
energies

Article

Study on Evaluation Method of Impulse Dispersion
Performance of Grounding Device Using X-ray
Imagining System †

Xiaoyan Han 1, Donghui Luo 1,2, Xin Zhang 3,*, Yongxing Cao 1, Yu Zhang 1 and Gege Ban 3

����������
�������

Citation: Han, X.; Luo, D.; Zhang, X.;

Cao, Y.; Zhang, Y.; Ban, G. Study on

Evaluation Method of Impulse

Dispersion Performance of

Grounding Device Using X-ray

Imagining System. Energies 2021, 14,

5124. https://doi.org/10.3390/

en14165124

Academic Editors: Issouf Fofana,

Bo Zhang and Alberto Geri

Received: 29 June 2021

Accepted: 16 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Grid Sichuan Electric Power Company, Chengdu 610041, China; hanxiaoyansc@163.com (X.H.);
dhluo@foxmail.com (D.L.); 87085306@163.com (Y.C.); zy863129@163.com (Y.Z.)

2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
3 State Key Laboratory of Power Transmission Equipment and System Security and New Technology,

Department of Electrical Engineering, Chongqing University, Chongqing 400044, China;
13364069369@163.com

* Correspondence: 20191113048t@cqu.edu.cn; Tel.: +86-199-3607-8561
† This paper is an extended version of our paper published in International Conference on High Voltage

Engineering and Application 2020, Beijing, China, 6–10 September 2020.

Abstract: When the lightning current enters the ground through the grounding system, the impulse
dispersion performance can be observed by the phenomenon of soil spark discharge, which is
fundamentally determined by the nearby soil. At present, engineers use an empirical formula to
convert the soil spark discharge to the impulse coefficient of impulse grounding resistance. Therefore,
there is no available quantitative analysis method to evaluate soil impulse dispersion performance.
To solve this problem, this paper proposes an evaluation method for the impulse discharge efficiency
of soil by using X-ray images, define VI as the parameter, which is the ratio of the volume of the
discharge area to the peak current. Then, the rationality and validity of the method are verified.
Finally, the variation rules of impulse discharge efficiency are analyzed in different soils. Results
show that the VI can reflect the change rules of impulse dispersion performance more clearly under
different soil conditions, and this parameter provides a new idea for enhancing the impulse dispersion
performance of soil near the grounding electrode.

Keywords: high soil resistivity; soil discharge; X-ray imaging; super absorbent polymer; impulse
discharge performance

1. Introduction

Soil is the key to affect the impulse dispersion performance of grounding devices [1].
Especially, spark discharge will occur when the impulse current is injected into the ground
electrode, which significantly enhances the impulse dispersion performance of the ground-
ing device [2,3]. Therefore, the accurate evaluation of soil impulse dispersion performance
can provide a basis for the selection of soil resistance reduction measures [4].

At present, due to the lack of effective observation methods, it is impossible to carry out
accurate quantitative analysis on the real topography of soil discharge area. Reference [5]
conducted impulse breakdown experiments on the soil between spherical electrodes by
building a cylinder test tank in the laboratory, and the breakdown discharge path of soil
was obtained by X-ray film. In [6], the impulse discharge experiment of a suspended
electrode on the soil surface was carried out in a hemispherical iron pot with a diameter
of 10 cm, and the soil spark discharge channel was recorded by the conductive paper.
Reference [7] obtained the actual soil discharge channel through field test excavation. In
the above studies, due to the fuzzy measured results, the discharge channels obtained
cannot be used as a quantitative index to evaluate the soil impulse dispersion performance.
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The impulse dispersion performance of the grounding device is determined by the
structure and size of the grounding electrode, the impulse dispersion performance of the
soil, and the buried depth of the grounding electrode. However, when the impulse current
flows into the ground, the intensity of the instantaneous electric field in the ground near
the electrode will exceed the intensity of the soil’s critical breakdown field, and the spark
discharge area will appear at the end of the electrode. A large number of experimental
studies found that the soil discharge area is affected by the distribution of the electric field
in the ground and that soil discharge is unpredictable. The existence of a soil discharge
area can greatly improve the impulse dispersion capacity of the soil near the grounding
electrode [8–12]. At present, there is still a lack of a visualized index to evaluate the impulse
dispersion performance of soil, which is mainly characterized by the critical breakdown
field strength and residual resistivity of typical soil, which are not easy to be applied in
practical engineering [13–15].

However, at present, there is no unified understanding of the mechanism of soil
impulse discharge among scholars at home and abroad, and different researchers have
proposed a variety of viewpoints on soil impulse discharge based on experimental ob-
servations [16]. In reference [17], the characteristics of soil ionization were firstly taken
into account in the soil dispersion model, and it was proposed that there is an ionization
region around the grounding device under the effect of impulse current, and its structure
was considered to be an axisymmetric cylindrical structure about the electrode. Based
on the same idea, a hemispherical discharge model was proposed in reference [18]. In
reference [19], a cylindrical discharge model was proposed after considering the spatial
inhomogeneity of current in the earth. A penetrating X-ray imaging technology was first
applied in reference [20] to study the soil ionization under surge current and to calculate
the soil residual resistivity of discharge area by a finite-element method, according to
experiment parameters and a 3-D diagram of the discharge area. Reference [21] calculated
the volume of successive impulse discharge channels in the ground under various currents
and soil conditions. It also analyzed the changing law with time intervals based on the
gray information analysis method and improved the four-zone model of soil under im-
pulse current. Reference [1] proposed a four-zone soil discharge model. In the process
of impulse dispersion, the soil’s electric field intensity near the grounding pole gradually
decreases outward, which can be divided into four regions: arc region, spark discharge
region, semiconductor region, and constant conductivity region. The above soil impulse
discharge models are all based on the assumption that soil is isotropic. However, soil is
a polymorphic composite medium containing solid soil particles, liquid water, and air.
Therefore, ignoring the influence of anisotropy of the soil on the impulse discharge process
will be different from the actual situation. Reference [7] found that the actual soil discharge
area was different from the above hypothesis through field experiment excavation, but was
a channel structure with fewer branches. It can be seen that when the impulse current is
injected into the soil, the intensity of the soil’s electric field at the end of the grounding will
exceed the intensity of the critical breakdown field of the soil, and a concentrated discharge
area will be generated, forming a breakdown channel structure.

In summary, there is still a lack of suitable quantitative methods to evaluate the soil
impulse dispersion performance in the near-ground area according to the data from various
sources. To solve this problem, based on the image observation of soil spark discharge [8,9],
a quantitative evaluation index was proposed to combine the discharge area and impulse
current amplitude of soil samples. The rationality and effectiveness of the method are
verified, and the variation law of the impulse dispersion performance of grounding devices
is analyzed in soil samples with different properties. This method can quantitatively
evaluate the impulse dispersion performance of the soil near the ground electrode, which
provides a new idea for enhancing the impulse dispersion capability of the soil near the
ground electrode.
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2. Theoretical Derivation of Characteristic Quantity of Soil Impulse Dispersion
Performance

Generally, the common grounding device of transmission line towers consists of
horizontal or vertical ground electrodes [22–24]. Taking the vertical electrode structure as
an example, the process of soil dispersion is analyzed theoretically. In Figure 1, the radius
of the ground electrode is r0, the length is l, and it is buried in the ground vertically. The
soil resistivity is ρ, and the soil discharge area is a slender cylindrical channel with a bottom
radius of r’, a length of l’, and a current of I, which flows into the medium through the rod.
In this paper, a mirror electrode and discharge region with a length of (l + l’) are assumed
under the ground by means of mirroring, and the semi-infinite space in the calculation of
the current field is transformed into infinite space.
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When no discharge occurs in the soil, assuming that the current density is δ at any
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If the electrode potential u is equal to the potential up on the surface of the midpoint
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When soil discharge occurs, the residual resistivity drops to about 0.003, 62% of the
initial soil resistivity [8], which is close to the metal resistivity. The grounding resistance of
the ground electrode is:
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According to (5), the reduction of ground resistance is related to the volume parameter
of the area where soil ionization occurs. If the length of the ground electrode is 2.5 m, the
section radius is 4 mm, the length of the breakdown area is 0.5 m, and the radius r’ = 2r0,
then ∆R ≈ 0.145R, and the grounding resistance of ground electrodes is reduced by 14.5%.
It can be seen that the soil impulse diffusivity is an important factor affecting the diffusivity
of the ground electrode.

A larger discharge area leads to a more intense soil discharge process, which promotes
the release of lightning energy in the soil [25–27]. Moreover, the volume of the discharge
area increases with the rise of impulse current. VI defined as the equivalent value of soil
discharge volume per unit electric current, that is:

VI =
V
I

(6)

where, V is the volume of the soil impulse discharge area, cm3; I is the amplitude of the
ground current, kA.

A small value of VI indicates that there is a space to further improve the impulse dis-
persion performance of the ground electrode by modifying soil. Therefore, the parameters
can reflect the impulse dispersion performance of grounding device directly and clearly.

3. Test Method of Soil Impulse Dispersion near the Area of Ground Electrode

From the above analysis, it can be seen that it is necessary to put forward a method
to obtain the specific structural parameters of the soil discharge area. The soil impulse
discharge observation platform is shown in Figure 2. The impulse current is generated
and applied to the ground electrode and recorded by oscilloscope. Then, an X-ray imaging
system was used to image the discharge area in the soil; finally, the spatial structure of the
soil discharge area is obtained by image processing.
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 Figure 2. Sketch of the impulse current test setup: T1: Voltage regulator; T2: Voltage booster; D:
Rectifier; r: Protective resistance; C: Charging capacitor bank; G: Sphere gap; L: Wave modulated
inductance; R: Wave modulated resistance; XRG: X-ray generator; CT: Electric current transducer; ST:
Sample sandbox; GE: Grounding electrode; VD: Voltage divider; DIP: Digital imaging plate; DSO:
Oscilloscope; IPS: Image processing system.

In the experiment, glass fiber was prepared with a side length of 0.2 m and a thickness
of 0.01 m. The cylindrical vertical ground electrode was selected with a diameter of 0.0025 m
and a length of 0.15 m. Besides, the distance is 0.1 m between the electrode bottom and the
sides of the test groove. The conductive copper foil is embedded in the inside of the test
groove as the ground electrode, and the distances are equal between the ground electrode
terminal and each side of the copper foil.

According to the image of the soil spark discharge area, the three-dimensional (3D)
reconstruction algorithm of two-stage stretching is adopted to obtain the 3D structure of
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the soil discharge area [28,29]. According to the soil sample discharge image, the volume
of soil spark discharge area was calculated using the method given above, and the value of
VI of soil sample discharge area could be calculated according to (6). The measured value
of ground resistance Rch1 can be obtained by calculating the current and voltage waveform
recorded by the oscilloscope.

4. Study on the Validity of the Paper’s Method and the Main Influence Factors

It can be seen from the above analysis that it is feasible to use the equivalent value,
which represents soil discharge volume per unit electric current (VI), to describe the
evaluation index of the near-area soil impulse dispersion ability. In order to further verify
its validity and rationality, this paper carried out a comparative experiment on the near-area
soil dispersal capacity.

4.1. The Validity Analysis of the Method for Evaluating the Near-Area Soil Impulse Dispersion
Capacity

In actual engineering, the empirical formula is used by translating the soil spark
discharge effect into the impulse coefficient of grounding device, as shown in Equation (7):

Rch = αR (7)

where: R is the power frequency grounding resistance of the grounding device; α is the
impulse coefficient, and the range is 0.5~3. In engineering, α is usually based on the
geometric size of the grounding electrode, soil resistivity, and other parameters, which are
set as 0.85 [1] in this paper.

In order to verify the effectiveness of soil discharge volume per unit electric current
(VI) as an evaluation index of the dispersion capacity of grounding device, this paper
carried out a comparative test study on the near-area soil dispersion capacity. First of
all, by adding super absorbent polymer (SAP) and regulating soil water content, soil
samples with a resistivity of 50 Ω·m and different moisture content were prepared [30–32].
Then, an impulse current with an amplitude of 2.0 kA was applied to the soil samples.
The image of the soil discharge channel could be obtained by X-ray projection imaging
technology, and the structural parameters of the soil discharge area could be calculated
by using the three-dimensional reconstruction method. Finally, the value of VI of the soil
sample’s discharge area can be calculated by using Equation (6), combining the amplitude
of measured impulse current. At the same time, the oscilloscope can be used to record the
current and voltage waveform on the grounding conductor, so as to obtain the measured
value of the impulse grounding resistance Rch. Formula (7) can be used to calculate the
value of empirical impulse grounding resistance R’ch.

The images obtained in the experiment are shown in Figure 3, and the impulse current
and voltage waveform on the grounding conductor are shown in Figure 4. VI, R’ch, Rch are
shown in Table 1.

The moisture in Table 1 was determined by the experimental measurements, and
four typical results were chosen from the experiment due to space constraints. Since
that the soil resistivity of the soil sample, the grounding resistance R, and the impulse
coefficient values α of Formula (7) do not change, the calculated value of the impulse
grounding resistance Rch2 does not change, while the measured grounding electrode’s
impulse grounding resistance Rch1 decreases slightly, this is because the impulse current
applied in every soil sample was the same, but only the impulse voltage showed a slight
difference, which were 39 kV, 38.42 kV, 37.2 kV, and 35 kV, respectively. This also results in
very little difference in the values of Rch1 calculated in Table 1, but the VI of the discharge
area of the soil sample increases greatly. As can be seen, there was a large change in
resistance when the soil moisture only changed by 1.36%, which means that when the
moisture of the sample chosen was near this value, the change of impulse grounding
resistance was more sensitive, and a small change of water content would cause a large
change of impulse grounding resistance. The change of impulse grounding resistance was
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very slow before this value, so it showed that with the increase in water content, the impulse
grounding resistance changed more and more obvious, and the value of VI showed the
same rule, which proved that the conclusion is correct and that VI has a certain correlation
with the impulse grounding resistance. The results also showed that VI is better than the
impulse grounding resistance when we evaluate the impulse dispersion performance of
the grounding device because VI is more obvious than the impulse grounding resistance
calculated by the waveform recorded. Therefore, compared with the empirical formula
calculation method commonly used in engineering, the VI ’s value, which is based on the
image characteristics of soil impulse dispersion, can more clearly indicate the influence of
the change of soil medium properties and describe the impulse dispersion capacity of the
grounding equipment in the process of impulse dispersion.
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Figure 3. Images of soil with the same resistivity and different water content: (a) The moisture is
23.56%; (b) moisture is 39.14%; (c) moisture is 40.50%; (d) moisture is 48.80%.
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Table 1. VI and Rch2 of soil with the same resistivity that is 50 Ω·m and different water content.

Soil Water Content/% Calculated Impulse Grounding
Resistance Rch2/Ω

Measured Impulse Grounding
Resistance Rch1/Ω

Soil Discharge Area
VI/(cm3/kA)

23.56 35.9 19.50 22.27
39.14 35.9 19.21 23.75
40.50 35.9 18.60 26.18
48.80 35.9 17.50 34.48

4.2. Correlation Analysis between VI and Rch

This paper also carried out the correlation analysis between VI and impulse grounding
resistance Rch. According to the analysis above, there is a negative correlation between the
two parameters. In order to facilitate the analysis, the correlation between the reciprocal of
the impulse grounding resistance and VI of the grounding device is analyzed.

In this paper, soil samples with a resistivity of 100, 300, 500, 700, and 1000 Ω·m are
selected, which are impinged a current of 2.0 kA to carry out the comparative test of near
area soil dispersal capacity. Some images obtained from the test are shown in Figure 5, the
impulse current and the impulse voltage waveform on the grounding conductor are shown
in Figure 6, and the variation rule of VI and Rch’s reciprocal is shown in Figure 7.
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As can be seen from Figure 7, The change rule of the equivalent value of the soil 
discharge volume per unit electric current is the same as that of the reciprocal of the 
grounding resistance of the grounding electrode. The calculated correlation coefficient r 
is shown in Table 2. 

Table 2. VI and reciprocal of Rch of different soil resistivity. 

The Variables Correlation Impulse Grounding Con-
duntance 

VI and reciprocal of Rch 
Person correlation index r 0.985 

Significance(bilateral) 
Number of sample M 

0.002 
5 
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As can be seen from Figure 7, The change rule of the equivalent value of the soil
discharge volume per unit electric current is the same as that of the reciprocal of the
grounding resistance of the grounding electrode. The calculated correlation coefficient r is
shown in Table 2.

Table 2. VI and reciprocal of Rch of different soil resistivity.

The Variables Correlation Impulse Grounding
Conduntance

VI and reciprocal of Rch
Person correlation index r 0.985

Significance (bilateral)
Number of sample M

0.002
5

According to Table 2, under different soil resistivity, the correlation coefficient r of VI
and Rch’s reciprocal is above 0.9, showing a significant correlation. Therefore, the evaluation
method of the near-area soil impulse dispersion performance proposed in this paper can
directly depict the impulse dispersion performance of soil media, it is proved to be feasible
and effective enough to enrich the evaluation system of the impulse dispersion ability of a
grounding device, complementing the evaluation method of the soil impulse dispersion
performance.

4.3. Variation of VI with the Content of SAP

In order to compare and analyze the change of the volume of the modified soil dis-
charge area under the equivalent unit current under different content of SAP, soil moisture
content was controlled to be 5% and soil density was controlled to be 1.25 g/cm3. Modified
soils with a content of SAP of 0%, 0.1%, 0.25%, and 0.5% were prepared, respectively.
The amplitude of the impulse current was 2.0 kA when the ground electrode in the soil
modified by SAP was injected. Figures 8–11 show the topography of the discharge area ob-
tained during the impact diffuser test, the impulse current and impulse voltage waveforms
flowing through the modified soil are shown in Figures 12–15.
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Figure 16 shows that with the increase in the content of SAP in the soil, the impulse
grounding resistance of the soil decreases slightly, and the value of VI in the soil discharge
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area increases gradually. SAP changes the ratio of solid, liquid, and gas in the soil, and it
reduces the resistivity of the soil dispersion area, so it makes the soil discharge process
more intense, which is macroscopically represented by the increase in the volume of the
discharge area. When the SAP’s content was 0.5%, the value of VI of the dispersion zone in
the modified soil was 24.59 cm3/kA. Compared with the modified soil without SAP, the
value of impulse grounding resistance decreased by 10.26%, and the value of VI increased
by 3.54 times. Compared with the impulse grounding resistance’s value of the grounding
electrode, the change of the value of VI of the soil is more obvious, and it is less affected
by the test conditions. Therefore, in areas with high soil resistivity, when SAP is used
to modify the soil near the grounding electrode, the long-term effectiveness of SAP’s
resistance reduction performance can be monitored based on the size of VI’s value.
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4.4. Variation of VI with Water Content of Modified Soil

In order to compare and analyze the dispersion efficiency of the soil near the grounding
conductor under different water contents, this paper selects the modified soil with different
water contents to carry out the comparative test of the dispersion efficiency of the soil
near the grounding electrode. Keeping the mass ratio of the modified material to the
unmodified soil equal to 5:1000 and the soil density equal to 1.25 g/cm3, the water content
of the modified soil was adjusted to 10%, 15%, and 25%, respectively. The amplitude
of the impulse current is 2.0 kA when the ground electrode of modified soil is injected.
Figures 17–19 show the morphologic characteristics of the discharge area obtained during
the impulse dispersion test process. Figures 20–22 show the impulse current and impulse
voltage waveform when the current flows through the modified soil.
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Figure 17. Images of modified soil with water content of 10%: (a) Before breakdown; (b) front view;
(c) side view; (d) top view.
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Figure 18. Images of modified soil with water content of 15%: (a) Before breakdown; (b) front view;
(c) side view; (d) top view.
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Figure 19. Images of modified soil with water content of 25%: (a) Before breakdown; (b) front view;
(c) side view; (d) top view.
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Figure 20. Current and voltage waveform of modified soil with the water content of 10% when
injected into the impulse current
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Figure 22. Current and voltage waveform of modified soil with the water content of 25% when
injected into the impulse current.

As can be seen from Figure 23, with the change of water content in the modified soil,
the value of VI in the spark discharge area in the modified soil increases, and the value of
impulse grounding resistance of the grounding electrode gradually decreases, indicating
that the dispersion performance of the modified soil is also continuously enhanced. In
addition, when the moisture content of the modified soil was 25%, VI was 20.10 A/cm3,
which decreased by about 55.47% compared with that of 5%. This indicates that modified
soil with higher moisture brings a discharge process with greater intensity and a better
dispersion capacity of the impulse current. This is because SAP absorbs sufficient water in
the modified soil, and a large number of water molecules fill the air gap between the soil
particles, which reduces the resistivity of the modified soil near the grounding electrode.
At the same time, with the increase in moisture in the soil, water film appears on the
contact surface between the grounding conductor and the soil, which reduces the contact
resistance, and the soil discharge process becomes more intense, which is macroscopically
represented by the increase in the volume of the soil discharge area.
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5. Conclusions

In this paper, X-ray imaging technology is used to observe the discharge area in the
soil, and the equivalent value of the discharge volume of the soil per unit electric current
(VI) is proposed as an index to evaluate the soil impulse dispersion performance in the
near-area of the grounding device. The feasibility and effectiveness of the method were
verified by the simulation test, and the variation law of impulse dispersal capacity of soil
samples with different properties was analyzed. Specific conclusions are as follows:



Energies 2021, 14, 5124 14 of 15

• The proposed equivalent value of soil discharge volume per unit electric current,
combined with the image characteristics of soil impulse discharge, can directly reflect
the dispersion of the impulse current in the soil, and the results of the evaluation can
reflect the change law more significantly than the results calculated by an empirical
formula and measurement waveform. However, the limitation is that other types of
soil and soil heterogeneity are not considered.

• The experimental results show that when the samples’ soil resistivity is the same
and the soil moisture content is different, the VI of the soil medium is different, and
increases with the increase of the moisture content, but the value of the empirical
formula recommended by the regulations remains unchanged.

• In the area of high soil resistivity, when the VI ’s value is small, it indicates that there
is space to further improve the impulse dispersion performance of the grounding
electrode by modifying the soil.

• With the increase in the content of SAP, the VI of the discharge zone of the soil increased
gradually. When the content of the modified material was 0.5%, the VI’s value of the
dispersion zone of the soil modified by SAP was 24.59 cm3/kA. Compared with the
modified soil without SAP, the impulse grounding resistance decreased by 10.26%,
and the value of VI increased by 3.54 times.

• With the increase in moisture content of the soil modified by SAP, the discharge process
of soil becomes more intense, and the impulse dispersion performance is better. In the
soil modified by SAP, VI is 20.10 cm3/kA when the water content is 25%. Compared
with the modified soil with 5% water content, VI increases by about 55.47%.

In this article, the sand was the only test sample to be modified, and then this paper
explored the impulse dispersion performance of modified soil. Therefore, in the future,
the modification of other types of soil is expected to be carried out to study their VI
characteristics, such as gravel soil, clay soil, frozen soil, etc. In addition, the experimental
platform is going to be updated to increase the amplitude of the impulse current, to permit
double impulse current, and to increase the size of soil samples, so as to study whether
the change rule of VI’s value under the uneven soil model is still applicable. Finally, on
the basis of all the research, the evaluation method of the impulse dispersion performance
of various existing grounding resistance reduction materials and resistance reduction
schemes will be studied, so as to select the most effective resistance reduction measurement
to minimize the grounding resistance in high soil resistivity areas and provide a safer
grounding environment.
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