 0.8912 0.8804 0.9763 0.9553 0.9432 0.9025
efficiency
Drying 0.9441 0.9425 0.9389 0.9025 0.9811 0.9621 0.9425 0.9166
efficiency
Thermal 0.8894 0.8599 0.8468 0.8226 0.9698 0.9258 0.9090 0.8882
efficiency
Energy loss 0.9258 0.9090 0.9053 0.8888 0.9830 0.9632 0.9489 0.9208
Exergy 0.9015 0.8680 0.8511 0.8258 0.9927 0.9880 0.9733 0.9494
efficiency
Exergy loss 0.9321 0.9123 0.9089 0.8974 0.9946 0.9911 0.9722 0.9525
P 0.8998 0.8931 0.8898 0.8529 0.9507 0.9411 0.9212 0.8859
S 0.9139 0.9045 0.8969 0.8787 0.9890 0.9833 0.9599 0.9489

4. Conclusions

In the present study, cantaloupe pieces were dried under different conditions using
a microwave dryer, and energy and exergy indices were explored. According to ther-
modynamic analysis, an increase in the microwave power declined the SEC, while the
enhancement of sample thickness declined SEC. The minimum and maximum SEC were
10.48 and 25.92 MJ / kg water, respectively. Energy efficiency was in the range of 16.91 to
47.24% and was higher at higher powers and lower thicknesses of the samples. Increasing
the microwave power and decreasing the thickness of the samples led to a reduction in
specific energy and exergy losses and IP. Dryer and thermal efficiencies were recorded
between 12.36 to 42.70% and 7.02 to 36.46%, respectively. The mean exergy efficiency
of the cantaloupe drying process ranged from 11.25% for microwave power of 540 W
and thickness of 2 mm to 38.98% for microwave power of 180 W and thickness of 6 mm.
The minimum and maximum mean exergetic sustainability indices were 1.12 and 1.63,
respectively. According to the predicted results, energy and exergy parameters predicted
by ANFIS models were much more accurate than ANN as the R? values of the ANFIS-
predicted variables were closer to one and also exhibited more agreement with the real
data. Real and predicted results for energy and exergy parameters could be useful for
designing and manufacturing modern dryers with maximum exergy and minimum energy
consumption. The use of these results can lead to lower environmental consequences.
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Abbreviations
A Tray area (m?) Myp Mass of wet product [kg]
Cp Heat capacity [J/kg K] mgp, Mass of dry product [kg]
D Weight density (kg/m?) My Mass of water evaporated [kg]
. o - Moisture content of the product at
Effective diffusivity coefficient .
Dest [m?/s] Mt any level and at any time [g water/g
dry matter]
De Drying efficiency (%) Mo g;ly“frll i‘:rsltufe content [g water/g
Epeating ~ Energy for the material heating (k]) ~ mg4 Mass of dry sample [kg]
Eref Energy reflected [J] m Mass [kg]
Etre Energy transmitted []] N Total the data [-]
Ein Energy input Pira Microwave power transmitted (W)
Microwave power emitted by the
Eout Energy output Pin magnetron [I?N] y
Eloss Specific energy loss [J/ kg water] Pabs Microwave power absorbed [W]
EXin Exergy input []J] Pret Microwave power reflected [W]
EX,ps Exergy absorbed [J] P Microwave output power (kW)
EXref  Exergy reflected [J] SEC svi‘izlrf]lc energy consumption [J/kg
EXtra Exergy transmitted [J] SI Exergetic sustainability index
€Xexap ‘I::V);izgr]y of evaporation water [J/kg TE Thermal efficiencies
EXjoss  Specific exergy loss [J/kg water] To Ambient temperature [K]
Ex Exergy [J] T Temperature [K]
ex Specific exergy [J/kg water] t Drying time [min]
Eevap Ene?rgy consumed 'to evaporate Xi Measured values
moisture from drying samples (k])
heg Latent heat of vaporization (k] /kg)  Xp Predicted values
P Improvement potential [M]/kg Xmean Average predicted values
water]
L Product thickness [m] Awe Latent heat of free water [J/kg]
mj, Mass input [kg] Ax Latent heat of sample [J/kg]
Moyt Mass output [kg] Tex Exergy efficiency [%]
Equilibrium moisture content [g - o
Me water/g dry matter] Ne Energy efficiency [%]
MR Moisture ratio [-]
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