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Abstract: Hybrid vehicles are now more common in response to increasing global warming. The
hybridization of energy sources and energy storage units enables improving the sustainability,
reliability, and robustness of power systems. To reach the objective of zero emissions, a proton
exchange membrane hydrogen fuel-cell was utilized as an energy source. The aim of this research
was to create an accurate optimal sizing procedure for determining the nominal rating of the necessary
sources. We modeled the fuel cell and the battery pack using data from real experimental results to
create the generic database. Then, we added data on the mission profile, system constraints, and
the minimization target function. The mission profile was then analyzed by the sizing algorithm
to determine optional minimum and maximum fuel cell ratings. Analyzing the optional solutions
using the vehicle real time energy management system controller resulted in a set of solutions for
each available rated fuel cell, and the optimal compatible battery in the revealed band successfully
accomplished the route of the driving cycle within the system limitations. Finally, the Pareto curve
represented the optimal finding of the sizing procedure. Ultimately, in contrast to previous works
that utilize gross manufacturer data in the sizing procedure, the main research contribution and
novelty of this research is the very accurate sizing results, which draw on real experimental-based
fuel-cell and battery sizing models. Moreover, the actual vehicle real time energy management
system controllers were used in the sizing procedure.

Keywords: electric vehicle sizing; hybrid sources; efficiency improvement; electric vehicle; fuel cell

1. Introduction

Energy costs and global warming encourage measures to reduce air pollution in
energy systems. Global warming is impacted by fuel-based propulsion systems in the
transportation industry [1]. This sector includes, among others, airline and automotive
industries. The automotive sector relies largely on vehicles powered by the fuel-based
internal-combustion engine (ICE). As a result, the fuel-based ICE emits pollutants into the
environment, causing an increase in global warming and pollution. Furthermore, because
the power demand is stochastic, the ICE does not operate at its specific minimum fuel
consumption (MFC), leading to an increase in pollution emission [2]. The automotive
industry has grown significantly, resulting in a substantial increase in fuel demand [3].
As a result, a significant amount of effort has been invested in the development of an
electric propulsion system for various types of vehicles, such as a full battery-based electric
vehicle [4] or a hybrid vehicle that combines batteries with a combustion engine [5]. Electric
land vehicles are popular and have been extensively investigated [6]. In addition, regarding
hybrid vehicle source topologies [7,8], aerial vehicles [9–11] and marine vehicles [12–14]
have also provided fertile ground for research. Moreover, vehicle models and thus the
behavior analysis of the vehicle can be obtained in works [15–18]. Recently, demand for
an electric vehicle propulsion system has extended to both civilian and military vehicles.
In civilian applications, these systems result in zero emissions in city centers and possess
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higher efficiency energy conversion. In military systems, zero thermal signature and
noiseless engines provide a significant advantage compared to an ICE. Another application
that is suitable for the proposed system is as an auxiliary engine in conjunction with an ICE
(diesel or gasoline). Such engines can be used in aerial and marine vehicles, and remote
sites such as cellular transmitters, checkpoints, gas stations, and small army bases [19]. The
market for range extender electric vehicles has developed in recent years. High-energy
sources, such as gas turbines, special ICEs, and fuel-based sources [18,20], together with
battery-based energy storage systems (ESSs) [21], are sufficient to meet the energy and
power demand of a hybrid electric vehicle.

1.1. Sources for Electric Vehicle

Another high-energy source is the fuel cell (FC). In recent years, the research on the
proton exchange membrane (PEM) FC has made significant progress, due to the maturation
and stability of the PEM technology [22]. However, the PEM FC has inherent limitations:
the output voltage of an FC is heavily influenced by the load (classic soft source [23]),
and usually possesses a maximum voltage value at no-load conditions and a minimum
voltage value (possibly zero) at overload. Hence, its power curve is parabolic, as shown in
Figure 1. To maintain the fuel consumption at the maximum efficient point (MEP) rather
than maximum power point (MPP), a tracking controller should be employed, with the
main goal of controlling the power electronic interface so that the reflected load intersects
the soft source P–V curve at MEP rather than MPP.

Figure 1. I–V and P–V curves of a generic fuel-based soft source.

Characterizing a source type can be easily undertaken using a Ragone plot, as pre-
sented in Figure 2. The chart presents a set of sources: as the source is located more on the
right side, the source power density is higher, whereas, as the source location is higher,
the energy density is higher. For instance, FC is located at the top left of the chart and,
therefore, contains very high energy density. However, because the FC is on the left-hand
side, it suffers from a lack of power density. The outcome of this analysis is that the FC
as a single source is sufficient as a highly efficient energy source, although it is incapable
of supporting an impulsive load. An optional solution for long endurance load demand
with a high-power burst is a combination of a high-energy source, such as the FC, with a
high-power density source such as a super-capacitor. The conjunction of source topology,
whether it is passive or active, is set by the overall system requirement and the source
operation range, as elaborated in [7].
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Figure 2. Ragone chart [24].

Utilizing a converter with transformer or gyrator characteristics [25–28] has long been
a familiar method to interface with a soft source operating as a power processor. The most
common representation of the power processor is a loss-free resistor (LFR) [29], which is a
two-port network consisting of emulated resistance Re at the input and a power source at
the output, as shown in Figure 3. The LFR can be assumed to act as a nearly pure resistor
when there is a negligible input ripple [30]. The MEP can be reached by regulating the
value of Re in the power control loop. Load variations in the power-processor output
terminal have no influence on the soft source operating point, which is determined by the
intersection between the power curves of the soft source and the emulated resistance.

Figure 3. LFR-based representation of a power processor.

Nevertheless, such an operation requires feedback containing the information regard-
ing instantaneous fuel expenditure. In addition, the operating point of the FC is decoupled
from the load and battery state of charge (SoC), which is undesirable when the battery
SoC is low and/or the load power is high. It should be noted that despite a single MEP, a
relatively wide region of low specific fuel consumption (SFC) exists within the MPP region
(cf. Figure 2), in which the SFC is slightly higher than at MEP. In the case in which the FC
can function in the SFC region rather than at a particular operation point, an additional
amount of flexibility is given to the designer. This allows operating the range extender as
a controlled power source if the FC operating point remains within the low SFC region,
at the expense of somewhat increased instantaneous fuel consumption. Moreover, the
harvested power drawn from the range extender may be slightly increased upon a battery
SoC decrease and/or load power increase to reduce the battery stress, thus prolonging its
operation, and vice versa. For hybrid vehicles consisting of various energy sources, there
are several options for connecting all sources into one system [7]. The generic structure
of all shapes is shown in Figure 4, where each source is occupied by an energy manage-



Energies 2021, 14, 5275 4 of 21

ment unit controlling the power flow. The load is attached to the DC bus by an energy
management unit.

Figure 4. Typical hybrid electric car structure.

1.2. Sizing

The energy system of a hybrid-electric vehicle is comprised of a high endurance energy
source, a high-power energy storage unit, a power management unit, and a propulsion load.
The sizing procedure is the act of determining the size and quantity of each source. Because
the market for electric vehicles is expanding dramatically, the sizing process has attracted
significant research attention [31–34]. The sizing procedure is based on the mission profile,
constraints, minimization target/s, and the set of available sources. The mission profile
supplies information about the profile of the load power or driving cycle [35], temperature,
altitude, humidity, etc. The constraints require information on the limitations of weight,
volume, cost, battery depth of discharge (DoD), battery SoC, cycle life, temperature range,
altitude range, and voltage range. In previous works, researchers used several techniques
for optimizing the sizing procedure, such as multi-objective particle swarm optimization,
dynamic programming, genetic algorithm, graphic construction methods, probabilistic
methods, analytical methods, iterative methods, artificial intelligence methods, and hy-
brid methods. The minimization target’s optional parameters are minimum fuel, weight,
volume, operation cost, and lifetime. The information about the characteristics, cost, effi-
ciencies of sources, storage units, and power electronics circuitry and relevant topologies
are collected in a database in which the sizing algorithm operates. At present, the familiar
sizing methodologies are analytical methods, probabilistic methods, graphical construction
methods, artificial intelligence methods, performance assessment of iterative methods, and
hybrid methods. The sizing process reveals a set of solutions for the minimization target’s
functions (single or multiple). Consequently, by adding more parameters, the minimization
target’s function at the boundaries of solutions becomes narrower, sustaining the selection
of the most optimal system constellation.

In a standard driving cycle, the maximum load demand sets the rating of all summed
available source loads plus the system reserve. However, most of the points on the driving
cycle are lower than the maximum power value. Therefore, some of the generation units
operate far from the MFC point [31]. The analysis of a standard driving cycle [36] in
Figure 5 presents the power curve decomposed to an average power component and high-
frequency harmonic components. The average load determines the minimum compulsory
FC rated power, where the ESS is at its peak rating. When selecting the minimum FC
point (average power) together with a minimum required ESS, the source is obligated
to engage in continuous operation, otherwise the load will fall. However, by increasing
the ESS rating, the generation unit can operate at a minimum specific fuel consumption
point with a start/stop mechanism. Hybridization of supply requires a real-time control
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managing system for governing the operation of each unit, and determines the run/idle of
the generators/sources and charge/discharge/idle of the ESS.

Figure 5. Decomposing of typical driving cycle.

The sizing results are the set of minimal solutions that ensue from the minimization
target function and are presented by the optimal Pareto curve [37]. Executing a sizing
procedure for an energy system produces a two axis Pareto curve where the horizontal
line represents the energy source’s nominal power rating and the vertical line represents
the storage capacity in most of the cases, as presented in Figure 6. All points in the sizing
plot represent the minimum storage capacity required for a given FC rating. The curve
separates the entire space into feasible and infeasible regions. The region above the curve
represents the feasible region, as any set of solutions for an FC power rating and battery
capacity. The entire feasible area, including the sizing curve, is the design space for a given
task. The sizing curve intersects with the horizontal axis, symbolizing the peak demand of
the system where there is no need for ESS and, therefore, the matching storage capacity
is zero. On the other side, the curve ends at the average required power that reflects the
minimum size of the FC, which guarantees the power profile finishes with the same amount
of SoC at the ESS. In a non-repetitive driving cycle, the ESS can fulfill the route mission
without any FC source. At the end of the process, the ESS is empty/near empty and cannot
support another cycle.

1.3. The Gap

The sizing process is based on an analysis of power and energy, and, therefore, entails
an inherent calculation deviation because the algorithm refers to energy sources and energy
storage as a pure ideal source. However, each energy source, such as ICE or FC, is nonideal
and implies efficiency and fuel consumption curves [38] that have a significant impact on
actual results. Furthermore, an energy storage such as a battery that contains 10 V/1 Ah
is incapable of supplying 10 Wh in one hour because a real battery includes internal
losses [39] that also impact the sizing results. Moreover, the sizing procedure operates
according to the sizing algorithm system managing controller. Nevertheless, in a real
system, the actual management routine operates with a different algorithm; therefore, the
sizing results are irrelevant to the final system. Thus, the obtained results are inaccurate
and may lead to an incomplete vehicle task or non-compliance with the minimization
target function. The objectives of this research are to create a generic tool for EV sizing
of an FC and ESS based on a statistical load profile while respecting a set of certain
optimization and system constraints. This study demonstrates an optimal mix of electrical
sources while enabling a fuel-consumption minimizing energy management strategy. In
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contrast to the majority of methods that aim to tackle a similar problem, the expected
contribution herein is twofold: (a) a realistic instantaneous performance of each source will
be utilized in the design; and (b) a sizing process exhibits an energy management strategy
expected to be executed during real-time hybrid energy source exploitation. The former is
accomplished by investigating characteristics of the ESS and FC relating to instantaneous
performance of these devices under various operating conditions, and derivation of the
generic performance of each source.

Figure 6. Typical sizing Pareto curve.

In this paper, a new approach for a sizing methodology is presented. The algorithm
database includes modeled batteries and FC data based on several real experiments in dif-
ferent conditions of charging and discharging. Furthermore, the sizing procedure validates
the algorithm results by running over the route with the real time power management con-
troller. The route and source selection are modified by the real-time management system,
and, therefore, the sizing results are significantly more accurate. This paper is organized as
follows: In Section 2, we explain the structure of a HYBRID sources system and the unit’s
modeling methods. In Section 3, the sizing curve design principle is explained, including
with the use of a flowchart, the purpose of which is to manage the energy sources. In
Section 4, we present the sizing results for a design example of an FC-based hybrid-electric
vehicle. The results are divided into two cases: the first case is a sizing curve for an ideal
battery and the second case for a modeled battery. In Section 5, the results are analyzed
and our conclusions presented.

2. Energy Unit Modeling

By transferring the sources to a digital model, investigation of possible lists of results
for the sizing process is accelerated. The first stage is that of generating a dependable
model of each simulated source. Scientists have established several methods for energy
source modeling. Each method brings different levels of precision and complication
with advantages and disadvantages. These models can be normally separated into three
groups: the electrochemical [40] electromechanical [41] model, the equivalent electric circuit
model [42,43], and the mathematical model (analytical or stochastic) [44,45]. Theoretical
models that are only based on manufacturer data lack the capacity to accurately copy
an actual operation of any energy source at all operating points [46]. To advance model
precision, a new combination of the equal electric model, along with an interpolation and
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extrapolation estimate, is applied here. The method uses actual energy unit performance
with probabilistic analysis and an equivalent electrical circuit.

2.1. ESS Modeling

The key element for the modeling of ESS is the generic algorithm process. The models
that are based on electrochemical equations or equivalent electrical circuits are integrally
inaccurate within a manufacture’s production line. Thus, a lookup table based on average
experimental results is more efficient in predicting ESS parameters and performance. The
high-level ESS model algorithm contains the following stages: it begins in block 1 (Figure 7),
with the model receiving the load power demand and, in the case of external sources, the
power bent by the source. This is exposed by using the power balancing Equation (1),
which defines the ESS status for charging or discharging:

PESS(n) = Pload(n)− Pfc(n) (1)

Figure 7. Generic ESS Model Algorithm.

Then, the model procedure processes the absolute value of power and divides it by the
present ESS internal voltage value (Ebatt.(n)), confirming that the model operates within
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the allowed ESS current. For each cycle/start of action, the SoC and DoD values can be
adjusted to a specific value; otherwise the model receives their value from the previous
stage (n − 1). The ESS model can also obtain any desired environment temperature (within
the allowed limits), or as a varying temperature profile or a constant. In block 2, the model
converts the power demand into an instruction for charging or discharging. The model
reviews the instant current by sensing the ESS internal voltage. Before starting a charge or
discharge process, the model inspects the following conditions (2), (3) in blocks 3, 4:

SoC(n− 1) < Qnom. (2)

Qmin < DoD(n− 1) (3)

The inspected battery current (Ibatt(n)) and internal voltage (Ebatt(n)) are then pro-
cessed in blocks 5, 6 (charging and discharging, separately). The model displays the
following parameters: battery power, instant terminal voltage, energy, capacity, wasted
power and energy, remaining energy, and updated capacity. If the ESS is fully loaded, the
process ends. Otherwise, the linear interpolation/extrapolation begins in block 6. The
charging process ends where the algorithm estimates the updates for the ESS parameters
in block 8 and starts the next cycle. The second alternative is the discharge path: the model
confirms that the status of the ESS is not beyond the DoD boundaries in block 3. If the ESS
is fully discharged, the procedure ends. Otherwise, the linear interpolation/extrapolation
begins in block 5. The discharging process ends where the algorithm calculates the updates
for the ESS parameters in block 7 and starts the next cycle.

The ESS internal voltage and current are now managed and supply data on the
momentary ESS capacity, ESS supply energy, energy loss, and remaining energy. The
forward Euler method is a first-order technique, which means that the error per step is
proportional to the square of the step size, and the error at a given time (global error)
is relative to the step size. The momentary ESS capacity is estimated by the discrete
forward Euler method [47], as presented in Equation (4). The ESS current is collected and
adds/subtracts from the present capacity in charge/discharge mode, respectively.

Qmom(n) = Qmom(n− 1) ± k·[t(n) − t(n− 1)]·IESS(n− 1) (4)

The ESS momentary energy (supplied/sourced) is also estimated by the forward Euler
method. The ESS internal voltage is multiplied by the ESS current resulting in ESS power
that has accrued into ESS energy, as presented in Equation (5):

Emom.(n) = Emom.(n− 1) ± k·[t(n) − t(n− 1)]·[VESS(n− 1)·IESS(n− 1)] (5)

The ESS energy loss is similarly defined by the forward Euler method. The ESS current
is squared and multiplied by the interpolated ESS internal resistance, resulting in ESS
energy loss as presented in Equation (6):

Eloss.(n) = Eloss.(n− 1) + k·[t(n) − t(n− 1)]·
[
(IESS(n− 1))2·rESS

]
(6)

Now, the remaining stored energy is revealed in Equation (7):

EESS(n) = Einitial ± Emom.(n) − Eloss.(n) (7)

The model obtains the stated parameters and produces the ESS terminal voltage
by the linear-point slope algorithm (Vterminal. ∈ {IESS., T, PESS}). The estimated process
output is the ESS terminal voltage. With the use of approximation of the internal resistance
(rESS), the internal ESS is revealed. The ESS internal voltage (VESS) is the root for showing
the above parameters and, therefore, the heart of this model. The estimate of the ESS
internal resistance is also based on the linear-point slope algorithm. The database contains
rows, columns, and pages of measured values on impedance, current, temperature, and
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calculated SoC. The estimated process accumulates data on three mentioned parameters
and supplies the present value of the ESS internal resistance (rESS ∈ {IESS, T, SoC}). The
ESS SoC calculation is made by the discrete forward Euler method, for the momentary
capacity * Equation (4) and the initial capacity summation. In this method, the actual
capacity value is set as the ESS SoC, with another choice to present the SoC as a percentage
as shown in (8), (9):

SoC = QESS(n) = Qinitial ±Qmom(n) (8)

SoC(%) =
Qinitial ±Qmom(n)

Qnominal
(9)

2.2. FC Modeling

Standard FC modeling also requires an understanding of the chemical electrical
internal process and, therefore, is a complicated task [48]. The proposed modeling method
is based on real experimental results expressing the relations of current-voltage (I–V),
power-current (P–I), and hydrogen consumption–power, as shown in Figures 8 and 9. The
lookup tables are imported into a MATLAB workspace and then, in the sizing procedure,
the FC power request is analyzed, with the model supplying the terminal voltage, output
current, and fuel consumption (L/m). The generic model represents a variety of FCs that
operate under nominal conditions of temperature and pressure. First, the FC-supplied
current is estimated by a polynomial fitting method as expressed in Equation (10):

IFC.(n) = IFC. Norm(n)·max [IFC. (n)] (10)

Then, the revealed current exposes the FC terminal voltage as presented in
Equations (11) and (12)

VFC. Norm(n) = −25.1·I4
FC. Norm(n) + 90.8·I3

FC. Norm(n) − 118·I2
FC. Norm(n) + 62.3·IFC. Norm(n) − 10.4 (11)

VFC. (n) = VFC. Norm(n)·max [VFC. (n)] (12)

Figure 8. Experimental results for P–I, I–V.

Finally, the relation of supplied power to the hydrogen consumption is:

HFC. Norm(n) = 1.484·P4
FC. Norm(n) − 2.322·P3

FC. Norm(n) + 1.347·P2
FC. Norm(n) + 0.465·PFC. Norm(n)

+ 0.0068
(13)
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HFC. (n) = HFC. Norm(n)·max [HFC. (n)] (14)

PFC. (n) = PFC. Norm(n)·max [PFC. (n)] (15)

Based on the shown equations, the FC model was designed, with the model receiving
the specific rated power and supplying the terminal voltage, FC output current, delivered
energy, hydrogen consumption liter per minute (L/m), and overall sourced hydrogen (L),
as presented in Figure 10.

Figure 9. Experimental results for H2-P.

Figure 10. Top view of the FC model.
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3. Sizing Procedure

To derive an appropriately sized FC-battery hybrid energy source, the driving cycle
must first be defined. In contrast to most previous works [31–34], we examined a statistical
driving cycle rather than an analytical driving cycle to approach, as closely as possible,
a practical situation. The minimization target’s function was delimited for one or more
variables, such as minimum fuel, maintenance cost, operating cost, initial cost, volume,
and weight. Then, system constraints, such as load voltage range, FC power, variation
rate, or ESS charge/discharge rate, were set up to avoid inconceivable solutions proposed
by the sizing processes. The device database also allows the presence of existing devices
in the hybrid source, connecting these by practical power converters. In sizing analysis,
the driving cycle is decoupled into static and dynamic components. The FC is utilized as
the energy source providing the static element, and the battery is employed as the power
source supplying the dynamic element. Each power system is regulated by a real time
energy management controller that performs using a specific approach according to its
design guidelines. The sizing algorithm from former research [31–34] does not utilize the
actual real-time system management controller in the analysis procedures. Because the
real-time controller significantly affects the performance of each source, it is also required
to be utilized as a system manager in the sizing process. The suggested sizing procedure
presented in Figure 11 operates as follows: the first action is creating a database with units
of energy sources and storage units, as explained above. Then, a statistical power curve is
applied as the referenced driving cycle. In contrast to the traditional sizing approach, the
process is a statistical rather than an analytical driving cycle, that is as close as possible to a
realistic situation. The constraints are introduced to avoid unrealistic solutions proposed
by the sizing algorithm. The minimization target’s function is inserted into the algorithm
with the specific weight for each target. The algorithm processes the data in the modeled
real devices from the established database [49]. Gathering all system information and
requirements leads to the data processing stage, where the algorithm verifies all acceptable
source solutions with the specific selected path to a solution by running the system’s
real time energy management algorithm. The energy management strategy is a real-time
high-level supervising schedule, aimed at controlling the instant operating power of each
hybrid source component. Referring to a general fully controlled energy-storge source
system, the energy management strategy analyzes reference power instructions of each
component, based on instantaneous load demand, operating mode, and feedback from
each factor, considering each factor limitation in both the time and frequency domains. For
the controller, determining the energy management strategy must define the amount of
power instantaneously drawn from each component to minimize the target functions (e.g.,
fuel consumption). To achieve this, the process requires as much available data as possible,
such as the consumption maps of the energy/storage sources that are precisely concluded
for all of the expected operating points and included in the sizing database.

In the new sizing approach, two types of sources are available: power and energy. The
analysis of the power curve shows the average power and the maximum required power.
In a sustainable energy system, the energy source rating must be equal to or higher than
the mean power, otherwise the cyclic mission criterion will not be fulfilled. The minimum
energy source (MES) is, therefore, set to the lower boundary for the sum of the entire
energy sources. On the other hand, the peak power demand sets the upper limit for the
sum of all energy source ratings. Thus, the possible solutions for energy sources (FC) exist
in this band.

MES ≤∑n
i=1 FC(i) ≤ max{|P(t)|} (16)

The energy storage rating is attained by the utilization of an energy source (FC) in
the sizing process. The minimum energy storage (MEST) source is set at the FC maximum
power rating. Conversely, the maximum rated storage is located at the minimum rated
FC. The analysis of the real modeled sources controlled by a real-time energy management
system controller (EMSC) shows the optimal fitness solution for all available rated FCs
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and is specific for the MES point. Thus, the possible solutions for utilizing an ESS with a
specific FC exist within these boundaries.

MEST ≤∑m
j=1 ESS(j) ≤ max{Q·VESS} (17)

Figure 11. Sizing procedure.

The designed sizing algorithm presented in Figure 12 operates as follows: the operator
introduces information regarding the mission profiles; the driving cycle is mandatory; and
other profiles, such as temperature, latitude, and humidity, are more specific and more
detailed, thereby increasing accuracy of results. Then, the required constraints, such as ESS
DoD, current/voltage limitations (on system units or at loads), and purity of hydrogen, are
inserted into the sizing procedure. Then, the minimization target functions are inserted,
such as minimum system cost, minimum maintenance cost, minimum fuel consumption,
minimum system volume, and minimum system weight. The subprocess of sizing analysis
then takes place, where the search is based on existing modeled sources from the sizing
database and begins at the MES point by calculating the optimal solutions path managed
by the EMSC for achieving the mission tasks. At this point, the process continuously
raises the energy source value for the next available modeled energy source. The cyclic
determining condition for optimal sizing ends at the point where the routine’s incremental
energy source reaches the maximum power demand value of the mission profile where the
energy storage unit has no utility. Then, the algorithm collects all minimal sets of solutions
and plots the Pareto curve as an aggregation of optimal energy storage units with energy
source units (e.g., Figure 12). The Pareto curve presents the minimal optimal set of ESS and
the complementary FC. Because all points above the curve are in the feasible design area,
the user can select any available sources from the FC listed power rating and the available
ESS within this zone.
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Figure 12. Generic sizing algorithm.

4. Design Example

To corroborate the proposed theory, an analysis of a design example was undertaken.
A design of a zero-emission EV was conducted. A hydrogen (H2)-based FC generator was
employed as an EV energy source and a Lithium-Ion (Li-ion) battery pack was utilized
as an EV ESS. Because the available resources were limited, the modeled system was
scaled down to an available FC and battery units in the hybrid energy source laboratory
(HESL) at Ariel University. The HORIZON FUEL CELL PEM [50] family (12, 20, 30, 60,
and 100 W) were modeled based on experimental results at different currents and power
rates, creating three types of two-dimensional tables: H2 consumption and FC stack output
power, stack output current and output power, and FC terminal voltage and FC output
current. Moreover, a normalized driving cycle [51] was loaded into the sizing procedure
as the load profile, and constraints were imposed, such as DoD limited to 50%, with the
maximum SoC at 95% and system volume below 10 L. The minimization target function
was set to minimum cost with a weight of 100%. Analysis results showed that the load
average power is 22 W (Figure 13). The normalized peak power is 60W and the lowest
power is zero. When the load power demand is higher than 22 W, the battery supplies
energy; therefore, it discharges, and vice versa. Because the FC model is generic, if needed,
a non-off-the-shelf FC from the Pareto curve is a possible solution because the manufacturer
is capable of supplying a non-rated FC pack in a special production line.
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Figure 13. Typical vehicle driving cycle [51].

The algorithm operation starts with selecting the minimum rated FC that is equal
to the average power of the driving cycle. After finding the needed FC, the algorithm
then allocates the available suitable optimal storage system from the sizing database to
successfully fulfil the required load curve based on the operation of the real-time system
EMSC. The algorithm output is set for a specific FC and battery pack as a minimum local
optimum solution for the first point in the Pareto curve. Subsequently, in the following step,
the next available FC generator model in the database is employed as the energy source.
Once more, the algorithm searches for the next optimal battery pack using an EMSC. The
procedure continues until the FC energy source is equal to the maximum power load where
there is no need for an ESS because the FC source can match the load power requirement at
all operating points and a Pareto curve is then generated as presented in Figure 14. From
the algorithm analysis results, we selected the Horizon 20 W PEM FC (operating at 22 W)
as the energy source for the designed hybrid EV, together with a 222 Wh Li-ion battery
pack as the energy storage source to support the FC operation.

Based on the sizing results, a 20 W FC operating at the optimal fuel consumption
point was selected. The FC was controlled by a local PEM FC controller that is responsible
for the hydrogen supply, purging system, and all chemical operations of the FC. The FC
output terminal was attached to a four-switch non-inverting buck-boost converter for
delivering the required power to the DC bus. The converter was controlled by a cascade
dual loop control system, an inner inductor current loop, and an outer output power
loop. A necessary 15 Ah Li-ion battery was conjugated to the DC bus for stabilizing and
supporting the sustainability of the energy provision to the vehicle engine, as shown in
Figure 15. One of the crucial tasks of the system main controller is to guarantee that, at any
point of time, the sum of the supplied power from the FC and the battery pack is equal
to the load demand. The system main controller was utilized by the TI C2000 MCU and
the TMS320F28335 (Texas Instruments, Dallas, TX, USA) for executing the real time EMSC,
by setting the required FC power and sensing all necessitated signals. The system signals
of the experimental results were captured by a four-channel Rohde & Schwarz RTM3004
digital oscilloscope (Munich, Germany) equipped with differential voltage probes and AC
+ DC current probes, as presented in Figure 15.
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Figure 14. Sizing results.

The experimental results of the proposed real unit modeling sizing procedure showed
that the FC power is constant and operates at the minimum fuel consumption point across the
entire driving cycle. In the case of FC, power was higher than the load demands; the battery
pack absorbed the excess power. In the case of a deficiency of generated FC power, the ESS
supplied the missing amount of power, as presented in Figures 16 and 17. Battery SoC was
kept within the limits throughout the whole driving cycle, as presented in Figure 18.

Figure 15. System setup.
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Figure 16. Experimental results based on the new sizing procedure, presenting voltage currents and power.

Figure 17. Experimental results based on the new sizing procedure, presenting power system
balancing.

Nevertheless, when executing the standard sizing procedure based on manufacturer
data, such as going through the load profile with a different EMSC, the sizing results show
that the ESS reached its minimum SoC point with the DoD reaching the minimum level.
However, because the main target was to accomplish the full driving cycle, the load was
not dropped and the constraint of 50% at DoD was not fulfilled, as presented in Figure 19.
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Figure 18. Battery SoC during the load cycle based on the new sizing procedure.

Figure 19. Battery SoC during the load cycle based on the standard sizing procedure.

5. Conclusions

A new sizing procedure was introduced in this paper. The proposed method was
studied with an experiment for a standard driving cycle profile based on the utilization of a
hybrid FC generator with a Li-ion battery storage system. Based on sizing algorithm results,
a Pareto curve was presented to supply a minimal optimal set of solutions. It was proven
that the new procedure with modeled FC and ESS units based on experimental results and
an algorithm that utilized the actual EMSC within the sizing procedure supplies accurate
results. The real system experimental results show that the new method enables operating
inside the SoC boundaries and successfully finishing the driving cycle. Moreover, the
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results show that when using the standard known sizing procedure based on manufacturer
data without considering the real behavior of each source and elements, the hybrid EV
power system cannot finish the driving cycle while subject to the constraints of the SoC.
Therefore, the proposed sizing procedure is a necessary tool for designing a sustainable
and reliable hybrid energy system. Nonetheless, it is important to understand that the
presented solution is the minimal local optimal solution exclusively for the specific supplied
profiles, constraints, and minimization target functions. Even minor variations in any of
the input parameters of the sizing procedure could result in a non-optimal operating point.
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:
AC alternate current.
Ah Ampere hour.
DC direct current.
DoD depth of discharge
Ebatt ESS internal voltage
EESS ESS internal voltage
Einitial initial ESS energy
Eloss ESS internal energy losses
Emom. internal momentary ESS energy
EMSC energy management system controller
ES energy source
ESS energy storage system
FC fuel-cell
H2 hydrogen
Ibatt. inspected battery current
IEC internal-combustion engine
IESS ESS supplied current
IFC FC supplied current
IFC. Norm normalized FC supplied current
I–V current—voltage
LFR loss-free resistor
Li-ion Lithium-Ion
MES minimum energy source
MFC minimum fuel consumption
MEST minimum energy storage
MEP maximum efficient point
MPP maximum power point
PESS power value of ESS
Pgen generator power
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Pload present load power
PEM proton exchange membrane
PFC fuel cell power
P–V power—voltage
QESS actual capacity
Qinitial initial ESS capacity
Qmin ESS minimal capacity
Qmom momentary capacity value
Qnom. ESS nominal capacity
rESS internal resistance of ESS
SFC specific fuel consumption
SoC state of charge
Vbatt. battery internal voltage
VESS external voltage value
Wh watt hour
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