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Abstract: This paper presents a comprehensive review of the developments made in rotating bearing
fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven
fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and
decision making based on shallow/deep learning algorithms. In this review paper, various signal
processing techniques, classical machine learning approaches, and deep learning algorithms used for
bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets
that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve Uni-
versity (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems
(IMS), are discussed in this paper. A comparison of machine learning techniques, such as support
vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such
as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep
belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that
have been utilized for the diagnosis of rotary machines bearing fault, is presented.

Keywords: auto-encoders; bearing; condition monitoring; convolutional neural network; deep belief
network; deep learning; fault diagnosis; machine learning; recurrent neural network

1. Introduction

Motion is powered by electromechanical systems, which account for around 70% of
the gross energy consumption in industrialized economies [1]. By 2017, the global market
was at the size of USD 96,967.9 million, and is expected to reach USD 136,496.1 by the year
2025 [2]. One of the basic components that is used in industries is an electrical motor that
converts electrical energy into mechanical energy.

Specifically, based on motor types, the global market is divided into DC, or AC or
hermetic motors, which in turn are further subdivided as:

• Alternating current (AC) motors, synchronous AC motors, and induction AC motors;
• Direct current (DC) motors and brushless DC motors;
• Hermetic motors.

The global market of electric motors can be further classified based on operating
industries such as automotive vehicles, industrial machinery, aerospace, household, and
commercial applications. In the manufacturing and automotive industries, due to an
increase in demand for compressor systems, the industrial segment contributed the largest
share in the year 2017, which is even estimated to increase by 2025 [3].

Figure 1 provides the continent-wise market shares of electric motors’ global usages
and Figure 2 presents application-wise usages of electric motors in 2017 and their forecasts
by 2025.

An electric motor consists of different apparatus such as a rotor, bearings, stator, air
gap, commutator, and windings. Among these parts, a bearing is the core of the rotating

Energies 2021, 14, 5150. https://doi.org/10.3390/en14165150 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1823-1304
https://doi.org/10.3390/en14165150
https://doi.org/10.3390/en14165150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14165150
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14165150?type=check_update&version=1


Energies 2021, 14, 5150 2 of 24

motor as it supports and locates the rotor to keep the air gap small and consistent, and
it transfers the load from the motor to shaft. It is one of the most important mechanical
components to diminish the friction between the rotating and stationary elements [4]. If the
equipment fails to work during the use, it will affect the systems operations and can even
cause serious economic losses and casualties. According to the literature review, around
50–60% of the failure of induction rotating machines is caused by bearing [4]. Therefore,
fault diagnosis of a rotating machine bearing is inevitable to avoid the unexpected break-
down. An effective fault diagnosis of the bearing can ensure the efficient operation of the
systems, and it detects and identifies the bearing faults during the operation of the motor.
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Over the past few decades, researchers have carried out extensive research on bearing
fault diagnosis. Additionally, new approaches and research are emerging in this field with
the advancement of technology and industrial techniques. The work consists of various
techniques that focus on different domains of the bearing fault diagnosis pipeline. For
example, some researchers focused on the effective classification mechanism consisting
of machine learning and deep learning techniques, while others dedicated themselves to
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signal processing techniques to handle complex and nonlinear signals which are normally
encountered during the fault diagnosis process.

This paper reviews the machine learning and deep learning algorithms used for
bearing fault bearing diagnosis and discusses the future direction in this field. The main
contributions are as follows:

1. A detailed analysis of a standard bearing fault diagnosis pipeline is given;
2. An overview of shallow machine learning techniques used in the field of bearing fault

diagnosis and their limitations;
3. A systematic review of the literature available on bearing fault diagnosis in the last

decade mainly focusing on the application of deep learning algorithms;
4. Discussion on the future directions in the field of bearing fault diagnosis.

The rest of the paper is organized in the following manner. Section 2 consists of
the common public datasets available for bearing motor fault diagnosis experiments.
Section 3 covers the classical and deep learning algorithm-based research on fault bearing
diagnosis. Finally, Section 4 shows deep-learning-based fault baring diagnosis research
and their comparison.

2. A Standard Pipeline of Bearing Fault Diagnosis

Bearings are essential elements in rotating machines which ensure smooth operation
by reducing friction among different components of the machine. Bearings are the main
contributor to the failure of rotary machines, accounting for around 50–60%, since they
have to operate in a harsh working environment [5]. An unexpected failure of the bearing
can cause sudden breakdown to the machine or result in the entire system collapse, which
could lead to huge financial loss and time wastage. Therefore, this sector receives signifi-
cant attention from researchers in an effort to find more efficient solutions. The general
diagnosis methodology consists of four steps, i.e., data acquisition, feature extraction,
feature selection, and fault classification, as shown in Figure 3.
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2.1. Data Acquisition

It is the process of sampling signals that calculates real-world physical conditions
and converts the result samples into the digital numeric values that a computer manip-
ulates. In the first step of diagnosis, it collects the vibration signals, acoustic emission
signals or electric motor current signals, that reflect the health status of bearings from the
sensor systems.

2.2. Feature Extraction

Feature extraction begins with a set of measured data and creates derived values
(features) that are intended to be useful and non-redundant, easing the learning and gener-
alization phases and, in some situations, resulting in superior human interpretations. It
converts the raw signals into statistical characteristics that convey information about the
machine’s status, which is known as feature extraction. In order to obtain high-accuracy
recognition outcomes, the feature extractor design plays a vital part in the pattern recogni-
tion challenge. The actual bearing failure signals gathered from rotary machines are in the
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time domain, and we may extract characteristics from signals in the time domain, frequency
domain, and time–frequency domain. They can be investigated in the frequency and time–
frequency domains using the appropriate transformation tool in the respective domains.

2.3. Feature Selection

Feature selection is the process of minimizing the number of input variables when
creating a predictive model; the number of input variables should be reduced to lower the
computational cost of modeling and, in some situations, to increase the model’s perfor-
mance. It chooses the most discriminant features, such as feature sets with high dimensions,
which means having redundant and irrelevant features, which increases learning time,
lowers classifier performance, and necessitates a lot of computation. The feature selection
stage improves the classification accuracy while also reducing the calculation time. The two
most frequent methods for feature selection are: (1) creating a new feature set with inferior
dimensions from the extracted feature set. This might be accomplished using Independent
Component Analysis (ICA) and Principal Component Analysis (PCA). (2) Using specific
benchmarks, deleting non-sensitive or unneeded features. One of the most prominent
approaches for this problem is Sequential Selection (SS).

2.4. Bearing Fault Diagnosis/Classification

After selecting the features, they must be passed into a learning-based classifier such as
the k-nearest neighbor (KNN), artificial neural network (ANN), or support vector machine
(SVM), one-dimension convolutional neural network (1D-CNN), strongly regularized deep
convolutional neural network (SRDCNN), etc. to detect the bearing defect.

3. Dataset for Fault Bearing Experiment

A reliable and accessible dataset is required to develop data-driven bearing fault
diagnosis methodologies. However, to collect data from a naturally degraded bearing is
a time-consuming process. Therefore, most researchers prefer datasets with artificially
induced faults on bearing. Some organizations and research centers have made efforts
to create datasets and provide open access to researchers across the globe, which helps
researchers to implement and evaluate bearing fault diagnosis algorithms. Some of the
available popular public bearing datasets are discussed as follows.

3.1. Case Western Reserve University Bearing Dataset

Case Western Reserve University (CWRU) bearing data is a public dataset that is
collected from a test rig, shown in Figure 4 [6]. The testbed contains (a) two HP motors,
(b) a torque transducer/encoder, (c) a dynamometer and control electronics. According
to the description available for the data, different single-point faults were introduced on
both the bearings, i.e., the driven end as well as fan end, with an electro-discharge machine
having fault diameters of 7, 14, 21, 28, and 40 mils on the rolling elements, inner and outer
raceways. Moreover, the dataset consists of vibration signals collected under a sampling
frequency of 12 kHz, where the motor speed varies from 1720–1797 revolutions per minute
(RPM) and load variations of 0 to 3 HP by using accelerometers (sensors) installed on the
fan- and drive-end bearings of the motor.
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3.2. Paderborn University Bearing Dataset

The Paderborn University dataset is another public archive for bearing datasets [7].
The testbed used for data collection consists of (a) a test motor, (b) a measuring shaft,
(c) a bearing module, (d) a flywheel, and € a load motor, as depicted in Figure 5. The
collected dataset contains synchronous vibration measurements in addition to motor
current measurements. Sensors used in the equipment are one accelerometer, two current
sensors, and 1 thermocouple. Vibration signals are under high resolution and 64 kHz
sampling frequency. Experiments are carried out on perfectly working 6 perfectly working
bearings and 26 damaged bearings, out of which, 12 are artificially damaged and the rest
contain real damages triggered by accelerated tests.
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flywheel, and (e) a load motor.

3.3. PRONOSTIA Dataset

PRONOSITA is a useful dataset that contains a real portrayal of the real-time degra-
dation of bearings under different conditions [8]. Its testing equipment consists of the
following components: (a) NI CDA Q cards, (b) a pressure regulator, (c) cylinder pressure,
(d) a force sensor, (e) the bearing tested, (f) accelerometers, (g) platinum RTD, (h) coupling,
(i) a torquemeter, (j) a speed reducer, (k) a speed sensor, and (l) an AC motor. Two uni-axis
accelerometers of 25.6 kHz sampling frequency which are installed in horizontal and ver-
tical positions, as can be seen in Figure 6. Equipment is categorized as a rotating speed
sensor and force sensor.



Energies 2021, 14, 5150 6 of 24
Energies 2021, 14, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 6. An illustration of PRONOSTIA testbed for bearing run-to-failure dataset. In the fig-
ure. (a) NI CDA Q cards, (b) a pressure regulator, (c) cylinder pressure, (d) a force sensor, (e) 
the bearing tested, (f) accelerometers, (g) platinum RTD, (h) coupling, (i) a torquemeter, (j) a 
speed reducer, (k) a speed sensor, and (l) an AC motor. 

3.4. IMS Dataset 
This dataset is by the Intelligent Maintenance Systems (IMS) industry of the Univer-

sity of Cincinnati [9]. This dataset contains the natural bearing defect evolution, and con-
tains a complete set of vibration signals from initial state to the failure with explicit time 
stamps, for which the bearing was kept running for 30 consecutive days on a fixed speed 
of 2000 rpm, which covers 86.4 million cycles before the confirmation of the defect [10]. 
The equipment contains (a) two accelerometers, four bearings as b1, b2, b3 and b4, (c) a 
radial load, and (d) four thermocouples which are attached to the outer race of each bear-
ing. The collected vibration data are recorded repeatedly after 5 and 10 min for 1 sec with 
a 20 kHz sampling rate. The structure is illustrated below in Figure 7. 

Table 1 provides a summary of different bearing datasets mentioned above.  

 
Figure 7. An illustration of the Intelligent Maintenance Systems (IMS) test rig for bearing run-to-
failure dataset. In the figure, (a) two accelerometers, four bearings as b1, b2, b3 and b4, (c) a radial 
load, and (d) four thermocouples which are attached to the outer race of each bearing. 

Figure 6. An illustration of PRONOSTIA testbed for bearing run-to-failure dataset. In the figure.
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3.4. IMS Dataset

This dataset is by the Intelligent Maintenance Systems (IMS) industry of the University
of Cincinnati [9]. This dataset contains the natural bearing defect evolution, and contains a
complete set of vibration signals from initial state to the failure with explicit time stamps, for
which the bearing was kept running for 30 consecutive days on a fixed speed of 2000 rpm,
which covers 86.4 million cycles before the confirmation of the defect [10]. The equipment
contains (a) two accelerometers, four bearings as b1, b2, b3 and b4, (c) a radial load, and
(d) four thermocouples which are attached to the outer race of each bearing. The collected
vibration data are recorded repeatedly after 5 and 10 min for 1 sec with a 20 kHz sampling
rate. The structure is illustrated below in Figure 7.
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Table 1 provides a summary of different bearing datasets mentioned above.

Table 1. Comparison of motor bearing datasets.

SL Dataset Total Sensors Sensors Type Sample Frequency

1 Case Western Reserve University 2 Accelerometer 12 and 48 kHz

2 Paderborn University Dataset 1/2/1 Accelerometer, Current
sensor, and thermocouple 64 kHz

3 PRONOSTIA Dataset 2/1 Accelerometer and
thermocouple 25.6 kHz

4 Intelligent Maintenance
Systems Dataset 2 Accelerometer 20 Hz

3.5. Highlights of the Datasets

In Section 3 of this article, titled “Dataset for Fault Bearing Experiment”, details four
public datasets for fault bearing diagnosis have been elaborated upon. We conclude that
the dataset Case Western Reserve University (CWRU) is one of the most used datasets
for fault bearing diagnosis, as well as detection. The Paderborn University Dataset is
considered as most efficient one that contains a real portrayal of the real-time degradation
of bearings under different conditions. It has four sensors and a sampling frequency of
66 kHz. Moreover, the Intelligent Maintenance Systems Dataset contains the natural bearing
defect evolution; both can be used for fault detection and the prediction of remaining useful
life (RUL).

3.6. Effects of the Datasets

There are various conditions that effect the datasets; different datasets give different
results on same training models.

A fault bearing dataset is composed of a signal, and a signal is made up of three
components: (1) frequency, (2) amplitude, (3) phase. These properties of the signals vary
from one fault to another, and variations in the signals can be observed within the signals
of same health type if they are collected under different working conditions. So, the
type of data used in the bearing fault diagnosis process has significance, as it affects the
performance of the developed model. Figure 8 [11] illustrates vibration signals for a healthy
bearing (HB), a bearing with an outer race crack (BORC), a bearing with a rough inner
surface (BRIRC), a ball with corrosion pitting (BCP), and combined bearing components
defects (CBD) at 2000 rpm with no loader [10]. It is evident from the figures that all the
signals possess different waveforms; furthermore, these waveforms can undergo significant
variations if the working conditions of the machinery during the data collection process
changes. Table 2 shows the parameters/conditions that effect the signals.

Table 2. Parameters that effect the signals of datasets.

S. NO. Parameters

1 Bearing specification (brand/model)
2 Outer race diameter
3 Inner race diameter
4 Ball diameter
5 Ball number
6 Contact angle
7 Clearance
8 Noise
9 Phase angle

10 Change in amplitude
11 Change in sampling frequency
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4. Shallow Learning for Bearing Fault Diagnosis

In a standard bearing fault diagnosis framework, the fault classification is normally
performed through traditional machine learning (ML) algorithms. The classical machine
learning algorithms are considered to be shallow, as they do not follow the concept of
deep networks. In return, the learning capability of the shallow networks is limited, and
hence fails to extract salient information from the complex, nonlinear, and high dimension
data. Therefore, to apply shallow learning for bearing fault diagnosis, researchers mostly
rely on the standard bearing fault diagnosis pipeline that includes feature extraction and
selection steps.

Classical ML Algorithms for Fault Bearing Diagnosis

Table 3 presents the classical machine learning algorithms used for bearing fault
diagnosis-related research, including the k-mean singular value decomposition (K-SVD)
dictionary algorithm for feature extraction [12], which can extract the fault frequency of
every band, and then the back propagation neural network (BP NN) can be applied for the
detection of failure type and to obtain the accurate fault bearing diagnosis. Similarly, [13]
proposed an ANN method for fault bearing diagnosis using a Local Binary Pattern (LBP)
histogram. It is based on the micro-texture analysis of vibration images with the local binary
patterns. In [14], the author proposed the use of infrared thermography (IRT) for bearing
fault diagnosis. For the decomposition of the thermal image, a two-dimensional discrete
wavelet transform (2D-DWT) was used. The dimensionality of extracted data was reduced
using principal component analysis (PCA), and then the most important characteristics
were determined. The support vector machine (SVM), linear discriminant analysis (LDA),
and k-nearest neighbor (KNN) were also evaluated as classifiers for fault classification and
performance evaluation. The results show that the SVM outperformed both the LDA and
the KNN. Furthermore, authors in [15] proposed a method that is based on sensing theory
which can collect and compress raw data effectively concurrently. In [16], authors proposed
the Energy Fluctuated Multiscale Feature (EFMF) mining method with the Deep ConvNet
model for spindle bearing fault diagnosis. W. Zhang et al. [17] proposed a novel DL method
using the residual learning algorithm for fault bearing diagnosis. P. Luo et al. proposed
LSTM (long short-term memory) for fault recognition, and a neural network to exploit the
fault detection for fault bearing diagnosis [18]. C. Wu et al. [19] proposed KMCSVC based
on the kernel matrix to find the fault locations and identify severities. In [20], authors
proposed a method to identify the bearing condition with statistical central moments time-
domain vibration and five maximum peaks and power spectral density, with the help of
ANN/SVM classifiers to obtain the high accuracy of bearing fault diagnosis. An automatic
method for bearing fault diagnosis based on pattern recognition and signal processing
technology with the combination of v-SVM for the detection of a fault was proposed in [21],
whereas in [22], authors proposed a technique based on the voltage, speed and stator
current of a machine for the diagnosis of bearing fault. This technique also detects lubricant
problems and is perfect for classification. An improved Ant Colony Optimization (ACO)
algorithm based on adaptive control parameters and the SVM (support vector machine)
model for correct fault bearing diagnosis was proposed [23]. Furthermore, an overview of
more classical ML-based research is presented in Table 3.
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Table 3. Comparison of classical algorithms for fault bearing diagnosis.

Author Year Learning Method Average Accuracy Data Set

R. Zhang et al. [12] 2019 KSVD 70% ABLT—a bearing life
enhancement test bench

Khan and Kim [13] 2016 ANN-LBP histogram 100% CRWU

Ankush Mehta et al. [14] 2021 KNN-SVM-LDA 90% Experimental Setup

Zihan Chen. [15] 2017 2-stage matching pursuit 99.69% CWRU

Ding and He. [16] 2017 EFMF-ConvNet 98.8% CWRU

W. Zhang et al. [17] 2018 Residual learning algorithm 99.99% CWRU

Luo and Hu [18] 2019 LSTM-NN 98% CWRU

Wu et al. [19] 2017 KMCSVM 99.1% CWRU

Tyagi and Panigrahi [20] 2017 ANN-SVM 97.9% Experimental Setup

Fernández-Francos et al. [21] 2013 SVM 99%
100% ISM and CWRU

Yadav et al. [22] 2013 LS-SVM 87% 3-Phase Squirrel
cage induction

Deng et al. [23] 2016 IMASFD 97.67% CWRU

5. Deep Learning Algorithms Used for Fault Bearing Diagnosis
5.1. Convolutional Neural Network (CNN)-Based Bearing Fault Diagnosis

The CNN is inspired by the animal cortex and was introduced in 1994 for detecting
patterns from the input image to form a complex features map in a hierarchical way
(Fukushima, 1980). It has an advantage over other learning algorithms when dealing with
two-dimensional data, as it can autonomously learn the input data approximation through
their layered architecture. Therefore, it is considered as an efficient and end-to-end learning
system in which only a single objective function of a given model is to be optimized. The
basic architecture of the CNN is given in Figure 9.
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Figure 9. An architecture of convolutional neural network for rotating bearing fault diagnosis.

A group of researchers proposed an algorithm based on CNN, proposed in [24].
This work aimed to automate the feature extraction from the bearing signals using a
CNN so that the overhead of feature extraction and selection from bearing data could
be avoided. In [25], an adaptive hierarchical CNN equipped with a SoftMax classifier
which can automatically learn salient information from the vibration acceleration signals
was used for bearing fault diagnosis. The developed hierarchical adaptive network was
composed of two layers, i.e., the first layer was to identify the type of bearing faults
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and the second layer was to predict the severity of bearing faults. This model could
adaptively vary the learning rate of the model during the training phase, which enhances
the learning capability of the network significantly. Hence, the proposed model delivered
high-classification accuracy when tested with the unseen data in the testing phase and was
able to predict the fault severity effectively. Chen Lu et al. [26] proposed a health state
classification-based intelligent fault bearing diagnosis method, which was proposed to use a
hierarchical CNN, and it extracts features automatically from vibration signals. Meanwhile,
in [27], researchers proposed an idea of feature extraction from the bearing data acquired
through multiple sensors. The results of the proposed method suggest an enhancement
in the classification accuracy, because it is believed that data from multiple sensors is
enriched in salient information about the health status of the bearing as compared to the
single sensor data. Thus, the above-discussed CNN-based methods present that they can
achieve high and more reliable diagnosis performance. In [28], a multi-scale convolutional
neural network (MS-DCNN) was proposed, and researchers proved that a multi-scale
convolutional layer can expand and deepen the neural network for better learning, robust
feature representation which reduces training time and network parameters and a reduced
processing time. Furthermore, in [29], researchers proposed a method for bearing fault
diagnosis that ends the manual feature extraction by deep CNN for automatic feature
extraction and for adapting signal characteristics using the swarm optimization method.
Ince et al. proposed a monitoring system with implementation on the CNN [30]. This
method achieves high-level generalization and avoids the need for manual parameter
tuning and hand-crafted feature extraction. They claimed that their proposed method
does not need any form of transformation, feature extraction, and preprocessing. Their
proposed method can directly access the raw data to evaluate the bearing fault diagnosis
effectively. In [31], a method for monitoring bearing health was proposed. The proposed
system fuses the feature extraction and classification blocks of the common fault detection
approach into a single body at this state: the one-dimension convolutional neural network
(1D-CNN) learns exact optimized features from the raw data with BP training when
classification is performed by MLP layers. Wen et al., 2018 proposed a different method of
jointed signal analysis and DNN for bearing fault diagnosis, and applied the S transform
technique to obtain the time–frequency formulation of signals and developed a modified
CNN network [32]. In 2019 [33], proposed a deep CNN method that combines the detailed
convolution, the input gate structure of LSTM and the residual network for fault bearing
diagnosis, which shows higher denoising ability. In [34], a scheme based on the CNN
and the bi-spectrum analysis of the vibration signals was proposed. It is proposed that
this method can be used for bearing diagnosis under variable speed conditions. In [35], a
proposed method works on raw signals without any time-consuming hand-crafted feature
extraction process, and it works well when working load changes and working under noisy
environments. In [36], a new fault bearing diagnosis method was proposed by developing
a signal-to-image conversion method by using a famous motor bearing dataset, a self-
priming centrifugal pump dataset, and an axial piston hydraulic pump dataset. In [37],
a method of using the CNN structure using 2D images for fault bearing diagnosis was
proposed. In [38], an approach for fault bearing diagnosis using the 1D-CNN technique
was proposed, and it added a preprocessing step in the diagnosis pipeline which calculates
the frequency spectrum of vibration signals. Hao et al. proposed an end-to-end solution
for fault bearing diagnosis with one-dimensional convolutional long short-term memory
(1D-CLSTM) networks [39].

Further comparison of articles is discussed in Table 4. In these articles, the targeted
faults of the bearings are outer raceways, inner raceways, ball/roller element fault, B fault,
normal, damaged gear bearing, damaged bearing output shaft, motor current signals, and
vibration signals with different levels of efficiency and better utilization of deep learning
methods have been proposed.
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Table 4. CNN methods used for fault bearing diagnosis research comparison.

Refs. Year Learning Method Average Accuracy Dataset

Guo et al. [25] 2016 ADCNN 99.3% CWRU

Lu et al. [26] 2017 CNN 90% QPZ-II

Xia et al. [27] 2017 CNN 99.89% CWRU

Zilong and Wei [28] 2018 MS-DCNN 99.27% CWRU

Fuan et al. [29] 2017 DCNN 100% CWRU

Ince et al. [30] 2016 1D-CNN 97.4% Real-time motor data

Eren et al. [31] 2017 1D-CNN 97% IMS

Wen, Gao et al. [32] 2018 JCNN 99.94% CWRU

Zhuang et al. [33] 2019 SRDCNN 95% CWRU

Sohaib and Kim [34] 2019 CNN 90% CWRU

W. Zhang et al. [35] 2018 TICNN 95.5% CRWU

Wen et al. [36] 2017 LeNet-5 CNN
99.79% Famous motor bearing dataset

99.481% Self-priming centrifugal pump dataset
100% Axial piston hydraulic pump dataset

Oh and Jeong [37] 2019 SRDCNN 95% CWRU

Hasan et al. [38] 2019 CNN 90% CWRU

Hao et al. [39] 2018 TICNN 95.5% CRWU

5.2. Auto-Encoders-Based Bearing Fault Diagnosis

The unsupervised method of auto-encoders was first proposed in the year 1980 for the
pre-training of an ANN [40,41]. It is defined as a broadly implemented greedy layer-wise
neural network pre-training method. It is a unique neural network, since both its input and
output are the same. This network learns itself. ANN trains an auto-encoder which consists
of the encoder, bottleneck, decoder, and reconstruction loss. The encoder produces the new
features representation from the old feature’s representation. The bottleneck is a layer that
contains the compressed representation of the input data, which is the lowest dimension of
the input data. The decoder is the reverse of the encoder process and reconstruction loss is
the method that measures the performance of the decoder and how close the output is to
the original input. The output of the encoder is the input of the decoder. For imitating the
input as a final output, the ANN takes the mean square error among the original input and
output as the loss function and the decoder is released, while the encoder part remains.
Classifiers can employ the output of the encoder in the feature representation stage. The
general architecture of the encoder is illustrated in Figure 10.

AEs are trained by ANNs which comprise two parts, i.e., the encoder and decoder. Di-
verse research has been accomplished using AEs, including the first article which proposed
a tool that diagnosed bearing faults with massive data, using five layers of auto-encoder
from the frequency spectrum and effectively performed the classification of machines’
health, in which the accuracy of 99.6% was achieved [42]. Furthermore, authors proposed
the effective usage of the Gaussian kernel function and a deep auto-encoder network,
resulting in effective bearing fault diagnosis [43]. In [44], two-layered faults bearing diag-
nosis was proposed: one is for the identification of the fault pattern in the rotatory bearing
machine, and the second is for identification of the crack size in certain faults.

Article [45] states that fault bearing diagnosis using the capability of AEs and the high
training speed of an Extreme Learning Machine (ELM) provided a better classification
performance without explicit feature extraction. In [46], the feasibility of the Stacked
Denoising Auto-encoder (SDAE)-based fault bearing diagnosis with the use of health
state classification datasets from rolling bearings was proposed. In [47], a study on a
fault recognizer based on the SDAE to denoise and extract features from the raw vibration
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signals by stacking several denoising auto-encoders was proposed. In [48], a novel deep AE
feature learning method for rotating fault diagnosis was developed. In [49], a multi-sensor
feature fusion method for fault bearing diagnosis with SAE and DBN methods combination
was proposed. A bearing fault diagnosis solution comparison with multiple techniques,
proving that sparse auto-encoders are better and can be deployed in health, motors, and
air compressors, was proposed in [50]. In [51], a new method was proposed that works
on temporal vibration signals. WTA is used during the training stage to learn sparse
features that are suitable for fault bearing diagnosis. Additionally, to obtain improvement
in diagnosis result accuracy, soft voting method was applied. In [52], a method that
uses AE sensors with big data simplifies the signals using STFT to transform raw signals
from the time domain to the frequency domain for the generation of the spectrum matrix.
This spectrum generates sub-patterns to obtain the optimized DL structure, and then
the Large Memory Storage and Retrieval (LAMSTAR) network diagnoses the bearing
fault as proposed. This also presents an effective use of the deep auto-encoders network
in classification and feature extraction in fault bearing diagnosis, which minimizes the
time consumption rate and maximizes the accuracy rate. The average highest accuracy is
achieved in [46,48] of 100%, whereas other proposed solutions are also accurate and the
best as per their strategies. The targeted faults of the bearing are the inner raceway, outer
raceway, roller fault, normal, cage fault, vibration signals, eccentric fault, spalling fault,
misalignment fault, and abrasion fault. A survey of the results achieved through deep
auto-encoders used in fault bearing diagnosis of previous research is presented in Table 5.

Table 5. Auto-encoder methods used for fault bearing diagnosis research comparison.

Refs. Year Learning Method Average Accuracy Dataset

Feng Jia et al. [42] 2016 DNN-AE 99.6% Rolling element bearing and
Planetary Gearbox

Wang et al. [43] 2018 DNN-Gaussian radial basis
kernel function and AE 86.75% The aeroengine of aircraft

Sohaib et al. [44] 2017 SSAE-DNN 99.1% CWRU

Mao et al. [45] 2017 AE-ELM 100% CWRU

Lu et al. [46] 2017 SDA 84.01% CWRU

Guo et al. [47] 2017 SDAE 100% CWRU

Shao et al. [48] 2017 AFSA-SDAE 87.8% Gearbox
Electrical Locomotive roller bearing

Zhuyun Chen et al. [49] 2017 SAE-DBN 91.76% Rolling element bearing

Verma et al. [50] 2013 SAE 97.22% Air compressor

Chuanhao Li et al. [51] 2017 FC-WTA-AE 98.47% CWRU

Fischer and Igel [52] 2017 LAMSTAR 96% Bearing seeded
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5.3. Deep Belief Network (DBN)-Based Methods for Bearing Fault Diagnosis

The DBN is a deep neural network that is constructed from various layers of RBMs—
Restricted Boltzmann Machines [53]. Every RBM has layers of visible and hidden unit
layers, and there is a connection between visible and hidden layers. The generic structure
of the DBN is illustrated in Figure 11. There are multiple independent neurons in every
layer. (h1, h2, h3) are hidden layers, visible layer y, hidden layer x.
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The process of DBN learning begins from the lowest visible layer. The process com-
prises two stages: firstly, the RBM layers are pre-trained in a greedy method step by step.
In the second stage, fine-tuning of the complete network takes place for the parameter
adjustment of the network so that better performance can be achieved. The input data
approximation learned through the unsupervised training of the first RBM is inputted
to train the next RBM, and this training continues until the last RBM has been trained
and has learned the approximations successfully. Much research has been carried out in
previous years using the DBN in the field of bearing fault diagnosis [54]. In this paper, a
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new hierarchical bearing fault diagnosis method, NM, is adapted to the training process of
the DBN to directly extract deep data features from signals of the frequency domain. In [55],
an adaptive DBN with a dual-tree complex wavelet packet, which refines the measured
vibration signals to design the original set of features, was proposed. Additionally, this
method can recognize the different bearing faults. In [56], a bearing fault and severity
diagnosis framework was proposed by binding many techniques together to obtain more
accurate and capable bearing fault diagnostic algorithms. In [57], a method for rolling
bearing fault diagnosis is proposed that has three steps: DBNs are constructed according
to different hyperparameters, then IWV is used to determine every DBN’s weight matrix,
and then DBNs vote together to their respective matrix to obtain the final diagnosis result.
In [58], a hierarchical diagnosis network for conducting the rolling bearing fault diagnosis
was proposed, and researchers employed a wavelet packet transform representation of fault
features and a DBN to classify/detect the type of fault. In [59], an ADBN was proposed
that identifies the different conditions of bearing with DTCWPT, which measures vibration
signals to design real feature sets.

The comparison of articles containing DBN-based methods is shown in Table 6. The
targeted faults in these approaches were: health, inner raceway, outer raceways, nor-
mal, ball raceway, gear teeth breakage, broken bar, bowed rotor, stator winding defect,
unbalanced motor, defecting bearing and roller fault.

Table 6. DBN-based methods used for fault bearing diagnosis research comparison.

Refs. Year Learning Method Average
Accuracy Dataset

Shen et al. [54] 2019 HA-DBN 99.96% Bearing Test rig

Tao et al. [55] 2016 DBN 94.73% QPZ-II

Yu et al. [56] 2020 DBN-DS 99.69% Qingdao University of Technology
Bearing Fault Test rig

Liang et al. [57] 2018 DBN 84.2% CWRU

Gan et al. [58] 2016 HDN-DBN 99.78% CWRU

Shao et al. [59] 2017 Adaptive-DBN 96.89% CWRU

5.4. Recurrent Neural Network (RNN)-Based Methodologies

An RNN processes input data in a recurrent manner. The architecture of an RNN is
illustrated in Figure 12. The recurrent model can capture and model the sequential data
or time-series data as the path goes from its hidden to the output layer. It is a generalized
form of a Feed Forward Neural Network (FNN) that has internal memory. It gets to
train with back propagation. An RNN is recurrent, as they perform a similar function
for every input of data, whereas the output of the current input depends on previously
considered computation. Through Time (BPTT) and a notorious gradient vanishing issue
stemmed from its nature. To tackle this issue, LSTM is augmented by adding recurrent
forget gates. LSTM is capable of modeling long-term dependency in data so it wins a
dominant role in time series and text analysis and achieves success in natural language
processing, video analysis, speech recognition, etc. In [60], a model based on the LSTM
neural network was proposed. In [61], a data-driven method was proposed, with long-term
time dependencies handled by this method; spatial and temporal dependencies can be
utilized to detect faults based on the available sensor measurement signals for bearing
fault detection. In [62], a technique for BLDC fault detection and diagnosis is presented.
Additionally, the applications of these techniques to detect and accurately classify under
non- stationary operating conditions is presented. Some of the work using this method is
discussed below in Table 7.
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Table 7. Six recurrent neural network-based methods used for bearing fault diagnosis research comparison.

Refs. Year Learning Method Average Accuracy Data Set

M. Li et al. [60] 2019 RNN-LSTM 98% CWRU

Yang et al. [61] 2018 LSTM-RNN 99.9% Wind Turbine Driven Train
Diagnostic Simulator

Abed et al. [62] 2019 RNN 97% Experimental Setup

5.5. Other Methods

There are various deeper learning methods for fault bearing diagnosis. Some of them
are new approaches, and some are a mixture of previously discussed methods. In [63],
an ensemble stack sparse auto-encoder space for fault bearing diagnosis was proposed.
In [64], multiple wavelet fusion in a deep residual network with the help of two techniques,
i.e., concatenation and maximization, is used to effectively capture useful information for
bearing fault diagnosis. In [65], authors proposed a method of mapping original sound
signals into time–frequency in the first step by STFT; then, SAE extracts the intrinsic fault
features automatically. After that, SoftMax regression is used to recognize the fault modes
of the feature vectors. In [66], a fault bearing diagnosis method was proposed while using
all of the above mentioned methods, with four different preprocessing schemes. Similarly,
in [67], a method of Dilated Residual Networks and DWWC to find a good set of features
in fault diagnosis was proposed using the Planetary Gearbox dataset. Table 8 compares
these methods.

Table 8. Other DL-based methods used for fault bearing diagnosis research comparison.

Refs. Year Learning Method Average Accuracy Data Set

J. He et al. [63] 2020 ESSAE 99.71% CWRU

M. Zhao et al. [64] 2019
Multiple Wavelet

Coefficients Fusion and deep
residual network

96.29% The rolling bearing test stand

Liu et al. [65] 2018 STFT-DL and Sound Signals 99.82 CWRU

Zhiqiang Chen et al. [66] 2017 DBM-DBN-Stack
Auto-encoder 99%

Experimental Setup
fabricated by Universidad

Politecnia Salesiana Ecuador

M. Zhao et al. [67] 2018 DRN-DWWC 99.60% Planetary Gearbox
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6. Discussion

The considered studies for deep-learning-based fault diagnosis framework were
mainly surveyed by considering the proposed methodology, and the reliability of the
diagnostic performance. Almost all of the considered methods were developed based
on publicly available datasets, which gives the freedom of reproducibility and scope of
further analysis for further research in this field. It can be inferred that during the early
stages of research in this field, researchers relied mostly upon engineered features and
classical machine learning algorithms. However, as the research progressed in the field,
more realistic methods have been considered by the researchers during fault diagnosis
of the bearing. One of the realistic assumptions is the use of data that are collected
under working conditions that are similar to the real-time environment of the industry. A
few of the practicalities that can be considered during data collection are variable motor
speed, variable motor load, presence of compound faults, and the presence of multiple
fault severities. These variations constitute erratic working conditions of the machinery
under examination, which makes the fault diagnosis process a challenging task. Based on
the literature review, it is safe to say that the bearing fault diagnosis models developed
using classical machine learning algorithms encounter deterioration in the fault diagnosis
performance under erratic working conditions of the machinery. Therefore, under such
circumstances, rather than the classical domain-dependent statistical feature analysis-based
frameworks, deep-learning-based approaches establish the diagnosis approach as a general
framework by improving the performance accuracies. Among the deep-learning-based
approaches, the most popular techniques, such as the CNN, AE, DBN, RNN, DNN, SAE,
etc., are efficiently utilized in rotatory machine fault diagnosis, which achieves higher
accuracy than classical methods. By our survey, while conducting these experiments, CWR
is nominated as the most considered dataset. However, for a real-world scenario, where the
dataset is not acquired from the ideal conditions, there is still great opportunity to explore
these established methods to make a more generalized and robust model for diagnosis.

6.1. Limitations
Classical Machine Learning

Despite the fact that machine learning algorithms have been widely used in the
construction of a predictive maintenance mechanism, there are certain drawbacks. The
purpose of developing predictive maintenance algorithms is to automatically detect and
diagnose any issue in the equipment under observation. It is also necessary to detect faults
in order to adopt an efficient equipment prognosis approach. The following are some of
the limits of machine learning in the context of predictive maintenance [68–70].

1. Generalizability

Machine learning has a domain-specific implementation methodology. This means
that the algorithm must be trained and fine-tuned separately for each type of application.

2. Domain-Related Knowledge

Expert knowledge of the problem domain is necessary when utilizing machine learn-
ing algorithms in predictive maintenance activities. In the machine-learning-based fault
detection, diagnostic, and prognostic procedure, a feature engineering step is required.
Feature engineering is a challenging process that necessitates a great deal of experience
to develop handcrafted features that can structure the dataset. It can also detect a growth
in fault.

3. Learning Ability, Reliability and Performance

Because machine learning methods require a simple network topology, such networks
have limited learning capability. Shallow networks are the term used to describe these
types of networks. In practice, the data used in data-driven predictive maintenance is
noisy, nonlinear, and complicated. Machine learning algorithms cannot manage data
with abnormalities, non-stationarity, or non-linearity, which is common with data from
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industrial equipment. As a result, shallow networks are limited in their ability to provide
data abstraction in the form of failure prediction features. As a result, when using real-
time datasets for predictive maintenance, the overall performance of machine learning
algorithms degrades.

4. Cross-Domain Analysis

In cross-domain applications, there is a lack of performance. Satisfactory performance
is not guaranteed if the nature of the application becomes complex. The failure prediction
data are used to guide maintenance operations.

6.2. Advantages and Disadvantages of Deep Learning
6.2.1. Advantages

1. The automated learning of structures from new data is the main benefit of using a
deep learning system. The hierarchical order of nonlinear transformations makes
it simple to extrapolate information from coarse data without the requirement for
feature extraction and selection.

2. Because the overhead of feature engineering and selection is not required, developing
condition monitoring, fault detection and diagnosis, and prognosis strategies for
predictive maintenance is quite simple.

3. Transfer learning is better served by deep learning algorithms. It paves the way for
cross-domain data-driven predictive maintenance solutions to be developed.

4. When compared to machine-learning-based predictive maintenance strategies, deep-
learning-based predictive maintenance strategies have a higher generalization potential.

5. The bigger the number of layers and neurons in a deep learning network, the more com-
plicated the problems can be that are conceived, resulting in a performance improvement.

6. The most appealing aspect of using deep learning in predictive maintenance is that
these networks can automatically extract the relevant feature from data, obviating the
need for manual feature engineering.

7. When deep learning is up to date, it can predict failures and cover every new event
or behavior.

6.2.2. Disadvantages

1. To perform better than other strategies, it necessitates a big volume of data.
2. Because of the complicated data models, training is exceedingly costly. Deep learning

also necessitates the use of pricey GPUs and hundreds of workstations. The users’
costs will rise as a result of this.

3. Because it necessitates knowledge of topology, the training method, and other charac-
teristics, there is no standard theory to aid you in choosing the correct deep learning
tools. As a result, it is difficult for less skilled people to adopt it.

4. It is difficult to grasp output based just on learning, and therefore, this necessitates the
use of classifiers. Such tasks are carried out using algorithms based on convolutional
neural networks.

6.3. Comparison of Deep Learning Models

Table 9 presents the detailed comparison of deep learning-based models for fault diagnosis.
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Table 9. Details of Deep Learning Models.

SL# Model Description Pros Cons

1 Deep Neural Network (DNN)

More than two layers are present. This allows
for sophisticated non-linear relationships to
be created. It is utilized for both classification
and regression.

It is frequently utilized and has a high level of accuracy.

Because the error is propagated back to the
previous one layer, the training process is not
straightforward. The model’s learning
process is likewise far too slow.

2 Convolutional Neural Network
(CNN)

With two-dimensional data, this network
performs well. It is made up of convolutional
filters that turn two-dimensional data into
three-dimensional data.

Very good performance, and the model learns quickly. For categorization, it requires a large amount
of labeled data.

3 Recurrent Neural Network (RNN)
It has the ability to learn and remember
sequences. All of the weights are shared
throughout all of the stages and neurons.

LSTM, BLSTM, MDLSTM, and HLSTM are some of the
versions that can learn sequential events and reflect
time dependencies. These provide cutting-edge
accuracy in speech recognition, character recognition,
and a number of other natural language processing
applications.

Due of gradient vanishing and the necessity
for large datasets, there are
numerous difficulties.

4 Deep Belief Network (DBN)
DBNs are probabilistic generative models
that give a combined probability distribution
across observable data and labels.

It addresses the problem of parameter selection, which
can lead to poor local optima in some circumstances,
and ensures that the network is properly established.
Because the procedure is unsupervised, no tagged data
are required. However, DBNs have a number of flaws,
such as the high computational cost of training a DBN
and the lack of clarity surrounding the processes for
further network optimization based on maximum
likelihood training approximation.

They do not account for the two-dimensional
structure of an input image, which may
significantly affect their performance and
applicability in computer vision and
multimedia analysis problems.

5 Auto-Encoders

Auto-encoders are a type of unsupervised
learning technology in which neural
networks are used to learn representations.
We will create a neural network architecture
in such a way that we force a compressed
knowledge representation of the original
input due to a bottleneck in the network.

They are particularly useful in feature extraction, since
they can represent data as nonlinear representations.

An auto-encoder must be trained. Before you
even start developing the real model, that is a
lot of data, processing time, hyper parameter
adjustment, and model validation.
Instead of capturing as much information as
possible, an auto-encoder learns to capture as
much relevant information as feasible.

6 Deep Boltzmann Machine (DBMs)

The DBM has entirely undirected
connections, whereas the top two layers
constitute an undirected graphical model and
the lower layers form a directed generative
model. Units in odd-numbered levels are
conditionally independent on units in
even-numbered layers, and vice versa, in
DBMs with several layers of hidden units.

They can capture multiple layers of complicated input
data representations and are suitable for unsupervised
learning, since they can be trained on unlabeled data,
but they can also be fine-tuned for a specific job in a
supervised manner.

One of the most significant is the high
computing cost of inference, which makes
collaborative optimization on large datasets
nearly impossible. Several strategies for
improving the effectiveness of DBMs have
been presented. These include employing
distinct models to initialize the values of the
hidden units in all layers to speed
up inference.
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6.4. Future Perspectives of Deep Learning

Deep-learning-based predictive maintenance still has room for improvement. In the
next subsections, some of the limitations of deep learning algorithms in terms of predictive
maintenance are discussed.

6.4.1. Enhanced Generalization

Although advanced deep learning approaches such as fine-tune transfer learning and
multitask learning have added a feeling of generality to data-driven predictive maintenance
tactics, these concepts still need to be investigated further. Domain-independent data-
driven predictive maintenance can be implemented using notions such as these.

6.4.2. Explain-Ability

Deep learning’s data processing and exploration capabilities are unquestionably su-
perior to machine learning’s. Its application in predictive maintenance has eliminated
a lot of the overhead and difficulties that traditional machine learning techniques had.
To name a few advantages, it can readily handle large amounts of data and can learn
important information from inputs without the need for a domain-specific feature engi-
neering process. Deep learning algorithms, on the other hand, are more like a black box
than expanded capability. There is currently no comprehensive explanation for how deep
learning algorithms correctly simulate complicated, nonlinear, and nonstationary data in
an abstract manner. Furthermore, it is not known how the estimated codes, also known as
features, perform better than their predecessors in terms of predictive maintenance. There
is a need for explainable deep-learning-based predictive maintenance strategies.

6.4.3. Multimodal and Multisensor Data Fusion

Data fusion from numerous sensors and modalities is an intriguing and viable exten-
sion of data-driven predictive maintenance based on deep learning. Data fusion can offer
detailed information about bearing faults, which can help improve bearing fault detection
models. Data fusion from many sensors is also a practical aspect, as multiple sensors are
typically mounted on the concerned component to collect data for better performance.

7. Conclusions

In this paper, we investigated the applications of deep learning algorithms for bearing
fault diagnosis. In most of the studies, researchers like to rely on the publicly available
datasets due to the easier availability, and ideal working conditions. From the performance
analysis of the considered studies, we saw that the deep learning algorithms are highly
capable of learning the health characteristics automatically, and the diagnostic performance
has significantly been improved. Furthermore, the analysis indicates that the accuracy
of many improved deep-learning-based methods can improve comparatively through
more training, which gives an idea for the exploration and new work to be carried out for
intelligent fault bearing diagnosis. However, it should be considered that the successes of
deep learning-based diagnosis models still rely on some kind of domain-based analysis,
and are subject to sufficient labeled samples. Therefore, this review is anticipated to
scientifically present the development and progress of a deep-learning-based bearing fault
diagnosis framework and deliver valuable guidelines for future research.
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