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Abstract: Understanding and optimizing the relation between nuclear reactor components or physical
phenomena allows us to improve the economics and safety of nuclear reactors, deliver new nuclear
reactor designs, and educate nuclear staff. Such relation in the case of the reactor core is described
by coupled reactor physics as heat transfer depends on energy production while energy production
depends on heat transfer with almost none of the available codes providing full coupled reactor
physics at the fuel pin level. A Multiscale and Multiphysics nuclear software development between
NURESIM and CASL for LWRs has been proposed for the UK. Improved coupled reactor physics
at the fuel pin level can be simulated through coupling nodal codes such as DYN3D as well as
subchannel codes such as CTF. In this journal article, the first part of the DYN3D and CTF coupling
within the Multiscale and Multiphysics software development is presented to evaluate all inner
iterations within one outer iteration to provide partially verified improved coupled reactor physics at
the fuel pin level. Such verification has proven that the DYN3D and CTF coupling provides improved
feedback distributions over the DYN3D coupling as crossflow and turbulent mixing are present in
the former.

Keywords: nuclear reactor; coupled reactor physics; nodal code; subchannel code; DYN3D; CTF; KAIST

1. Introduction

Globally, the use of nuclear power has expanded to 31 countries with 443 nuclear
reactors operating and 52 nuclear reactors under construction, which have made nuclear
power become the second largest source of carbon free power [1]. Around 80% of the
nuclear reactors are LWR (Light Water Reactor) which provide improved economics and
safety when compared to previous nuclear reactors [2] by: Simplifying the nuclear reactor
design as there is no distinction between the coolant and moderator. Decreasing the nuclear
reactor size as the high moderation allows yielding a certain power density while using
less fuel and the high cooling allows to keep a certain power density, while using a compact
design. Increasing the nuclear reactor stability as the high moderation decreases with high
power leading to a reduction in the criticality and the high cooling increases with the high
fluid density, which leads to a reduction in the temperatures. Increasing the nuclear reactor
efficiency as the high moderation allows achieving a high fuel burn up or utilisation and
the high cooling allows to achieve a high heat conductance.

In the UK, there is currently great interest in LWR as can be observed through the
different projects that are being funded across the country including both the construction
of new nuclear reactors to provide power to the future generations [3] as well as the de-
velopment of a nuclear innovation programme [4] to improve the economics and safety
of nuclear reactors, deliver new nuclear reactor designs, and educate nuclear staff. Large
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nuclear reactors currently considered include the EPR (European Pressurised Reactor) by
Areva for HPC (Hinkley Point C) and Sizewell C [5], with each nuclear reactor providing
1650 MW of power for a period of 60 years. Small nuclear reactors currently considered
include the AMR (Advanced Modular Reactor) by Rolls Royce for remote sites [6] with
each nuclear reactor providing 440 MW of power for a large period. The nuclear innova-
tion programme was approved by BEIS (Department of Business, Energy and Industrial
Strategy) in 2016 with support from different academic and industrial partners across the
UK, which will invest over 460 million pounds over the following years. It is structured
into advanced fuels, advanced manufacturing and materials, advanced reactor design, and
recycle and reprocess, providing innovation across the whole nuclear fuel cycle. A project
within the advanced reactor design known as DRD (Digital Reactor Design) [7] is being
developed by different academic and industrial partners across the UK to deliver virtual
replicas of nuclear reactors, providing innovation from a computational perspective.

It is important to understand the relation between components or physical phenomena
in a LWR to improve the economics and safety of nuclear reactors, deliver new nuclear
reactor designs, and educate nuclear staff by acknowledging the physical phenomena
that take place [8,9] including the energy production analysed using neutronics, the heat
and mass transfer analysed using thermal hydraulics, the fuel behaviour analysed using
thermo-mechanics, and risks analysed using probability analysis. The neutronics, thermal
hydraulics, thermo mechanics, and probability analysis are said to be coupled to each
other in the following ways: The power production in the nuclear reactor depends both on
the heat and mass transfer through the fuel, moderator temperatures, and the moderator
density, leading to reactivity feedback as well as on the fuel behaviour through the fuel
burnup, which leads to cross section changes. The heat and mass transfer in the nuclear
reactor depends both on the power production through the fission chain reaction, leading
to heat deposition as well as on the fuel behaviour through the fuel burnup, which leads
to thermal conductivity and specific heat changes. The fuel behaviour in the nuclear
reactor depends both on the power production through irradiation, leading to fuel integrity
changes, and on the heat and mass transfer through the fuel temperature, which also
leads to fuel integrity changes. The risks in the nuclear reactor depend both on the power
production through the heat deposition, which may lead to melting in the fuel as well
as on the heat and mass transfer through the clad temperature, which may lead to DNB
(Departure from Nucleate Boiling).

It is important to optimize the relation between components or physical phenomena
in a LWR to improve the economics and safety of nuclear reactors, deliver new nuclear
reactor designs, and educate nuclear staff by simulating the physical phenomena that take
place [10–12] including the neutronics simulated using lattice, neutron transport, and nodal
codes [13–19], the thermal hydraulics simulated using system, nodal, subchannel and CFD
codes [17–22], the thermo mechanics simulated using fuel performance codes [23–25], and
the probability analysis simulated using risk assessment codes [26]. None of the mentioned
codes provide full coupled reactor physics at the fuel pin level due to computational limi-
tations that existed during the times when these codes were originally developed, which
resulted from the geometry complexity, the large number of fuel pins, the coupled physical
phenomena, and the large simulation times. Only nodal codes provide simplified coupled
reactor physics at the fuel assembly level after performing fuel assembly homogenisation,
where average fuel assembly cross sections are derived from fuel pin cross sections. Some
nodal codes provide simplified coupled reactor physics at the fuel pin level after perform-
ing fuel pin reconstruction, where fuel pin power distributions are derived from additional
shaping functions. Both fuel assembly homogenisation and fuel pin power reconstruction
are limited in terms of coupling due to the loss of coupled physical phenomena, which
has led to safety parameters being based on simplified coupled reactor physics at the fuel
assembly level, rather than being based on full coupled reactor physics at the fuel pin
level, resulting in the imposition of extra safety margins both in nuclear reactor operation
and design.
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Current state-of-the-art simulation codes that aim to provide full or improved coupled
reactor physics at the fuel pin level for LWR include NURESIM (Nuclear Reactor Simula-
tor) [27,28] and CASL (Consortium for Advanced Simulation of LWR) [29,30]. NURESIM
is a development by Euratom, that aimed to provide full coupled reactor physics at the
fuel pin level, although computational limitations led to the development of a simplifica-
tion known as SALOME [31], which has the aim of providing improved coupled reactor
physics at the fuel pin level by using lattice codes such as APOLLO2 [32] to provide the
fuel assembly homogenisation required in nodal codes. Nodal codes such as COBAYA3,
CRONOS2 [33], and DYN3D (Dynamical 3 Dimensional) [34] provide simplified cou-
pled reactor physics at the fuel assembly level and the fuel pin power reconstruction
required for simplified coupled reactor physics at the fuel pin level as well as the boundary
conditions used in other codes. CFD and subchannel codes such as TRIO_U [35], SUB-
CHANFLOW [36], FLICA4 [37], NEPTUNE [38], and TransAT [39] provide full thermal
hydraulics at the fuel pin level and the boundary conditions used in other codes. System
codes such as CATHARE (Code for Analysis of Thermal Hydraulics during an Accident
of Reactor and Safety Evaluation) [40] and ATHLET (Analysis of Thermal Hydraulics of
Leaks and Transients) [41] provide simplified thermal hydraulics at the nuclear power
plant level and the boundary conditions used in other codes. Finally, fuel performance
codes such as DRACCAR [42] and SCANAIR (Systems of Codes for Analysing Reactiv-
ity Initiated Accidents) [43] provide full thermo mechanics at the fuel pin level and the
boundary conditions used in other codes. CASL is a development by the USDE (United
States Department of Energy), that aimed to provide improved coupled reactor physics
at the fuel pin level, although solution requirements led to a new development known as
CASL-Advanced [44], which has the aim of providing full coupled reactor physics at the
fuel pin level by using spectral codes such as ORIGEN [45] and SCALE [46] to provide
the fuel pin cross sections required in neutron transport codes. Neutron transport codes
such as MPACT [47], INSILICO [48], and SHIFT [49] provide full neutronics at the fuel pin
level and the boundary conditions used in other codes. CFD and subchannel codes such as
CTF (Coolant Boiling in Rod Arrays Three Flow Fields) [50] and HYDRA-TH [51] provide
full thermal hydraulics at the fuel pin level and the boundary conditions used in other
codes. System codes such as RELAP5 (Reactor Excursion and Leak Analysis Program) [52]
provide simplified thermal hydraulics at the nuclear power plant level and the boundary
conditions used in other codes. Finally, fuel performance codes such as BISON provide full
thermo mechanics at the fuel pin level and the boundary conditions used in other codes.
SALOME is not adequate for the UK as it neglects full coupled reactor physics at the fuel
pin level with lattice codes only being used to provide the fuel assembly homogenisation
required in nodal codes, while CASL-Advanced is not affordable by the UK as it extends
introduces computational limitations through the extension of full coupled reactor physics
at the fuel pin level to all the reactor core. All the codes can be found classified in the
Appendix A.

Another project within the nuclear innovation programme between NURESIM and
CASL known as Multiscale and Multiphysics Software Development is a development by
the UOL (University of Liverpool) [53] which has the aim of providing both improved and
full coupled reactor physics at the fuel pin level for LWR while remaining both adequate
for the UK as well as affordable by the UK by using spectral codes such as SCALE [15,54]
to provide both the fuel pin cross sections required in neutron transport codes and the fuel
assembly homogenisation required in nodal codes. Nodal codes such as DYN3D [17,34]
provide simplified coupled reactor physics at the fuel assembly level and the fuel pin
power reconstruction required for simplified coupled reactor physics at the fuel pin level
as well as the boundary conditions used in other codes. Neutron transport codes such as
LOTUS [14,55] (Liverpool Transport Solver) provide full neutronics at the fuel pin level
and the boundary conditions used in other codes. Subchannel codes such as CTF [20,50]
provide full thermal hydraulics at the fuel pin level and the boundary conditions used in
other codes. System codes such as RELAP5 [52] provide simplified thermal hydraulics at
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the nuclear power plant level and the boundary conditions used in other codes. Finally,
fuel performance codes such as ENIGMA [56] provide full thermo mechanics at the fuel pin
level and the boundary conditions used in other codes. This Multiscale and Multiphysics
Software Development will be adequate for the UK as it provides full coupled reactor
physics at the fuel pin level with neutron transport codes being used to provide full
neutronics at the fuel pin level and will be affordable by the UK as it reduces computational
limitations through the restriction of full coupled reactor physics at the fuel pin level only
to the fuel assemblies of interest in the reactor core.

The coupling between any two of the mentioned codes [57,58] within the Multiscale
and Multiphysics Software Development involves several steps such as simulations using
the first code, the transfer of data from the first code to the second code, simulations
using the second code, and finally the transfer of data from the second code to the first
code. Each of these coupling steps conform to an inner iteration while all coupling steps
conform to an outer iteration with outer iterations being run on a cyclic basis until some
convergence criterion is verified, which usually consists of a comparison between the
current and the previous outer iterations. The coupling between any two of the mentioned
codes can be external, internal, and in parallel, which implies different levels of coupling
integration [59]. In external coupling, both codes are run separately, and the transfer of
data is done using additional scripts, apart from both codes. In internal coupling, both
codes are run separately, and the transfer of data is done using additional internal libraries
within the codes themselves. In parallel coupling, both codes are run simultaneously, and
the transfer of data is done using additional internal libraries within the codes themselves.
The mentioned types of coupling between any two of the mentioned codes within the
Multiscale and Multiphysics Software Development can be observed in Figure 1.

Figure 1. (a) External coupling. (b) Internal coupling. (c) Parallel coupling.

The aim consists of coupling the nodal code DYN3D and the subchannel code CTF
within the Multiscale and Multiphysics Software Development to provide improved cou-
pled reactor physics at the fuel pin level [53]. The previous objective to achieve this aim
consisted of CTF and FLOCAL (thermal hydraulics module of DYN3D) thermal hydraulics
validations and verifications [20] that were performed to evaluate the accuracy and method-
ology available to provide thermal hydraulics at the fuel pin level. CTF was observed
to provide high accuracy when compared to other fluid dynamics codes, allowing the
justification as to why CTF was chosen to provide full thermal hydraulics at the fuel pin
level in this Multiscale and Multiphysics Software Development. CTF was observed to
provide a wide range of crossflow and turbulent mixing methods while FLOCAL was
observed to provide only the no crossflow method, allowing us to justify why CTF should
be used to provide full thermal hydraulics at the fuel pin level in cases with more heteroge-
neous power distributions and why FLOCAL should be used to provide simplified thermal
hydraulics at the fuel pin level in cases with more homogeneous power distributions in
this Multiscale and Multiphysics Software Development.

The current objective in achieving this aim consists of the first part of the DYN3D
and CTF coupling, which was performed to evaluate all inner iterations within an outer
iteration to provide partially verified improved coupled reactor physics at the fuel pin
level, where the NK (neutronics module of DYN3D) and FLOCAL coupling within DYN3D
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provide simplified coupled reactor physics at the fuel pin level that can be used as a
reference. This evaluation allows one to show through external coupling how the transfer
of power distributions from DYN3D to CTF and how the transfer of feedback distribution
from CTF to DYN3D takes place as well as justify through the thermal hydraulics when the
DYN3D and CTF coupling rather than just DYN3D should be used to provide improved
coupled reactor physics at the fuel pin level. This second journal article therefore covers
the DYN3D and CTF coupling inner iterations within one outer iteration verification to
provide partially verified improved coupled reactor physics at the fuel pin level, while
the DYN3D and CTF coupling outer iterations within the convergence criteria verification
to provide fully verified improved coupled reactor physics at the fuel pin level will be
covered in the next journal article.

Simplified coupled reactor physics at the fuel assembly level in DYN3D are available
after performing fuel assembly homogenisation; additionally, simplified coupled reactor
physics at the fuel pin level in DYN3D are available after performing fuel pin reconstruction.
Another alternative for simplified coupled reactor physics at the fuel pin level in DYN3D is
available by directly simulating fuel pin scaled nodes using fuel pin cross sections instead
of simulating fuel assembly scaled nodes using fuel assembly cross sections. Full thermal
hydraulics at the fuel pin level in CTF are available by default. Nevertheless, the simplified
coupled reactor physics at the fuel pin level in DYN3D are limited in terms of neutronics
by neutron diffusion and limited in terms of thermal hydraulics by the lack of crossflow
and turbulent mixing. However, the improved coupled reactor physics at the fuel pin
level in the DYN3D and CTF coupling are only limited in terms of neutronics by neutron
diffusion but complemented in terms of thermal hydraulics by the wide range of crossflow
and turbulent mixing.

The structure of this journal article consists of several parts. First, a DYN3D description
comprehending general features, updates, etc. [60,61] was performed to present the first
code used in the coupling inner iterations within one outer iteration verification. Second, a
CTF description comprehending general features, updates, etc. [62,63] was undertaken to
present the second code used in the coupling inner iterations within one outer iteration
verification. Third, the specifications description covering the KAIST (Korean Advanced
Institute of Science and Technology) benchmark [64] was performed to present the data
used in the coupling inner iterations within one outer iteration verification. Fourth, the
models description for the simulation of the benchmark was performed to present its
implementation into the coupling inner iterations within one outer iteration verification.
Fifth, the scripts description comprehending the transfer of power distributions from
DYN3D to CTF as well as the transfer of feedback distributions from CTF to DYN3D was
performed to present the coupling inner iterations within one outer iteration verification.

The results and analysis obtained for the DYN3D and CTF coupling inner iterations
within one outer iteration verification through the KAIST benchmark were comprehended
by DYN3D coupling to DYN3D and CTF coupling comparisons. Tests presented include
results for the fluid density feedback, fluid temperature feedback, fuel temperature feed-
back, and the pressure drop feedback in 17 × 17 fuel assemblies with guide tubes and with
or without burnable absorber fuel pins. All these magnitudes were chosen to analyse the
DYN3D and CTF coupling in nuclear reactors from a thermal hydraulics perspective. It
can be observed how this comparison allows one to show the DYN3D and CTF coupling
compared to the DYN3D coupling.

Conclusions regarding the DYN3D and CTF coupling inner iterations within one
outer iteration verification were made to corroborate the second objective with the aim
of providing the DYN3D and CTF coupling within the Multiscale and Multiphysics Soft-
ware Development, which was fulfilled by verifying the DYN3D and CTF coupling inner
iterations within one outer iteration. Finally, future work that remains is presented to
address the last objective with the aim of providing the DYN3D and CTF coupling within
the Multiscale and Multiphysics Software Development.



Energies 2021, 14, 5060 6 of 37

2. Codes Used in the Verification

As previously mentioned, DYN3D and CTF were the codes that were selected as they
are widely used in both academia and the industry, and hence their main features, version
updates, equations, and solution approach are described in the next two subsections.

2.1. DYN3D Nodal Code

DYN3D [60,61,65] was developed using FORTRAN 90 in the early 1990s by FZD
(Forschung Zentrum Dresden) and has been continuously updated. It is a LWR-VVER
(square and hexagonal geometries) coupled reactor physics nodal code developed for the
purpose of studying general nuclear reactor behaviour. Capabilities such as 3D modelling
have resulted in the code being widely used for LWR-VVER steady and transient state
analysis. In terms of neutronics, it uses the neutron diffusion approach with two energy
groups complemented by nodal expansion methods such as nodal expansion, SP3 (only
square geometry) HEXNEM1-2 (only hexagonal geometry), ADF (Assembly Discontinuity
Factors), and pin power reconstruction. In terms of thermal hydraulics, it uses a none
crossflow, or turbulent mixing 2-fluid approach complemented by heat transfer models
such as two phase heat transfer and interphase heat transfer.

DYN3D-MG is an updated version of DYN3D developed by HZDR (Helmholtz
Zentrum Dresden Rossendorf). Updates include implementing the neutron diffusion
approach with multi energy groups, improving the calculation of reactivity by inverse
point kinetics as performing the calculation of dynamical reactivities, implementing the
Pernica departure from nucleate boiling correlation, and improving the calculation of boric
acid transport by using the particle in cell method.

A reactor core or smaller system can be modelled in DYN3D and is represented
through a set of nodes that generally conform to channels. The neutron diffusion N energy
groups and M delayed neutron precursor modelling approach is applied to the set of nodes
with each energy group being modelled through its own neutron diffusion equation and
each delayed neutron precursor group being modelled through its own concentration
equation. The none crossflow or turbulent mixing two fluid (liquid, vapor) modelling
approach is applied to the set of nodes with the fluid mixture being modelled through a set
of fluid mass, fluid momentum, and fluid energy conservation equations with the vapor
mass equation being treated separately. All the equations were formulated using either
a cartesian or hexagonal coordinate system. These were then finally expressed in a finite
difference form and solved using numerical methods. An implicit method was applied to
all the equations.

Certain conditions are required to obtain a solution to the neutron diffusion and
concentration equations such as including the steady or transient nature of the system
to perform the calculations, acknowledging other possible external neutron sources that
account for additional fast neutrons that affect the nodes neutron fluxes, determining the
poisoning state of the reactor to obtain the correct contributions to the absorption cross
section, and performing pin reconstruction to produce solutions at the fuel pin level in
addition to the fuel assembly level.

Certain conditions are required to obtain a solution to the fluid mass, fluid momentum,
and fluid energy equations such as including the steady or transient nature of the system
to perform the calculations, determining the constitutive relations that relate the fluid
mass, fluid momentum, and fluid energy equations for the two phases in the nodes leading
to effects such as phase change, determining fluid and solid thermal and mechanical
properties using tables and implemented correlations.

2.2. CTF Subchannel Code

COBRA-TF [62,63,66] was developed using FORTRAN 77 in 1980 by PNL (Pacific
Northwest Laboratories, Washington, WA, USA), sponsored by the NRC (Nuclear Regu-
lation Commission) and has been continuously updated. It is a LWR (square geometry)
thermal hydraulics subchannel code developed for the purpose of studying general nuclear
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reactor behaviour and accident scenarios. Capabilities such as full 3D modelling have
resulted in the code being widely used for LWR steady and transient state analysis. In
terms of thermal hydraulics, it uses a wide crossflow and turbulent mixing two fluid, three
flow field approach complemented by flow regime/heat transfer dependent models such
as two phase heat transfer, interphase heat transfer and drag, entrainment, and quench
front tracking.

CTF is an updated version of COBRA-TF developed and maintained by the PSU
(Pennsylvania State University, Pennsylvania, PA, USA) and NCSU (North Carolina State
University, Raleigh, NC, USA). Updates include changing the source code to FORTRAN
90, improving user friendliness by providing error check and free format input, assuring
quality by using wide validation and verification, improving void drift, turbulent mixing,
and heating models, enhancing computational efficiency by introducing new numerical
methods, finally, improving the physical model and user modelling information.

Any system, apart from pressurisers, can be modelled in CTF and is represented
through a matrix of mesh cells that conform to subchannels. The wide crossflow and
turbulent mixing two fluid (liquid, vapor), three flow field (liquid film, liquid droplets,
and vapor) modelling approach is applied to the mesh cells with each field being modelled
through its own set of fluid mass, fluid momentum, and fluid energy conservation equa-
tions with the liquid and droplet fields being in thermal equilibrium between them, and
hence sharing the same energy equation. The equations were formulated using either a
cartesian or a simplified subchannel coordinate system. These were then finally expressed
in a finite difference form and solved using numerical methods. A homogeneous equilib-
rium method was applied to the conservation equations known as SIMPLE (Semi Implicit
Method for Pressure Linked Equations).

Certain conditions are required to obtain a solution to the fluid mass, fluid momentum,
and fluid energy equations such as including the steady or transient nature of the system
to perform the calculations, determining the flow regime to obtain the correct macro and
micro mesh cell closure terms necessary to account for the correct collective phenomena,
determining the macro mesh cell closure terms that relate the conservation equations
for the same phase in different mesh cells leading to phenomena such as void drift and
turbulent mixing, determining the micro mesh cell closure terms that relate the conservation
equations for different phases in the same mesh cell leading to inter-phase effects such as
phase change and entrainment, and determining fluid and solid thermal and mechanical
properties using tables and implemented correlations.

3. Specifications Used in the Verification

As previously mentioned, the DYN3D and CTF coupling inner iterations within one
outer iteration verification was performed by covering the KAIST benchmark. Hence, the
specifications used in the above-mentioned are described in the following subsection.

KAIST Benchmark

The KAIST benchmark [64] is a benchmark for PWR reactor core neutronics and
thermal hydraulics simulation. No experimental data or other code results are available.
Tests performed include steady state 17 × 17 fuel assemblies containing fuel pins and guide
tubes as well as burnable absorber pins with variation dependant axial and radial power
distributions and uniform pressure losses. The KAIST benchmark has been expanded
through a multi parameter variation exercise consisting of six coupling tests based on
a reference PWR under general nuclear reactor behaviour, where variation of a single
parameter is applied to either the total power, the inlet temperature, the outlet pressure,
the inlet mass flux, or the inlet boric acid. All the data for the tests has been presented.

Specifications include the geometry, materials, spacer grids, and initial and boundary
conditions [64]. The geometry is described for the 17 × 17 assemblies with or without
burnable absorber pins as observed in Table 1.
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Table 1. The 17 × 17 geometry from the KAIST benchmark.

Type UOX-2 (CR) 17 × 17
Assembly

UOX-2 (BA16) 17 × 17
Assembly

Number of Fuel Pins 264 248
Number of Burnable Absorber

Pins 0 16

Number of Guide Tubes 25 25
Channel Width (m) 0.2142 0.2142

Cell Width (m) 0.0126 0.0126
Axial Length (Active) (m) 3.658 3.658

Type Fuel/Burnable Absorber Pin

Clad Diameter (m) 0.0095
Clad Thickness (m) 0.00057
Gap Thickness (m) 0.000085

Fuel Pin Diameter (m) 0.0082

Type Guide Tube

Guide Tube Diameter (m) 0.01224
Clad Thickness (m) 0.000405
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The materials are described as observed in Table 2.

Table 2. The 17 × 17 materials from the KAIST benchmark.

Fuel Pin Composition UO2 (3.3% 235U, 96.7% 238U)
Burnable Absorber Pin Composition UO2 (0.711% 235U, 90.289% 238U) + Gd2O3 (9.0%)

Clad Composition Zircalloy (97.91% Zr, 1.59% Sn, 0.5% Fe)

Energy Groups (eV) Group 0 ≡ (0.62506, 2231300)
Group 1 ≡ (0.000014, 0.62506)

Fuel Density (kg/m3) 10040

Fuel Specific Heat (J/kg K) cp f uel =
8.5013 108e

535.285
T

T2
(

e
535.285

T − 1
)2 + 0.0243T +

1.6587 1012

T2 e−
18,968

T (1)

Fuel Thermal Conductivity (W/m K) k f uel = max
(

2335
464 + T

, 1.1038
)
+ 7.027 10−3 10−3 e1.867 10−3 T (2)

Clad Density (kg/m3) 6400

Clad Specific Heat (J/kg K) cpclad = 252.54 + 0.11474T (3)

Clad Thermal Conductivity (W/m K) kclad = 7.51 + 2.09 10−2T − 1.45 10−5T2 + 7.67 10−9T3 (4)

Gap Gas He
Gap Heat Conductance (kJ/m2 K) 5678

Spacer grids are uniform and are described as observed in Table 3.

Table 3. The 17 × 17 spacer grids from the KAIST benchmark.

Pressure Loss Coefficient 0.30
Spacer Grids Location (m) Uniform

The initial and boundary conditions are described as observed in Table 4.

Table 4. The 17 × 17 initial and boundary conditions.

Case Outlet Pressure
(Bar)

Power
(MW)

Mass Flux
(kg/m2 s)

Inlet Temperature
(C)

Boric Acid
Concentration (ppm)

Reference 155 25.960 2889.33 293.33 2250
High Power 155 30.287 2889.33 293.33 2250

High Temperature 155 25.960 2889.33 303.33 2250
Low Pressure 145 25.960 2889.33 293.33 2250

Low Flux 155 25.960 2476.58 293.33 2250
Low Boron 155 25.960 2889.33 293.33 1125

4. Models and Scripts Used in the Verification

As previously mentioned, the DYN3D and CTF coupling inner iterations within
one outer iteration verification were performed by simulating the KAIST benchmark in
addition to using additional coupling scripts. Hence, the models and scripts used in the
above-mentioned are described in the following subsections.

4.1. KAIST Benchmark

Models used in DYN3D include 289 fuel cells (fuel pin centred system) conformed
by 36 uniform axial node layers along with in the case of the UOX-2 (CR) fuel assembly,
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264 fuel pins, and 25 guide tubes or in the case of the UOX-2 (BA16) fuel assembly, 248 fuel
pins as well as 16 burnable absorber pins, and 25 guide tubes that have been modelled in
the steady state. Models used in CTF include 324 subchannels (subchannel centred system)
connected in between by 612 gaps contained in one section conformed by 36 uniform axial
node layers along with in the case of the UOX-2 (CR) fuel assembly, 264 fuel pins, and
25 guide tubes or in the case of the UOX-2 (BA16) fuel assembly, 248 fuel pins as well as
16 burnable absorber pins and 25 guide tubes that have been modelled in the steady state.
The fuel pin centred system model in DYN3D and the subchannel centred system model
in CTF for both the UOX-2 (CR) and UOX-2 (BA16) fuel assemblies can be observed in
Figure 2.

Figure 2. (a) DYN3D UOX-2 (CR/BA16) 17 × 17 model, (b) CTF UOX-2 (CR/BA16) 17 × 17 model.

Regarding the neutronics in DYN3D, two energy groups were modelled including
fast and thermal energy groups according to the KAIST benchmark specifications. Steady
state was achieved by division of the multiplication cross sections by the effective criticality
factor as it is useful for experimental repetitions, allowing the power and the boric acid
concentration to be predefined. Reflective boundary conditions have been used for any
re-entering current into any of the energy groups as otherwise due to the node sizes,
neutrons would escape the system. The homogenised cross sections for the fuel and
burnable absorber pins and guide tubes were previously obtained using SCALE-POLARIS
simulating multiple feedback parameter combinations to construct multidimensional cross
section tables through which DYN3D performs interpolation, as is generally done in nodal
codes. The effective criticalities for certain tests with constant thermal hydraulics feedback
have been compared between DYN3D and SCALE-POLARIS, leading to similar values.

Regarding the thermal hydraulics in both DYN3D and CTF, friction pressure losses
have been modelled in the case of DYN3D using Filonenko’s and Osmachkin’s [67] one
phase and two phase multipliers correlation due to it being the only one available, while
these have been modelled in the case of CTF using McAdam’s [68] correlation due to it
being widely used in LWR analysis. Spacer grid pressure losses have been modelled in both
DYN3D and CTF using a uniform pressure loss coefficient of 0.30, as estimated through
previous simulations. The pressure equation has been solved in the case of DYN3D using
Gaussian elimination due to it being the method available, while this has been solved
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in the case of CTF using the Krylov solver due to it being a method more effective than
Gaussian elimination. Nucleate boiling has been modelled in the case of DYN3D using the
Rassokhin and Borishaskji [69] correlation due to it being the one available, while this has
been modelled in the case of CTF using the Thom [70] correlation due to it being validated
for a wider pressure range than the Chen correlation. Departure from nucleate boiling
has been modelled in the case of DYN3D using the Bezrukov and Astakhov (OKB-2) [71]
correlation due to this one being the best available, while this has been modelled in the
case of CTF using the W-3 [72,73] correlation due to it being widely used in LWR analysis.
Crossflow is not available in the case of DYN3D, while this has been modelled in the case of
CTF using the available CTF model. Turbulent mixing is not available in the case of DYN3D,
while this has been modelled in the case of CTF using the Rogers and Rosehart correlation,
which depends on an empirical correlation determined single-phase mixing coefficient and
a two-phase multiplier with a value of 5.0 as well as an equilibrium weighting void drift
factor with a value of 1.4 [74] due to it being the best available. Entrainment and deposition
for the droplets are not available in the case of DYN3D, while these have been modelled in
the case of CTF using the original CTF model due to the necessary accuracy.

4.2. DYN3D and CTF Coupling Scripts

Additional scripts have been developed using PYTHON quite recently at the UOL.
These are LWR-VVER (square and hexagonal geometries) coupled reactor physics coupling
scripts that were developed for the purpose of performing the DYN3D and CTF coupling
within the Multiscale and Multiphysics Software Development. Capabilities such as
the transfer of power distributions from DYN3D to CTF, and the transfer of feedback
distribution from CTF to DYN3D as well as the output of any distribution from both codes
have resulted in the additional scripts being necessary to provide the DYN3D and CTF
coupling inner iterations within one outer iteration verification. In terms of structure, these
use a set of python modules including numpy, pandas, and matplotlib along with functions,
control flow statements, and data structures.

Any system modelled in both DYN3D and CTF can be interpreted by the additional
scripts. The transfer of power distributions from DYN3D to CTF script reads the power
distribution for each fuel pin cell from the output (_lst) of DYN3D. Then, it normalises the
power distribution for each fuel pin cell by its corresponding average value and reformats
these as required in CTF. Finally, it writes the mentioned power distributions for each
fuel pin cell to the input (.inp) of CTF. The transfer of feedback distributions from CTF to
DYN3D script reads the feedback distributions for each fuel pin cell or subchannel from the
outputs (.vtk) of CTF. Then, it converts any subchannel feedback distribution to a fuel pin
cell feedback distribution. Next, it averages the feedback distribution to feedback values
(fuel temperature, moderator temperature, moderator density, and boric acid concentration)
and reformats these as required in DYN3D. Finally, it writes the mentioned feedback values
to the input (_kin) of DYN3D. Both coupling scripts can in general, read any distribution
for each fuel pin cell or subchannel from the mentioned outputs of DYN3D and CTF. Then,
both coupling scripts can, in general, manipulate any distribution as desired by the user.
Finally, both coupling scripts can, in general, write any value or distribution to an external
file or provide graphical representation as desired by the user.

Currently, the coupling scripts are being used in external coupling, although in the
future their functionality will be implemented through internal libraries in other couplings.
Both the DYN3D internal coupling scheme as well as the DYN3D and CTF external coupling
scheme can be observed in Figure 3.
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Figure 3. (a) DYN3D internal coupling, (b) DYN3D, and CTF external coupling.

Currently, DYN3D and CTF coupling inner iterations within one outer iteration
verification have been performed, although in the future, DYN3D and CTF coupling
outer iterations within the convergence criteria verification will be performed. Hence, the
DYN3D internal coupling criteria are being used in external coupling, although in the
future, a DYN3D and CTF internal coupling criteria will be implemented in a similar way
as for the former.

The results and analysis obtained for the DYN3D and CTF coupling inner iterations
within one outer iteration verification through the KAIST benchmark require both average
feedback values as well as average feedback distributions and their evaluation either
including (or not) the burnable absorber pin cell feedback distributions and either including
(or not) the guide tube cell feedback distributions. This is performed by ignoring the
corresponding burnable absorber pin or guide tube cell when performing any average over
the fuel assembly.

5. Results and Analysis

Results for the feedback in the DYN3D internal coupling as well as for the DYN3D and
CTF external coupling were obtained through the simulation of the KAIST benchmark [64].
DYN3D to DYN3D and CTF coupling comparisons within the DYN3D and CTF coupling
inner iterations within one outer iteration verification in the steady state are presented for
the fluid density feedback, fluid temperature feedback, fuel temperature feedback, and the
pressure drop feedback.

KAIST Benchmark

DYN3D to DYN3D and CTF coupling comparisons within the multi parameter vari-
ation exercise for the UOX-2 (CR) as well as the UOX-2 (BA16) 17 × 17 fuel assemblies
are shown for the fluid density feedback, fluid temperature feedback, fuel temperature
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feedback, and the pressure drop feedback, while the mass flux feedback, void fraction
feedback, and departure from nucleate boiling feedback are shown in the Appendix B. The
location of the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies within the PWR reactor
core can also be found in the Appendix B. The fluid density feedback value between fuel
cells at the average axial node layer in both the UOX-2 (CR) and the UOX-2 (BA16) fuel
assemblies is provided to show the similarities and differences between coupling values.
All these values can be observed in Figure 4.
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Both FLOCAL and CTF derive the fluid density by solving the fluid mass equation.
In both the DYN3D and the DYN3D and CTF couplings with or without burnable

absorber pin and/or guide tube cells, the fluid density feedback value between fuel cells at
the average axial node layer was observed to decrease in all the tests in the UOX-2 (BA16)
fuel assembly when compared to in the UOX-2 (CR) fuel assembly. This fluid density
feedback value decrease occurs due to lower power in the burnable absorber pin cells,
which result in higher powers in the fuel pin cells, leading to an equivalent total power
such as when there are equal powers in all the fuel pin cells, which results in lower fluid
densities according to the fluid mass equation.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the fluid density feedback value between fuel cells at
the average axial node layer was observed to decrease with high power, high temperature,
low pressure, low flux, and low boron when compared to the reference in both the UOX-2
(CR) and in the UOX-2 (BA16) fuel assemblies. This fluid density feedback value decrease
occurs due to different reasons: In the high-power variation, this occurs due to the higher
volumetric wall heat transfer term, which results in lower fluid densities according to the
fluid mass equation. In the high temperature variation, this occurs due to higher inlet
fluid enthalpy, which results in lower fluid densities according to the fluid mass equation.
In the low-pressure variation, this occurs due to the lower pressure force term, which
results in lower fluid densities according to the fluid mass equation. In the low mass flux
variation, this occurs due to the lower inlet mass flow, which results in lower fluid densities
according to the fluid mass equation. In the low boron variation, this occurs due to the
lower boric acid concentration, which results in lower fluid densities according to the boron
transport models.

In the DYN3D coupling without burnable absorber pin and/or guide tube cells
compared to with burnable absorber pin and/or guide tube cells, the fluid density feedback
value between all fuel cells at the average axial node layer was observed to decrease in
all the tests in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies. This fluid
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density feedback value decrease occurs particularly due to either the absence of power
in the guide tube cells or lower power in the burnable absorber pin cells as well as in
general due to the lack of mass transfer between fuel cells, leading to lower fluid densities
according to the fluid mass equation.

In the DYN3D and CTF coupling without burnable absorber pin and/or guide tube
cells compared to those with burnable absorber pin and/or guide tube cells, the fluid
density feedback value between all fuel cells at the average axial node layer was observed
to remain almost unchanged in all the tests in both the UOX-2 (CR) and in the UOX-2
(BA16) fuel assemblies. This fluid density feedback value near equivalence occurs, in
general, due to the presence of mass transfer between fuel cells, leading to homogeneous
fluid densities in both the guide tube cells and burnable absorber pin cells, which results,
in general, in unchanged fluid densities, according to the fluid mass equation.

Between the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the fluid density feedback values between fuel cells
at the average axial node layer in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel
assemblies were observed to be different. These fluid density feedback value differences
occurred due to different terms in the fluid mass equation including the evaporation as
well as the crossflow and turbulent mixing models between fuel cells. According to the
obtained fluid density feedback values between fuel cells at the average axial node layer
in the UOX-2 (CR) fuel assembly, most variations can be regarded as compatible between
both couplings while in the UOX-2 (BA16) fuel assembly, also most of the variations can
be regarded as compatible between both couplings. Such variations can be regarded as
compatible between couplings due to the similarity of the fluid density feedback values.

Transversal fluid density feedback distributions for all the fuel cells at the average
axial node layer are provided for the UOX-2 (CR) fuel assembly compatible reference case
to show the similarities and differences between both coupling distributions as observed in
Figures 5 and 6.

Figure 5. DYN3D coupling transversal fluid density feedback distribution.
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Figure 6. DYN3D and CTF coupling transversal fluid density feedback distribution.

In both the DYN3D and the DYN3D and CTF couplings, the transversal fluid density
feedback distribution for all fuel cells at the average axial node layer in the UOX-2 (CR)
fuel assembly compatible reference case was observed to decrease more in the central
than in the side or corner fuel cells. This transversal fluid density feedback distribution
decrease occurred in both couplings due to the fuel cell neighbours, leading to higher heat
fluxes in the central fuel cells, which resulted in lower fluid densities according to the fluid
mass equation.

Between the DYN3D and the DYN3D and CTF couplings, the transversal fluid density
feedback distribution for all the fuel cells at the average axial node layer in the UOX-2 (CR)
fuel assembly compatible reference case were observed to be different. These transversal
fluid density feedback distribution differences occurred due to different terms in the fluid
mass equation including the evaporation as well as the crossflow and turbulent mixing
models between fuel cells.

The fluid temperature feedback value between fuel cells at the average axial node
layer in both the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies is provided to show the
similarities and differences between the coupling values. All these values can be observed
in Figure 7.

Both FLOCAL and CTF derive the fluid temperature from the fluid enthalpy, which is
mainly obtained by solving the fluid energy equation.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the fluid temperature feedback value between fuel
cells at the average axial node layer was observed to increase in all the tests in the UOX-
2 (BA16) fuel assembly when compared to in the UOX-2 (CR) fuel assembly. This fluid
temperature feedback value increase occurred due to lower powers in the burnable absorber
pin cells, which resulted in higher powers in the fuel pin cells, leading to an equivalent
total power as when there are equal powers in all the fuel pin cells, which results in higher
fluid enthalpies according to the fluid energy equation.
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In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the fluid temperature feedback value between fuel
cells at the average axial node layer was observed to increase with high power, high
temperature, low flux, and low boron when compared to the reference in both the UOX-2
(CR) and in the UOX-2 (BA16) fuel assemblies. This fluid temperature feedback value
increase occurred due to different reasons: in the high-power variation, this occurred due
to the higher volumetric wall heat transfer term, which resulted in higher fluid enthalpies
according to the fluid energy equation. In the high temperature variation, this occurred
due to higher inlet fluid enthalpy, which resulted in higher fluid enthalpies according to the
fluid energy equation. In the low mass flux variation, this occurred due to the lower inlet
mass flow, which resulted in higher fluid enthalpies according to the fluid energy equation.
In the low boron variation, this occurred due to the lower boric acid concentration term,
which resulted in higher fluid enthalpies according to the fluid energy equation. In both the
DYN3D and the DYN3D and CTF couplings with or without burnable absorber pin and/or
guide tube cells, the fluid temperature feedback value between all fuel cells at the average
axial node layer was observed to remain constant with low pressure when compared to the
reference in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies.

In the DYN3D coupling without burnable absorber pin and/or guide tube cells
compared to with burnable absorber pin and/or guide tube cells, the fluid temperature
feedback value between fuel cells at the average axial node layer was observed to increase
in all the tests in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies. This fluid
temperature feedback value increase occurred, in particular, due to either the absence of
power in the guide tube cells or lower power in the burnable absorber pin cells as well
as in general, due to the lack of energy transfer between fuel cells, leading to higher fluid
enthalpies according to the fluid energy equation.

In the DYN3D and CTF coupling without burnable absorber pin and/or guide tube
cells compared to with burnable absorber pin and/or guide tube cells, the fluid temperature
feedback value between all fuel cells at the average axial node layer was observed to remain
almost unchanged in all the tests in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel
assemblies. This fluid temperature feedback value near equivalence occurred, in general,
due to the presence of energy transfer between fuel cells, leading to homogeneous fluid
temperatures in both the guide tube cells and burnable absorber pin cells, which resulted,
in general, in unchanged enthalpies according to the fluid energy equation.

Between the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the fluid temperature feedback values between all
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fuel cells at the average axial node layer in both the UOX-2 (CR) and in the UOX-2 (BA16)
fuel assemblies were observed to be different. These fluid temperature feedback value
differences occurred due to different terms in the fluid energy equation including the
nucleate boiling correlations as well as the crossflow and turbulent mixing models between
fuel cells. According to the obtained fluid temperature feedback values between fuel cells
at the average axial node layer in the UOX-2 (CR) fuel assembly, most variations can be
regarded as compatible between both couplings while in the UOX-2 (BA16) fuel assembly,
also most of the variations can be regarded as compatible between both couplings. Such
variations can be regarded as compatible between couplings due to the similarity of the
fluid temperature feedback values.

Axial fluid temperature feedback distributions for central, side, and corner fuel cells
and average between fuel cells as well as transversal fluid temperature feedback distribu-
tions for all the fuel cells at the average axial node layer are provided for the UOX-2 (CR)
fuel assembly compatible reference case to show the similarities and differences between
both coupling distributions, as observed in Figures 8–10.

Figure 8. Axial fluid temperature feedback distributions.

Figure 9. DYN3D coupling transversal fluid temperature feedback distribution.
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Figure 10. DYN3D and CTF coupling transversal fluid temperature feedback distribution.

In both the DYN3D and the DYN3D and CTF couplings, the axial fluid temperature
feedback distribution for the central, corner, and side fuel cells as well as the transversal
fluid temperature feedback distribution for all fuel cells at the average axial node layer in
the UOX-2 (CR) fuel assembly compatible reference case was observed to increase more in
the central than in the side or corner fuel cells. This axial and transversal fluid temperature
feedback distribution increase occurred in both couplings due to the fuel cell neighbours,
leading to higher heat fluxes in the central fuel cells, which resulted in lower fluid densities
according to the fluid mass equation in the central fuel cells, which resulted in higher fluid
enthalpies according to the fluid energy equation.

Between the DYN3D and the DYN3D and CTF couplings, the axial fluid temperature
feedback distribution for the central, corner, and side fuel cells as well as the transversal
fluid temperature feedback distribution for all the fuel cells at the average axial node
layer for the UOX-2 (CR) fuel assembly compatible reference case were observed to be
different. These axial and transversal fluid temperature feedback distribution differences
occurred due to different terms in the fluid energy equation including the nucleate boiling
correlations as well as the crossflow and turbulent mixing models between fuel cells.

The fuel temperature feedback value between fuel pins at the average axial node layer
in both the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies is provided to show the
similarities and differences between coupling values. All these values can be observed in
Figure 11.

Both FLOCAL and CTF derive the fuel temperature from the solid enthalpy, which is
mainly obtained by solving the solid energy equation. In any case, the fuel temperature
results from the volumetric heat density in the solid energy equation.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin cells and without guide tube cells, the fuel temperature feedback value
between fuel pins at the average axial node layer was observed to increase in all the tests
in the UOX-2 (BA16) fuel assembly when compared to the UOX-2 (CR) fuel assembly. This
fuel temperature feedback value increase occurred due to lower powers in the burnable
absorber pin cells, which resulted in higher powers in the fuel pin cells, leading to an
equivalent total power as in the UOX-2 (CR) fuel assembly where there were equal powers
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in all the fuel pin cells, which resulted in higher solid enthalpies according to the solid
energy equation.
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Figure 11. (a) UOX-2 (CR) fuel temperature feedback values, (b) UOX-2 (BA16) fuel temperature feedback values.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin cells and without guide tube cells, the fuel temperature feedback value
between fuel pins at the average axial node layer was observed to increase only with high
power when compared to the reference in both the UOX-2 (CR) and in the UOX-2 (BA16)
fuel assemblies. This fuel temperature feedback value increase occurred due to the higher
volumetric heat density term, which resulted in higher solid enthalpies according to the
solid energy equation. In both the DYN3D and the DYN3D and CTF couplings with or
without burnable absorber pin cells and without guide tube cells, the fuel temperature
feedback value between fuel pins at the average axial node layer was observed to remain
constant with high temperature, low pressure, low flux, and low boron in both the UOX-2
(CR) and UOX-2 (BA16) fuel assemblies.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin cells and without guide tube cells, the fuel temperature feedback value
between all fuel pins at the top axial node layer was observed in all the tests in both the
UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies due to the absence of power in the
guide tube cells.

In both the DYN3D and the DYN3D and CTF couplings with burnable absorber pin
and without guide tube cells compared to without burnable absorber and guide tube cells,
the fuel temperature feedback value between all fuel pins at the average axial node layer
was observed to decrease in all the tests in the UOX-2 (BA16) fuel assembly. This fuel
temperature feedback value decrease occurred due to lower power in the burnable absorber
pin cells, leading to low temperatures in the burnable absorber pin cells, which resulted, in
general, in lower solid enthalpies according to the solid energy equation.

Between the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin cells and without guide tube cells, the fuel temperature feedback value between
fuel pins at the average axial node layer in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel
assemblies were observed to be different. These fuel temperature feedback value differences
occurred due to different terms in the solid energy equation. According to the obtained fuel
temperature feedback values between fuel pins at the average axial node layer in the UOX-2
(CR) fuel assembly, the variations can be regarded as less compatible between both couplings
than in the UOX-2 (BA16) fuel assembly, where all variations can be regarded as compatible
between both couplings. Such variations can be regarded as compatible between couplings
due to the similarity of the fuel temperature feedback values.
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Axial fuel temperature feedback distributions for central, side, and corner fuel pins and
average between fuel pins as well as transversal fuel temperature feedback distributions
for all the fuel pins at the average axial node layer are provided for the UOX-2 (CR) fuel
assembly compatible reference case to show the similarities and differences between both
coupling distributions, as observed in Figures 12–14.

In both the DYN3D and the DYN3D and CTF couplings, the axial fuel temperature
feedback distribution for the central, corner, and side fuel pins as well as the transversal
fuel temperature feedback distribution for all fuel pins at the average axial node layer in
the UOX-2 (CR) fuel assembly compatible reference case were observed to increase more
in the central fuel pins than in the side or corner fuel pins. This axial and transversal fuel
temperature feedback distribution increase occurred in both couplings due to the fuel cell
neighbours, leading to higher heat fluxes in the central fuel cells, which resulted in higher
solid enthalpies according to the solid energy equation.

Figure 12. Axial fuel temperature feedback distributions.

Figure 13. DYN3D coupling transversal fuel temperature feedback distribution.
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Figure 14. DYN3D and CTF coupling transversal fuel temperature feedback distribution.

Between the DYN3D and the DYN3D and CTF couplings, the axial fuel temperature
feedback distribution for the central, corner, and side fuel pins as well as the transversal
fuel temperature feedback distribution for all the fuel pins at the average axial node layer
in the UOX-2 (CR) fuel assembly compatible reference case were observed to be different.
These axial and transversal fuel temperature feedback distribution differences occurred
due to different terms in the solid energy equation.

The pressure drop feedback value in both the UOX-2 (CR) and the UOX-2 (BA16) fuel
assemblies is provided to show the similarities and differences between coupling values.
All these values can be observed in Figure 15.
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Both FLOCAL and CTF derive the pressure drop from the friction, form, gravity, and
acceleration pressure losses, which are obtained through different pressure loss correla-
tions. In any case, the pressure drop resulted from the pressure force term in the fluid
momentum equation.

In both the DYN3D and the DYN3D and CTF couplings with burnable absorber pin
and/or guide tube cells, was the pressure drop feedback value observed to increase in all
the tests in the UOX-2 (BA16) fuel assembly when compared to in the UOX-2 (CR) fuel
assembly. This pressure drop feedback value increase occurred due to lower powers in the
burnable absorber pin cells, which resulted in higher powers in the fuel pin cells, leading
to a higher pressure drop as when there were equal powers in all the fuel pin cells, which
resulted in higher friction and acceleration pressure losses according to the pressure loss
correlations.

In both the DYN3D and the DYN3D and CTF couplings with burnable absorber
pin and/or guide tube cells, the pressure drop feedback value was observed to increase
with high power, high temperature, and low pressure when compared to the reference
in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies. This pressure drop
feedback value increase occurred due to different reasons: In the high-power variation, this
occurred due to the higher volumetric wall heat transfer term, which resulted in higher
friction and acceleration pressure losses according to the pressure loss correlations. In the
high temperature variation, this occurred due to the higher inlet fluid enthalpy, which
resulted in higher friction and acceleration pressure losses according to the pressure loss
correlations. In the low-pressure variation, this occurred due to the lower pressure force
term which results on higher friction and acceleration pressure losses according to the
pressure loss correlations. In both the DYN3D and the DYN3D and CTF couplings with
burnable absorber pin and/or guide tube cells, the pressure drop feedback value was
observed to decrease with low flux when compared to the reference in both the UOX-2
(CR) and in the UOX-2 (BA16) fuel assemblies. This pressure drop feedback value decrease
occurred due to the lower inlet mass flow, which resulted in lower friction and acceleration
pressure losses according to the pressure loss correlations. In both the DYN3D and the
DYN3D-CTF couplings with burnable absorber pin and/or guide tube cells, the pressure
drop feedback value was observed to remain constant in the UOX-2 (CR) and UOX-2
(BA16) fuel assemblies with low boron when compared to the reference.

In both the DYN3D and the DYN3D and CTF couplings with burnable absorber
pin and/or guide tube cells, the pressure drop feedback value was observed in all the
tests in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies as in the DYN3D
coupling where only the pressure drop feedback value for the whole fuel assembly was
available, while in the DYN3D and CTF coupling, full pressure distributions for each fuel
cell were available.

Between the DYN3D and the DYN3D and CTF couplings with burnable absorber pin
and/or guide tube cells, the pressure drop feedback values in the UOX-2 (CR) and in the
UOX-2 (BA16) fuel assemblies were observed to be different. These pressure drop feedback
value differences occurred due to different friction and form pressure loss correlations.
According to the obtained pressure drop feedback values in the UOX-2 (CR) fuel assembly,
all variations can be regarded as compatible between both couplings while in the UOX-2
(BA16) fuel assembly, also all the variations can be regarded as compatible between both
couplings. Such varia-tions can be regarded as compatible between couplings due to the
similarity of the pres-sure drop feedback values.

6. Conclusions

As has been observed, the current objective in the aim of coupling the nodal code
DYN3D and the subchannel code CTF within the Multiscale and Multiphysics Software
Development has been fulfilled as the coupling inner iterations within one outer iteration
have been partially verified, providing improved coupled reactor physics at the fuel pin
level, allowing to show through external coupling, the transfer of power distributions from



Energies 2021, 14, 5060 23 of 37

DYN3D to CTF as well as the transfer of feedback distributions from CTF to DYN3D and
as justify through thermal hydraulics when to use the DYN3D coupling and when to use
the DYN3D and CTF coupling. The improved coupled reactor physics at the fuel pin level
in the DYN3D and CTF coupling were only limited in terms of neutronics by neutron
diffusion but complemented in terms of thermal hydraulics by the wide range of cross flow
and turbulent mixing.

Considering the coupled reactor physics at the fuel pin level obtained using both
the DYN3D and the DYN3D and CTF couplings through the replication of the KAIST
benchmark, the DYN3D and CTF coupling provides improved feedback at the fuel pin
level compared to the DYN3D coupling in the cases of the fluid density feedback, fluid
temperature feedback, fuel temperature feedback, and pressure drop feedback. This may
be in the case of the fluid density feedback due to different terms in the fluid mass equation
including the evaporation as well as the crossflow and turbulent mixing models between
fuel cells as the DYN3D and CTF coupling contains the latter models, as opposed to the
DYN3D coupling. This may be the case of the fluid temperature feedback due to different
terms in the fluid energy equation including the nucleate boiling correlation as well as the
crossflow and turbulent mixing models between fuel cells as the DYN3D and CTF coupling
contains the latter models, as opposed to the DYN3D coupling. This may be the case of
the fuel temperature feedback due to different terms in the solid energy equation as the
DYN3D and CTF coupling contains different models to the DYN3D coupling. This may be,
in the case of the pressure drop feedback, due to different friction and form loss correlations
as the DYN3D and CTF coupling contains different models to the DYN3D coupling.

In general, the DYN3D coupling provides similar feedback values as the DYN3D
and CTF coupling, however, the DYN3D and CTF coupling provides improved feedback
distributions over the DYN3D coupling as crossflow and other terms are modelled in the
latter. Nevertheless, the DYN3D coupling requires lower simulation times than the DYN3D
and CTF coupling to achieve results, as simulation times in the DYN3D coupling were
around 1 to 2 min compared to 20 or more minutes in the DYN3D and CTF coupling, using
in both cases a single core as conducted in serial simulations as opposed to multiple cores
used in parallel simulations.

7. Future Work

Finally, the last objective in the aim of coupling the nodal code DYN3D and the
subchannel code CTF within the Multiscale and Multiphysics software consists of the
second part of the DYN3D and CTF coupling that will be performed to evaluate all outer
iterations within the convergence criteria to provide fully verified improved coupled
reactor physics at the fuel pin level. This evaluation will allow one to show through other
couplings how the outer iterations within the convergence criteria takes place as well
as justify through the neutronics when the DYN3D and CTF coupling, rather than just
DYN3D, should be used to provide improved coupled reactor physics at the fuel pin level,
or when LOTUS and any other fluid dynamics coupling should be used to provide full
coupled reactor physics at the fuel pin level. The most pragmatic approach will always be
taken to improve the economics and safety of nuclear reactors.

8. Nomenclature

The acronyms and symbols in the overall text have an associated meaning given below.
Acronyms:

Acronym Full Description

ADF Assembly Discontinuity Factor
AMR Advanced Modular Reactor

ATHLET Analysis of Thermal Hydraulics of Leaks and Transients
BA16 16 Burnable Absorber Pins
BEIS Department of Business, Energy and Industrial Strategy

CASL Consortium for Advanced Simulation of LWRS
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CATHARE Code for Analysis of Thermal Hydraulics during an Accident of Reactor and Safety Evaluation
CFD Computational Fluid Dynamics

CTF/COBRA-TF Coolant Boiling in Rod Arrays Two Fluid
CR Control Rods

DNB/DNBR Departure from Nucleate Boiling
DRD Digital Reactor Design

DYN3D/FLOCAL Dynamical 3 Dimensional
EPR European Pressurised Reactor

FORTRAN Formula Translator
HPC Hinkley Point C

HZDR Helmholtz Zentrum Dresden Rossendorf
KAIST Korean Advanced Institute of Science and Technology
LOTUS Liverpool Transport Solver

LWR Light Water Reactor
NCSU North Carolina State University
NRC Nuclear Regulation Commission

NURESIM Nuclear Reactor Simulator
PNL Pacific Northwest Laboratories
PSU Pennsylvania State University
PWR Pressurised Water Reactor

RELAP5 Reactor Excursion and Leak Analysis Program
SCANAIR Systems of Codes for Analysing Reactivity Initiated Accidents

UK United Kingdom
UOL University of Liverpool

Symbols:

Symbol Full Description

BA16 16 Burnable Absorber Pins
cpclad Clad Specific Heat
cp f uel Fuel Specific Heat
kclad Clad Thermal Conductivity
k f uel Fuel Thermal Conductivity
Fe Iron

Gd2O3 Digadolinium Trioxide
He Helium

235U, 238U Uranium Isotopes
UO2 Uranium Dioxide
Sn Tin
Zr Zirconium
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Appendix A. Code Types

The spectral, lattice, neutron transport, nodal, system, subchannel, CFD, and fuel
performance codes and risk assessment codes mentioned in the introduction are classified
according to their type and developer in Table A1.
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Table A1. Code descriptions.

Code Type Developer

ORIGEN Spectral ORNL
SCALE Spectral ORNL

APOLLO2 Lattice Areva
INSILICO Neutron Transport UT-Batelle

LOTUS Neutron Transport UOL
MPACT Neutron Transport ORNL
SHIFT Neutron Transport ORNL

COBAYA3 Nodal UPM
CRONOS2 Nodal CEA-Saclay

DYN3D Nodal HZDR
ATHLET System GRS

CATHARE System CEA-Grenoble
RELAP5 System INL

CTF Subchannel PNL
FLICA4 Subchannel Cea-Saclay

SUBCHANFLOW Subchannel KIT
HYDRA-TH CFD INL
NEPTUNE CFD EDF
TRANS-AT CFD TRANS-AT

TRIO_U CFD IRSN
BISON Fuel Performance INL

DRACCAR Fuel Performance IRSN
SCANAIR Fuel Performance IRSN

Appendix B. KAIST Benchmark

The location of the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies within the LWR
reactor core are presented in Figure A1.

The mass flux feedback value between fuel cells at the average axial node layer in both
the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies is provided to show the similarities
and differences between coupling values. All these values can be observed in Figure A2.

Both FLOCAL and CTF derive the mass flux from the fluid density and fluid velocity,
which are mainly obtained by solving the fluid mass and fluid momentum equations.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the mass flux feedback value between fuel cells at the
average axial node layer was observed to remain similar in all the tests in the UOX-2 (BA16)
fuel assembly when compared to the UOX-2 (CR) fuel assembly. This mass flux feedback
value near equivalence occurred due to mass conservation in the corresponding test.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the mass flux feedback value between fuel cells at
the average axial node layer was observed to decrease only with low flux when compared
to the reference in both the UOX-2 (CR) and UOX-2 (BA16) fuel assemblies. This mass
flux feedback value decrease occurred due to the lower inlet mass flow, which resulted
in lower fluid densities as well as higher vapor and lower liquid velocities according to
the fluid mass and fluid momentum equations. In both the DYN3D and the DYN3D and
CTF couplings, the mass flux feedback value between fuel cells at the average axial node
layer was observed to remain constant with high power, high temperature, low pressure,
and low boron when compared to the reference in both the UOX-2 (CR) and in the UOX-2
(BA16) fuel assemblies.
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Figure A1. UOX-2 (CR) and UOX-2 (BA16) locations within the KAIST 1A LWR reactor core.
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In the DYN3D coupling with burnable absorber pin and/or guide tube cells compared
to without burnable absorber pin and/or guide tube cells, the mass flux feedback value



Energies 2021, 14, 5060 27 of 37

between all fuel cells at the average axial node layer was observed to decrease in all the
tests in the UOX-2 (CR) fuel assembly and increase in all the tests in the UOX-2 (BA16)
fuel assembly. This mass flux feedback value decrease and increase occurred, in particular,
due to either the absence of power in the guide tube cells or lower power in the burnable
absorber pin cells as well as in general due to the lack of mass and momentum transfer
between fuel cells, leading to higher mass flux in either the guide tube or burnable absorber
pin cells, which resulted, in general, in higher fluid densities, lower vapor, and higher
liquid velocities according to the fluid mass and fluid momentum equations.

In the DYN3D and CTF coupling with burnable absorber pin and/or guide tube cells
compared to without burnable absorber pin and/or guide tube cells, the mass flux feedback
value between fuel cells at the average axial node layer was observed to decrease in all the
tests in the UOX-2 (CR) fuel assembly and increase in all the tests in the UOX-2 (BA16) fuel
assembly. This mass flux feedback value decrease and increase occurred, in general, due to
the presence of mass and momentum transfer between fuel cells, leading to homogeneous
mass flux in both the guide tube and burnable absorber pin cells, which resulted, in general,
in almost unchanged fluid densities, vapor, and liquid velocities according to the fluid
mass and fluid momentum equations.

Between the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the mass flux feedback values between fuel cells at the
average axial node layer in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies
were observed to be different. These mass flux feedback value differences occurred due to
different terms in the fluid mass and fluid momentum equations including the evaporation,
viscous stress as well as the crossflow and turbulent mixing models between fuel cells.
According to the obtained mass flux feedback values between fuel cells at the average
axial node layer in the UOX-2 (CR) fuel assembly, most variations can be regarded as
compatible between both couplings while in the UOX-2 (BA16) fuel assembly, also most
of the variations can be regarded as compatible between both couplings. Such variations
can be regarded as compatible between couplings due to the similarity of the mass flux
feedback values.

Axial mass flux feedback distributions for central, side, and corner fuel cells and
average between fuel cells as well as transversal mass flux feedback distributions for all
the fuel cells at the average axial node layer are provided for the UOX-2 (CR) fuel assembly
compatible reference case to show the similarities and differences between both coupling
distributions, as observed in Figures A3–A5.

Figure A3. Axial mass flux feedback distribution.
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Figure A4. DYN3D coupling transversal mass flux feedback distribution.

Figure A5. DYN3D and CTF coupling transversal mass flux feedback distribution.

In both the DYN3D and the DYN3D and CTF couplings, the axial mass flux feedback
distribution in the central, side, and corner fuel cells as well as the transversal mass flux
feedback distribution for all fuel cells at the average axial node layer in the UOX-2 (CR)
fuel assembly compatible reference case was observed to decrease more in the central than
in the side or corner fuel cells. This axial and transversal mass flux feedback distribution
decrease occurred in both couplings due to the fuel cell neighbours, leading to higher heat
fluxes in the central fuel cells, which resulted in lower fluid densities, higher vapor, and
lower liquid velocities according to the fluid mass and fluid momentum equations.
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Between the DYN3D and the DYN3D and CTF couplings, the axial mass flux feedback
distribution for the central, corner, and side fuel cells as well as the transversal mass flux
feedback distribution for all the fuel cells at the average axial node layer in the UOX-2 (CR)
fuel assembly compatible reference case were observed to be different. These axial and
transversal mass flux feedback distribution differences occurred due to different terms in
the fluid mass and fluid momentum equations including the evaporation, viscous stress as
well as the crossflow and turbulent mixing models between fuel cells.

The void fraction feedback value between fuel cells at the top axial node layer in both
the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies is provided to show the similarities
and differences between coupling values. All these values can be observed in Figure A6.
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Both FLOCAL and CTF derive the void fraction from the fluid density, fluid velocity,
and fluid enthalpy, which are mainly obtained by solving the fluid mass, fluid momentum,
and fluid energy equations.

Only in the DYN3D coupling with or without burnable absorber pin and/or guide
tube cells, the void fraction feedback value between fuel cells at the top axial node layer
was observed to increase in all the tests in the UOX-2 (BA16) fuel assembly when compared
to in the UOX-2 (CR) fuel assembly. This void fraction feedback value increase occurred
due to lower powers in the burnable absorber pin cells, which resulted in higher powers in
the fuel pin cells, leading to an equivalent total power as when there were equal powers in
all the fuel pin cells, which resulted in lower fluid densities, higher vapor, and lower liquid
velocities as well as higher fluid enthalpies according to the fluid mass, fluid momentum,
and fluid energy equations.

In both the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the void fraction feedback value between fuel cells
at the top axial node layer was observed to increase with high power, high temperature,
low-pressure, and low flux when compared to the reference in both the UOX-2 (CR) and
in the UOX-2 (BA16) fuel assemblies. This void fraction feedback value increase occurred
due to different reasons: in the high-power variation, this occurred due to the higher
volumetric wall heat transfer term, which resulted in lower fluid densities, higher vapor,
and lower liquid velocities as well as higher fluid enthalpies according to the fluid energy
equation. In the high temperature variation, this occurred due to higher inlet fluid enthalpy,
which resulted in higher fluid enthalpies according to the fluid energy equation. In the
low-pressure variation, this occurred due to the lower pressure force term, which resulted
in lower fluid densities, higher vapor, and lower liquid velocities according to the fluid
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mass and fluid momentum equations. In the low mass flux variation, this occurred due
to the lower inlet mass flow, which resulted in lower fluid densities, higher vapor, and
lower liquid velocities as well as higher fluid enthalpies according to the fluid mass, fluid
momentum, and fluid energy equations. Only in the DYN3D and CTF coupling with or
without burnable absorber pin and/or guide tube cells was the void fraction feedback value
between the fuel cells at the top axial node layer observed to decrease with low boron when
compared to the reference in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies.
This void fraction feedback value decrease occurred due to the full boron transport model
in the DYN3D and CTF coupling, which resulted in higher liquid velocities according to
the boron tracking and precipitation equations when compared to the simplified boron
transport model in the DYN3D coupling, which resulted in almost constant liquid velocities
according to the simplified boron transport equation.

In the DYN3D coupling with burnable absorber pin and guide tube cells compared to
without burnable absorber pin and/or guide tube cells, the void fraction feedback value
between fuel cells at the top axial node layer was observed to decrease in all the tests in
both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies. This void fraction feedback
value decrease occurred, in particular, due to either the absence of power in the guide tube
cells or lower power in the burnable absorber pin cells as well as in general due to the
lack of mass, momentum, and energy transfer between fuel cells, leading to no vapor in
the guide tube cells and low vapor in the burnable absorber pin cells, which resulted, in
general, in higher fluid densities, lower vapor, and higher liquid velocities as well as higher
fluid enthalpies according to the fluid mass, fluid momentum, and fluid energy equations.

In the DYN3D and CTF coupling with burnable absorber pin and guide tube cells
compared to without burnable absorber pin and/or guide tube cells, the void fraction
feedback value between fuel cells at the top axial node layer was observed to remain almost
unchanged in all the tests in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies.
This void fraction feedback value near equivalence occurred, in general, due to the presence
of mass, momentum, and energy transfer between fuel cells, leading to homogeneous vapor
in both the guide tube cells and burnable absorber pin cells, which resulted, in general, in
unchanged fluid densities, vapor, and liquid velocities as well as higher fluid enthalpies
according to the fluid mass, fluid momentum, and fluid energy equations.

Between the DYN3D and the DYN3D and CTF couplings with or without burnable
absorber pin and/or guide tube cells, the void fraction feedback values between all fuel
cells at the top axial node layer in both the UOX-2 (CR) and in the UOX-2 (BA16) fuel
assemblies were observed to be different. These void fraction feedback value differences
occurred due to different terms in the fluid mass, fluid momentum, and fluid energy
equations including the evaporation, viscous stress, nucleate boiling correlations as well as
the crossflow and turbulent mixing models between fuel cells. According to the obtained
void fraction feedback values between fuel cells at the top axial node layer in the UOX-2
(CR) fuel assembly, most variations can be regarded as compatible between both couplings,
while in the UOX-2 (BA16) fuel assembly, almost none of the variations can be regarded
as compatible between both couplings. Such variations can be regarded as compatible
between couplings due to the similarity in the void fraction feedback values.

Axial void fraction feedback distributions for central, side, and corner fuel cells and
average between fuel cells as well as transversal void fraction feedback distribution for
all the fuel cells at the top axial node layer are provided for the UOX-2 (CR) fuel assembly
compatible reference case to show the similarities and differences between both coupling
distributions, as observed in Figures A7–A9.

In both the DYN3D and the DYN3D and CTF couplings, the axial void fraction
feedback distribution for the central, side, and corner fuel cells as well as the transversal
void fraction feedback distribution for all fuel cells at the top axial node layer in the
UOX-2 (CR) fuel assembly compatible reference case was observed to increase more in
the central than in the side or corner fuel cells. This axial and transversal void fraction
feedback distribution increase occurred in both couplings due to the fuel cell neighbours,
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leading to higher heat fluxes in the central fuel cells, which resulted, in general, in higher
fluid densities, lower vapor, and higher liquid velocities as well as higher fluid enthalpies
according to the fluid mass, fluid momentum, and fluid energy equations.

Between the DYN3D and the DYN3D and CTF couplings, the axial void fraction
feedback distribution for the central, corner, and side fuel cells as well as the transversal
void fraction feedback distribution for all the fuel cells at the top axial node layer for the
UOX-2 (CR) fuel assembly compatible reference case was observed to be higher in the
DYN3D coupling and lower in the DYN3D and CTF coupling. These axial and transversal
void fraction feedback distribution differences occurred due to different terms in the fluid
mass, fluid momentum, and fluid energy equations including the evaporation, viscous
stress, nucleate boiling correlations as well as the crossflow and turbulent mixing models
between fuel cells.

Figure A7. Axial void fraction feedback distribution.

Figure A8. DYN3D coupling transversal void fraction feedback distribution.
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Figure A9. DYN3D and CTF coupling transversal void fraction feedback distribution.

The relative departure from nucleate boiling feedback value between fuel pins at
the top axial node layer in both the UOX-2 (CR) and the UOX-2 (BA16) fuel assemblies
is provided to show the similarities and differences between coupling values. All these
values can be observed in Figure A10.
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Both FLOCAL and CTF derive the relative departure from nucleate boiling from the
heat flux, which is mainly obtained by solving the solid energy equation as well as the
critical heat flux, which is obtained using different empirical departure from nucleate
boiling correlations.

In both the DYN3D and the DYN3D and CTF couplings without burnable absorber
pin and/or guide tube cells, the relative departure from nucleate boiling feedback value
between fuel pins at the top axial node layer was observed to decrease in some tests in
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the UOX-2 (BA16) fuel assembly when compared to the UOX-2 (CR) fuel assembly. This
relative departure from nucleate boiling feedback value decrease occurred due to lower
powers in the burnable absorber pin cells, which resulted in higher powers in the fuel pin
cells, leading to an equivalent total power as when there were equal powers in all the fuel
pin cells, which resulted in higher heat fluxes according to the solid energy equation.

In both the DYN3D and the DYN3D and CTF couplings without burnable absorber
pin and/or guide tube cells, the relative departure from nucleate boiling feedback value
between fuel pins at the top axial node layer was observed to decrease with high power,
high temperature, low-pressure, and low flux when compared to the reference in both
the UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies. This relative departure from
the nucleate boiling feedback value decrease occurred due to different reasons: in the
high-power variation, this occurred due to the higher volumetric wall heat transfer term,
which resulted in higher heat fluxes according to the solid energy equation. In the high
temperature variation, this occurred due to higher inlet fluid enthalpy, which resulted in
higher critical heat fluxes according to the departure from nucleate boiling correlation.
In the low-pressure variation, this occurred due to the lower pressure force term, which
resulted in lower critical heat fluxes according to the critical heat flux correlation. In the low
mass flux variation, this occurred due to the lower inlet mass flow, which resulted in lower
critical heat fluxes according to the critical heat flux correlation. In both the DYN3D and
the DYN3D and CTF couplings without burnable absorber pin and/or guide tube cells, the
relative departure from nucleate boiling feedback value between fuel pins at the top axial
node layer was observed to decrease with low boron when compared to the reference in the
UOX-2 (BA16) fuel assembly. This relative departure from nucleate boiling feedback value
increase in the low boron variation occurred due to the lower boric acid concentration term,
which resulted in more heterogeneous heat fluxes according to the solid energy equation.

In both the DYN3D and the DYN3D and CTF couplings without burnable absorber
pin and/or guide tube cells, the relative departure from nucleate boiling feedback value
between all fuel pins at the top axial node layer was observed in all the tests in both the
UOX-2 (CR) and in the UOX-2 (BA16) fuel assemblies due to either the absence of power in
the guide tube cells or lower power in the burnable absorber pin cells, which resulted in
higher relative departure from nucleate boiling feedback value in both the guide tube cells
and burnable absorber pin cells.

Between the DYN3D and the DYN3D and CTF couplings without burnable absorber
pin and guide tube cells, the relative departure from nucleate boiling feedback values
between fuel pins at the top axial node layer in both the UOX-2 (CR) and in the UOX-
2 (BA16) fuel assemblies were observed to be different. These relative departure from
nucleate boiling feedback value differences occurred due to different critical heat flux
correlations. According to the obtained relative departure from nucleate boiling feedback
values between fuel pins at the top axial node layer in the UOX-2 (CR) fuel assembly, most
variations can be regarded as compatible between both couplings while in the UOX-2
(BA16) fuel assembly, also most of the variations can be regarded as compatible between
both couplings. Such variations can be regarded as compatible between couplings due to
the similarity of the relative departure from nucleate boiling feedback values.

Axial relative departure from nucleate boiling feedback distributions for central,
side, and corner fuel pins and average between fuel pins as well as transversal relative
departure from nucleate boiling feedback distributions for all the fuel pins at the top axial
node layer is provided for the UOX-2 (CR) fuel assembly compatible reference case to
show the similarities and differences between both coupling distributions, as observed in
Figures A11–A13.

In both the DYN3D and the DYN3D and CTF couplings, the axial relative departure
from nucleate boiling feedback distribution for the central, corner, and side fuel pins as
well as the transversal relative departure from nucleate boiling feedback distribution for all
fuel pins at the top axial node layer in the UOX-2 (CR) fuel assembly compatible reference
case was observed to decrease more for the central fuel pins than for the side or corner
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fuel pins. This axial and transversal relative departure from nucleate boiling feedback
distribution decrease occurred in both couplings due to the fuel cell neighbours, leading to
higher heat fluxes in the central fuel cells according to the solid energy equation.

Between the DYN3D and the DYN3D and CTF couplings, the axial relative departure
from nucleate boiling feedback distribution for the central, corner, and side fuel pins as well
as the transversal departure from nucleate boiling distribution for all the fuel pins at the top
axial node layer in the UOX-2 (CR) fuel assembly compatible reference case were observed
to be different. These axial and transversal relative departures from nucleate boiling
feedback distribution differences occurred due to different critical heat flux correlations.

Figure A11. Axial DNBR feedback distribution.

Figure A12. DYN3D coupling transversal DNBR feedback distribution.
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Figure A13. DYN3D and CTF coupling transversal DNBR feedback distribution.
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