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Abstract: The adoption of a diversification strategy of the energy mix to include low-water consump-
tion technologies, such as floating photovoltaics (FPV) and onshore wind turbines, would improve
the resilience of the Zambian hydro-dependent power system, thereby addressing the consequences
of climate change and variability. Four major droughts that were experienced in the past fifteen years
in the country exacerbated the problems in load management strategies in the recent past. Against
this background, a site appraisal methodology was devised for the potential of linking future and
existing hydropower sites with wind and FPV. This appraisal was then applied in Zambia to all the
thirteen existing hydropower sites, of which three were screened off, and the remaining ten were
scored and ranked according to attribute suitability. A design-scoping methodology was then created
that aimed to assess the technical parameters of the national electricity grid, hourly generation
profiles of existing scenarios, and the potential of variable renewable energy generation. The results
at the case study site revealed that the wind and FPV integration reduced the network’s real power
losses by 5% and improved the magnitude profile of the voltage at nearby network buses. The
onshore wind, along with FPV, also added 341 GWh/year to the national energy generation capacity
to meet the 4.93 TWh annual energy demand, in the presence of 4.59 TWh of hydro with a virtual
battery storage potential of approximately 7.4% of annual hydropower generation. This was achieved
at a competitive levelized cost of electricity of GBP 0.055/kWh. Moreover, floating PV is not being
presented as a competitor to ground-mounted systems, but rather as a complementary technology in
specific applications (i.e., retrofitting on hydro reservoirs). This study should be extended to all viable
water bodies, and grid technical studies should be conducted to provide guidelines for large-scale
variable renewable energy source (VRES) integration, ultimately contributing to shaping a resilient
and sustainable energy transition.

Keywords: energy transition; site appraisal and ranking; time complementarity; onshore wind;
levelized cost of electricity; hydro generation; grid integration; floating photovoltaics; energy mix;
electrical load; dispatch

1. Introduction
1.1. Overview

Man-made reservoirs currently have a global footprint of not less than 400,000 km2,
theoretically translating into a floating photovoltaic (FPV) potential in the terawatt scale,
excluding anchoring and mooring considerations. Mooring involves securing a system of
devices on water that are connected with fasteners or wires and anchored to the floor of
the water body. The 2017 installed global cumulative PV capacity of 400 GWp is presently
exceeded by the FPV global conservative estimate on man-made reservoirs [1]. Floating
photovoltaics, otherwise known as “floatovoltaics”, originally gained acceptance in Japan
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owing to limitations in land acquisition and utilization for new power generation projects
and thus took advantage of unused water surfaces [2]. Moreover, the new market of FPV
swiftly came into fruition as the price of solar photovoltaic modules dropped by 75 percent,
between 2010 and 2017, and PV panel efficiency increased from 14 to 21 percent. [3–5].
From the global viewpoint, between 2015 and 2018, more than 100 FPV plants had been
installed and commissioned, with a total cumulative equivalent capacity of 1.3 GWp [1,6,7].
With approximately 73 percent of the total global installed capacity in 2018 translating to an
equivalent of 950 MW, China had become the FPV systems market leader. The remainder
of the installed capacity was distributed among South Korea (6%), the United Kingdom
(1%), Japan (16%), and Taiwan (2%), while the rest of the world was represented by 2% at
the beginning of 2019. However, no fewer than thirty countries had FPV projects under
development [1]. Albeit on a large scale, FPV technology deployment having been initially
pioneered by Asian countries (i.e., Thailand, China, Japan, and South Korea), interest
had also spread to South America, North America and Europe [8,9]. Consequently, this
technology could be embraced by Sub-Saharan African (SSA) countries to complement
ground-mounted-based photovoltaics.

According to a recent World Bank and Joint Research Centre (JRC) under the Euro-
pean Commission study, installing floating photovoltaics on 1% of the area of the African
hydropower reservoirs corresponds to 101 GWp of FPV potential. This could double the
current installed hydropower capacity and increase the electricity output by 58%. More-
over, a 5% and 10% retrofitting of FPV on the reservoirs could translate into 506 GWp
and 1011 GWp, respectively, in the African context [1]. Combining solar PV with hy-
dropower installations and hybridizing their output is of keen interest in many countries,
in particular for smaller and weaker grids in Sub-Saharan Africa and in places with sig-
nificant differences in water availability between the dry and wet seasons. The hybrid
“hydro + solar PV” plant could behave as a PV + battery plant but can be more affordable
and safer while retaining the benefits of hydropower [1,2]. Additionally, FPV presents
the added benefit of saving water by decreasing the evaporation in reservoirs. Adding
solar capacity (land-based or floating) to existing hydropower plants utilizes the existing
transmission infrastructure. Hydropower can smooth the variable output by serving as
a storage asset. The FPV brings out resilience by helping manage periods of low water
availability [3–5].

1.2. Objectives and Research Contributions

The specific aims of this study are: (1) to document and categorize the potential of
FPV and wind near hydropower sites; (2) to develop a selection process based on the
documented capabilities of the sites; (3) to develop a systematic scoping design process that
can be applied anywhere in the country, region or globe. This will be achieved through:

i An initial filtering and screening process identifying potential sites for floating PV
and onshore wind installations near existing and future hydropower plants.

ii Development of a ranking and scoring methodology of filtered sites using multi-
criteria decision-making and the application of the same.

iii Development of a methodology for scoping the case study design.
iv Application of the design methodology on an actual site.
v Discussion of the findings.

The advent of FPV has been driven mostly by land scarcity for projects, energy
security and decarbonization targets, and a loss in PV system efficiency at high operating
temperatures. FPV has demonstrated great global market potential in the recent past,
with enhanced technological development in photovoltaic modules and a reduction in the
levelized cost of energy (LCOE) of PV energy systems [10,11]. Appraising FPV systems and
projects has been a challenge, owing to the scarcity of suitable energy simulation tools for
approximating the percentage increase in yield due to the cooling effect of the water surface
and the different technologies employed for floaters housing the PV modules. However,
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research [12] correlated different heat loss factors in W/m2K to the configuration of the
floating photovoltaic structure (i.e., free-standing and small/large footprint).

This study aimed to harness the quantitative benefits of coupling FPV and onshore
wind facilities with hydropower plants by relating the proximity to the existing infrastruc-
ture and grid connection, technical characteristics of the electrical network, the water-saving
potential of the hydro reservoir through optimal dispatch strategies, and consequently,
reducing the seasonal variations of VRES. Moreover, this study utilized the time comple-
mentarity among hydropower, floating photovoltaics and onshore wind power to alleviate
the current national estimated power deficit of 810 MW. This has been attributed to reduced
hydropower generation, owing to low water levels in hydro reservoirs emanating from
climate change-induced droughts in the past six years [13,14]. Furthermore, this study
related the integration of VRES to the hydro reservoir water-saving potential by throttling
down on hydropower generation in the presence of FPV and wind power. Even though
there is growing interest in floating photovoltaics, there has been no systematic appraisal
of the techno-economical potential in the Zambian context and Sub-Saharan Africa (SSA).
This study provides the first national-level techno-economical site assessment of onshore
wind and FPV potential using a combination of validated datasets, geospatial analytical
tools, site-specific wind/PV energy production models and VRES grid assessment models
near existing and future hydropower plants. Furthermore, this research will help in the im-
plementation of renewable energy technologies, such as floating photovoltaics and onshore
wind power, to help increase electricity generation and supply. The study will contribute
to closing the data gaps that have existed in this field of study in Zambia. To put this into
perspective, the existing national grid code does not address the technical requirements (i.e.,
rate of frequency change, low/high voltage fault ride-through, the extent of reactive power
support, etc.) of integrating VRES into the network. Therefore, this paper also addresses
the nature and depth of technical studies that will have to be completed in the future
to bridge this gap and thus enhance participation from independent power producers.
Moreover, the research will help decision-makers to make timely and informed decisions
in this area. The paper will also form a basis for further studies in the academic realm.

Therefore, the authors are highly motivated to contribute to improving the lives of all
Zambians and that of neighboring citizens, by enhancing electricity access and increasing
the total power generation through the adoption of renewable energy technologies such
as onshore wind farms and floating photovoltaics, thus alleviating the energy poverty
being faced in the region. Additionally, Zambia has the potential to enhance FOREX
(foreign exchange) earnings through power exports with the interconnected SAPP countries,
mitigating the chronic trade deficit with which the country has been grappling.

Against this background, the remainder of the paper is structured as follows. The
subsequent section looks at the literature review; thereafter, the development of a site
assessment, and the screening and ranking methodology employed in this study, are
described. This ranged from site identification to the filtering and ranking of sites based on
the assigned relative weight and attribute suitability scores as adopted from the literature,
industry practice and stakeholder engagement. The developed methodology was then
applied to a case study in Zambia. Additionally, the limitations in the site appraisal methods
and tools used were highlighted. Having appraised and ranked the sites accordingly,
a scoping design methodology was developed to be applied to the site with the most
promising potential (i.e., highly ranked site). Furthermore, the results of the detailed case
study design and formulated models were examined and discussed. Lastly, the conclusion
and recommendations from the research were drawn by referencing the research outcomes,
key results, study limitations and further work to be done.

2. Literature Review
2.1. Overview on FPV and Onshore Wind Potential

The evolution of FPV has, in the recent past, included the hydropower industry,
owing to the opportunity for retrofitting or installing FPV panels on the abundant water
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surface area of hydro dams [6,15]. To put this into perspective, hydropower represents a
vital aspect of the renewable energy system and covered approximately 16.4 percent of
the global electricity generation at the end of 2017, which is equivalent to 1.27 TW and
4.185 TWh of total installed capacity and generated energy, respectively, owing to the
increased technological investment in the equatorial regions and China. However, the
negative impact of climate change (i.e., noticeable droughts) over the past decade in some
regions of the world has necessitated the rapid penetration of solar photovoltaics and wind
technologies [11]. The global FPV potential for waterbodies was mapped by research with
hydropower capabilities, which included electricity generation and installation capacity in
terawatt-hours and gigawatts, respectively. Figure 1 below outlines the total world energy
distribution in “GW” at the top and “TWh” at the bottom [16].
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Figure 1. (a) Illustrating FPV capacity distribution potential in GW. (b) Showing electricity generation in TWh. Figure 1. (a) Illustrating FPV capacity distribution potential in GW. (b) Showing electricity generation in TWh.

The percentage requirement of water-body surface area that matches the capacity of
some hydropower plants in Ghana, Brazil, Malaysia, India, Turkey, Egypt, Venezuela, and
Zambia is given in Table 1, which compares the various powerplants under consideration.
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Table 1. Showing estimated reservoir size and power generation to match hydropower capacity ([1] and authors’ compila-
tion). Reproduced from [1], the name of the publisher: ESMAP 2019.

Reservoir/Dam Country Dam Size (km2) Hydropower (GW) % Dam Area for FPV
to Match Hydropower

Aswan Dam Egypt 5000 2.0 <1 */<1(0.68)

Attaturk Dam Turkey 820 2.4 3 */5

Bakun Dam Malaysia 690 2.4 3 */6

Guri Dam Venezuela 4250 10.2 2 */4

Itezhi-tezhi Dam Zambia 113 0.12 1 */2

Kafue Gorge Upper Zambia 70 0.99 14 */24

Kariba North Bank Zambia 4354 1.08 <1 */<1(0.42)

Lake Volta Ghana 8500 1.0 <1 */<1(0.2)

Narmada Dam India 375 1.5 4 */7

Sobradinho Lake Brazil 4220 1.0 <1 */<1(0.4)

Note: * means percentage excluding mooring (1 MW covers ~0.01 km2), including mooring (1MW covers ~0.017 km2).

To put things into perspective, and by taking Kafue Gorge Upper as an example,
Table 1 shows that approximately 14% of the dam area is required to match the existing
hydropower capacity of 990 MW, excluding mooring considerations, while the value
increases to about 24% by including mooring.

According to research published by Rosa-Clot and Tina, Farfan and Breyer, Cazzaniga,
and Nordmann et al., [11,16,17], the potential of large-scale hydro-connected photovoltaics
is vastly promising, owing to photovoltaics’ technological advancement, including en-
hanced mooring and anchoring techniques. The Longyangxia power plant in China is
an example of a large-scale hydro-PV hybrid energy generation system, with a distri-
bution of 850 MW and 1250 MW of solar PV ground-mounted and hydropower plants,
respectively. This energy mix offers a time complementarity in the output by utilizing
dispatchable hydropower to reduce the power variations and voltage sags of the system,
due to intermittent solar power. The network energy dispatch curve is thus met by the
downward or upward throttling of hydropower, depending on whether the photovoltaics
output is high or low, respectively, thereby improving the reliability and enhancing the
total energy generation of the system [11,18]. Scholarly analyses had brought to light the
mutual benefits of FPV systems by not only reducing algae growth and evaporation but
also making a reduction in the generation cost of solar PV energy, owing to the lower
operating temperatures of PV panels [16,19].

With regard to wind energy reviews, the research by Local-Arantegui and Serrano-
Gonzalez [20] has shown a technological evolution toward larger machines (i.e., taller
towers, longer blades and high-capacity power generators). To put this into a global
perspective, the size of the wind turbines in terms of hub height, rated power and rotor
diameter had increased from 30 m hub height, 30 m rotor diameters and 300 kW rated
power in the late 1980s, to 87.7 m hub height, 92.7 m rotor diameter and 2.1 MW rated
power at the beginning of 2015. This technological evolution has been driven mainly by
the process of attaining carbon neutrality, grid code integration adherence, scaling up the
process to minimize reliability issues, and further cost reductions owing to the increase in
capacity factor of most projects. Moreover, higher wind speeds, and consequently high
energy yields, prevail at high altitudes; as such, wind turbine technology has advanced
to accommodate longer heights of wind turbines (i.e., an increase in hub height and rotor
diameter) [21,22]. According to the global wind energy council and Jin et al., [23], at the
beginning of 2015, wind resources had become the largest and most successful renewable
technology deployment, with 370 GW of global cumulative capacity. This feat was achieved
in approximately 20 years. Many wind turbine configuration types have been addressed in
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the literature; nonetheless, the doubly fed induction generator (DFIG) configuration stood
out in terms of mainstream technological development, owing to its high energy efficiency,
low power consumption and low mechanical stress [24]. The evaluation and analysis of
the impact of the DFIG on system stability and reliability have become pertinent with
the increase in penetration of variable renewable energy source–VRES (i.e., wind) [25–28].
Swarna et al. [29] revealed the reactive power support capability of DFIGs at the wind
turbine machine terminals during instances of active power generation curtailment.

2.2. Local Context Perspective

Zambia has great solar thermal and photovoltaic application potential
(i.e., 5.5 kWh/m2/day of average solar insolation, with approximately 3000 sunshine hours
per annum) [30], coupled with 13 hydropower plants, accounting for 85 percent of the
total installed generation capacity (2800 MW), making the nation better suited to a mix in
generation sources. A recent wind resource study conducted by the World Bank revealed
great wind-speed potential (i.e., from 6 to 12 m/s) in some parts of Zambia (i.e., Luangwa,
Serenje, Muchinga, etc.) for utility-scale wind power generation at heights above sea
level between 80 and 200 m. These heights confirm that reasonable wind speeds with
the potential for wind energy occur at great altitudes. This resulted in the validation and
commissioning of a wind atlas with a mesoscale resolution, based on a 2-year period of
accurate wind speed measurement data taken from the 8 meteorological masts [31,32].

Moreover, Zambia aims to become a middle-income nation by the year 2030 (Vision
2030), even though the country is faced with significant challenges in the quest to achieve
this feat. Some of the issues faced include a limited infrastructure for electricity evacuation,
low electrification rates, and low access to clean energy technologies. With urban and rural
access to electricity at 67% and 4%, respectively, translating into a national average of access
to electricity of 31%, this leaves approximately 12 million people without access [33,34].
Thus, these unelectrified households depend on other fuel types for energy consumption
and utilization (conventional biomass for their cooking and heating, lighting using kerosene
and candles). The high dependence on biomass has resulted in huge deforestation of about
250,000–300,000 hectares per annum [35,36]. With a power consumption of approximately
706 kWh per capita, this is below expectations relative to Zambia’s economic and social
potential, when compared to other resource-rich countries like Namibia, Peru, South Africa
and Chile, whose per capita consumption is about 2 to 3 times higher than that of Zambia.
At the end of 2016, Zambia had a gross domestic product (GDP) of USD 20.5 billion for a
population of about 16 million people and scooped the eighteenth rank in terms of growth
economic prospects in Africa. Currently, approximately 69% of the Zambian population
has a lack of access to electricity, although the 31% with access usually experience power
outages, especially during the drought seasons [34]. The country’s estimated 2800 MW of
total installed capacity limits economic growth, mostly in drought-ridden years when the
expected generation output is lower than normal. This is because eighty-five percent of the
total installed capacity is hydropower, which depends on good water resource availability.
The country’s 3 major hydropower plants (Kafue Gorge, Kariba North Extension and
Kariba North) account for 81% of electricity production. This dependency on hydropower
can be ascribed to the vast water resource availability, resulting in an estimated hydropower
potential of 6000 MW. However, climate change has in the recent past shrunk the dynamics
of this potential by making the electrical power system susceptible to droughts. To put this
into perspective, four major droughts have been experienced in Zambia in the last fifteen
years, with the most recent occurring in the 2015/2016, 2016/2017 and 2019/2020 rainfall
seasons. Consequently, the difficulties in load management strategies by the country’s
power utility companies were exacerbated in the quest to conserve water resources. This
led in turn to turmoil in the national GDP, owing to reduced economic activity from the
commercial, manufacturing and mining sectors [33,34,37].

This study encourages all stakeholders involved in electricity generation by promoting
the use of alternative renewable energy technologies, such as onshore wind and floating
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photovoltaics, to enhance the capacity of electricity in the country, which is in tune with
the perceived outcomes of the Zambia energy policy of 2019. Although there is a need
to develop a firm and clear policy framework for effective regulation of these renewable
energy technologies, this could help abate risks in project financing and enhance investor
confidence. This could be key in transforming Zambia into a prosperous middle-income
country by 2030, owing to the technologies’ contribution in promoting sustainable and safe
electricity generation for economic development and growth. The capacity and provisions
to build resilient and better climate models (i.e., global circulation models) and the increase
in understanding natural variability would help in enacting sound and well-informed
environmental policies that tackle the existing energy challenges faced in the country and
prepare for the future at the same time [34].

2.3. Role of Renewable-Energy Hybrid Systems in Energy Transition (Climate Mitigation
and Dispatch)

The fight against climate change, through the attainment of carbon neutrality, has been
the major motivator toward the adoption of renewable energy systems globally [18,38].
Nevertheless, concerns about system security and stability are amplified by the huge pene-
tration of variable renewable energy sources (VRES), such as wind and solar photovoltaics,
into the electrical network grids [39]. The inherent fluctuations in VRES technologies add to
the uncertainty and variability in the electric power network and could negatively impact
system operations if they are not addressed [40]. Li et al. [41] define uncertainty as an
unanticipated change in demand and generation balance from what was forecasted, while
variability is an anticipated change in the demand-generation balance. The increase in the
penetration of VRES has necessitated the need to understand grid code constraints and
electrical network parameters to maintain the integrity, efficiency, and reliability of the
power system [42,43]. Large-scale penetration of VRES is one of the main challenges faced
in modern electric power systems, owing to the complexities in the interactions between
active and reactive power flows in the network, based on system design and connection
characteristics, thus impacting dispatch operating costs, network losses and the voltage
profile [43].

Certain scholarly analyses [18,44] found an economical operational balance between
non-dispatchable (i.e., solar) and dispatchable (i.e., hydro) power sources, hence promoting
the penetration of more renewable sources. Due to the benefit of increased system effi-
ciency and enhanced energy supply balance, many countries have adopted hybrid energy
systems providing a dynamic mix of two or more energy sources [45,46]. Typical hybrid
energy systems include hydro–PV [47,48], hydro–wind–thermal [49], hydro–wind [50,51]
and hydro–wind–PV systems [52,53]. A recent study by Maronga et al. [54] evaluated the
optimal mix of PV, concentrated solar power (CSP) and storage, for a mining context in
Zimbabwe. Previous research [55] found a mix of hydro and photovoltaics to be broadly
used in many countries, owing to the vast spread of solar PV as a principal renewable
energy source globally, and the swift regulation response of hydropower. Consequently,
regions such as SSA (i.e., Zambia) that are rich in both hydropower and solar PV renew-
able resources are better suited in the development and deployment of hydro–PV energy
systems. Regarding the dynamic and optimal mix of renewable energy sources involving
solar PV, hydro and wind, research mostly focuses on resource temporal complemen-
tarity [56–58], plant operations management [18,53,58], and the optimization of system
configuration [48,58–60]. A study by Beluco et al. [56] revealed a reduction in customer
power outages because of the time complementarity benefits attributed to the solar PV and
hydro hybrid system. Research conducted in Italy by Francois et al. [57] revealed a decrease
in energy balance fluctuations, owing to the mix of solar PV and hydro (run-of-river type)
power. Kougias et al. [58] were able to relate an improvement in the output of the PV–small
hydro energy system by the optimization of the tilt angle and system azimuth.

Studies on hybrid energy systems involving wind, PV, and hydro aim at enhancing
reliability and system flexibility by optimally dispatching the available resources. Such
scholarly analyses, however, introduce errors in the modeling process by omitting to
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include the stochastic tendencies of solar PV and wind power [61–63]. Furthermore, by
using deterministic and stochastic programming, Wei and Liu [64] tackled the uncertainties
of solar PV and wind systems. The enhanced system security, coupled with limitations on
the system economy and flexibility resulting from the deterministic inclusion of spinning
reserve to the dispatch model, were revealed by Wei and Liu [64] and Liu et al. [53]. Dong
et al. [65] and Zou [66] revealed that by adopting a structured multi-scenario perspective, a
stochastic optimization problem in nature was able to be converted to a deterministic one,
with the inaccuracy in the optimization output being the main trade-off.

In the recent past, the economic coordination of energy systems had employed robust
and resilient optimization techniques, owing to its efficiency in excluding large-scale
sampling variable datasets and probability models that have a precise distribution [67]. The
random nature of VRES necessitates the adaptions between the forecasted and the actual
generation of a hybrid system, so as to meet the load curve at any instant in time [52,68].
Researchers [69] had developed a method to track real-time deviations between two
consecutive energy-scheduling intervals, while attaching the variability and uncertainty
cost of energy. Another research study [64] incorporated the energy curtailment of solar
PV and wind as a penalty cost in the scheduling.

3. Methodology
3.1. Site Appraisal and Ranking Methodology
3.1.1. Overview

The decision-making process regarding the suitability and location of sites for variable
renewable energy sources (solar PV and wind) utilizes geospatial parameters, mainly
involving GIS models in dynamic analysis (i.e., to capture, analyze, store, manage, and
manipulate spatial or geographical data) [70–73]. To aid in formulating a ranking and
geospatial data interpretation methodology, such GIS modeling is usually paired with
multi-criteria decision-making (MCDM) [73]. Moreover, in the late 1990s, literature in
the development of VRES models started gaining traction [74,75]. Global interest in the
optimal siting of solar PV and wind in the recent past has arisen, due to the quest of
attaining carbon neutrality, leading to the development of generic models based on the
process shown in Figure 2. Firstly, the input parameter selection, ranging from social-
economical, technical, and environmental factors, is completed [76]. For example, ideal
wind site considerations typically include the proximity to the existing electrical network
(i.e., for easy grid connection), proximity to a good road network, positioning further
away from protected zones (i.e., national parks or heritage land), or further away from
settlements to prevent noise and flicker, good resource potential (i.e., average wind speeds
and capacity factor above sea level), and being further away from the flight path to prevent
interference with radar equipment near airports. Unsuitable sites are then excluded from
further analysis by scoring against the model input parameters (i.e., sites with low resource
potential).
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3 
Kafue Gorge 

Lower 
15°53′46.0″S 
28°33′33.0″E 

750 Zesco Kafue Zambia RoR Grid 

4 Itezhi-Tezhi 
15°45′55.0″S 
26°01′05.0″E 

120 
Zesco/ 
ITPC 

Kafue Zambia Reservoir Grid 

5 
Lusiwasi 

Upper 
12°59′18.2″S 
30°51′53.6″E 

15 Zesco Lusiwasi Zambia Pondage Grid 

6 
Lusiwasi 

Lower 
12°59′18.2″S 
30°51′53.6″E 

12 Zesco Lusiwasi Zambia Pondage Grid 

7 Lunzua 
8°48′06.4″S 

31°20′18.3″E 
14.8 Zesco Lunzua Zambia RoR Grid 

8 Musonda 
10°42′39.5″S 
28°48′23.1″E 

10 Zesco Luongo Zambia RoR Grid 

9 Chishimba 
10°06′29.8″S 
30°55′02.7″E 

6 Zesco Luombe Zambia RoR Grid 

10 Shiwangandu 
11°13′10.25″S 
31°45′0.61″E 

1 Zesco Munshya Zambia RoR Grid 

11 
Lunsemfwa 

Hydro 
14°29′33.7″S 
29°06′54.6″E 

24 LHPC Lunsemfwa Zambia Reservoir Grid 

12 
Mulungushi 

Hydro 
14°43′47.48″S 
28°50′39.22″E  

32 LHPC Lunsemfwa Zambia Reservoir Grid 

퐴 = 푤  푎  푓표푟 푖 = 1,2,3, … 푁 (1)

Figure 2. Diagram showing the typical structure of the multicriteria decision method (source: [71]). Reproduced from [71],
the name of the publisher: ePrints Soton 2017.

The sites that have the potential for further development and pass the filtering stage are
then scored and ranking using the weighted sum method (WSM) to assess their suitability
(WSM is given in the equation below) [71,73]:

AWSM
i =

n

∑
j=1

wj aij for i = 1, 2, 3, . . . N (1)
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where w is the relative parameter weighting, a is the parameter score value, and i is the
attribute layer.

3.1.2. Proposed Study Methodology

The proposed study methodology for assessing site suitability was confirmed after
stakeholder engagements (i.e., local experts, power utility) and extensive reviews from
the literature [77–80]. The sites of interest included 5 reservoir-type, 2 pondage-type and 7
run-of-river (RoR)-type hydro plants, as shown in Table 2.

Table 2. Showing the identification of the hydro sites under study.

No Hydro Power
Station Coordinates Rating (MW) Owner River Country Type Note

1 Kafue Gorge
Upper

15◦48′25.0′′ S
28◦25′16.0′′ E 990 Zesco Kafue Zambia Reservoir Grid

2 Kariba North Bank 16◦31′20.0′′ S
28◦45′42.0′′ E 1080 Zesco Zambezi Zambia Reservoir Grid

3 Kafue Gorge
Lower

15◦53′46.0′′ S
28◦33′33.0′′ E 750 Zesco Kafue Zambia RoR Grid

4 Itezhi-Tezhi 15◦45′55.0′′ S
26◦01′05.0′′ E 120 Zesco/ITPC Kafue Zambia Reservoir Grid

5 Lusiwasi Upper 12◦59′18.2′′ S
30◦51′53.6′′ E 15 Zesco Lusiwasi Zambia Pondage Grid

6 Lusiwasi Lower 12◦59′18.2′′ S
30◦51′53.6′′ E 12 Zesco Lusiwasi Zambia Pondage Grid

7 Lunzua 8◦48′06.4′′ S
31◦20′18.3′′ E 14.8 Zesco Lunzua Zambia RoR Grid

8 Musonda 10◦42′39.5′′ S
28◦48′23.1′′ E 10 Zesco Luongo Zambia RoR Grid

9 Chishimba 10◦06′29.8′′ S
30◦55′02.7′′ E 6 Zesco Luombe Zambia RoR Grid

10 Shiwangandu 11◦13′10.25′′ S
31◦45′0.61′′ E 1 Zesco Munshya Zambia RoR Grid

11 Lunsemfwa Hydro 14◦29′33.7′′ S
29◦06′54.6′′ E 24 LHPC Lunsemfwa Zambia Reservoir Grid

12 Mulungushi
Hydro

14◦43′47.48′′ S
28◦50′39.22′′ E 32 LHPC Lunsemfwa Zambia Reservoir Grid

13 Victoria Falls 17◦55′52.5′′ S
25◦51′37.9′′ E 108 Zesco Zambezi Zambia RoR Grid

14 Zengamina 11◦07′26.0′′ S
24◦11′32.0′′ E 0.7 NWZDT Zambia RoR Off-Grid

The developed methodology for the placement of wind turbines and FPV near hy-
dropower sites is illustrated in the flowchart given in Figure 3, below.
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3.1.3. Criteria Hierarchy Structure
Optimal FPV Site

A two-stage approach was utilized in the selection of FPV sites, namely, screening and
filtering (stage 1), and ranking and scoring (stage 2), as shown in Figure 4. The filtering
stage looked at the capacity factor, distance to the grid, water surface area and distance
to protected zones as the model input parameters [81–83]. The scoring and ranking stage
included the relative weight (r.w.) distribution of the energy export (20% r.w.), ease of access
(15% total r.w.), demand (5% total r.w.) and floating PV potential (60% total r.w.) [84–87].

Optimal Wind Site

The selection of onshore wind sites utilized a two-stage approach, namely, filtering
and screening (stage 1) and scoring and ranking (stage 2), which is similar to the process
employed under FPV (please refer to Figure A1 in Appendix A). The filtering stage looked
at the distance to the grid, distance to the protected zone, wind speed, capacity factor,
the security risk of installation, and noise and flicker considerations due to proximity
to buildings and settlements, as the model input parameters [88–95]. The second stage
(ranking and scoring) included the distribution of the energy export (20% of r.w.), ease of
access (15% of total r.w.), demand (5% of total r.w.) and wind potential (60% of total r.w.).

3.1.4. Site Attribute Suitability Score

Adopted from previous research, three site-attribute suitability tables were developed
(shown in Appendix A); these included onshore wind, floating photovoltaics and hybrid
suitability, looking at the balanced parameters of FPV and wind [72,77–80,96–105]. Since
the wind potential is less pronounced than PV in Zambia, the relative weight for the wind
was set lower than that of FPV in the balanced suitability ranking.
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3.1.5. Methodology Limitations

The weighted sum method (WSM) was applied without having insight about the
assigned relative weight to the attribute layers and the layer combination procedures [73].
On the other hand, the analytic hierarchy procedure (AHP) was able to mitigate raised con-
cerns regarding the WSM [77], although the models remain sensitive to the adopted relative
weighting, as evidenced by planning permission refusal for some high-level projects within
the United Kingdom. Van Rensburg et al. [106] were able to address the weighting con-
cerns of input parameters by establishing the relationship between significant parameters
influencing the quantitative assessment-based decision and the project receiving planning
permission. This was then coupled with GIS modeling to assess the geospatial parameters
of influence in the UK [71].

To mitigate concerns raised about the weighted sum method, the proposed study
looked at a wide range of input parameters that include environmental, social, climate, eco-
nomic and topographical factors to attain a more pragmatic and acceptable site appraisal
(screening and ranking) process. Additionally, this was done with the help of stakeholder
engagement, the solicitation of local expert opinions and an extensive literature review in
the decision-making process; consequently, this contributed to the reduction in uncertain-
ties when categorizing the attribute suitability scoring scale owing to certain assumptions
that were made.

Since there is no commercial floating PV and wind project currently in Zambia, there
is an element of bias in the contribution to the study from stakeholders and experts on the
renewable energy generation forecast plan and agenda in line with existing policies (i.e.,
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Vision 2030, National Energy Policy 2019, and the Seventh National Development Plan).
Moreover, the authors acknowledge that the proposed appraisal method is an ongoing
process, and hence is prone to some fine-tuning, as stakeholders (i.e., project developers,
investors) with specific interests and viewpoints come on board.

3.2. Design Scoping Methodology
3.2.1. Design Methodology Formulation

The proposed energy system at Kafue Gorge Upper will comprise hydro, onshore
wind, floating photovoltaics and grid load, as given in the schematic in Figure 5. The
schematic shows the existing automatic generation control (AGC), excluding VRES, and the
proposed Hydro-FPV-Wind daily dispatch (HFWDD) strategy. The model assumes that all
the three sources of generation under consideration are coupled to the same generation bus.
Moreover, the model receives inputs from the reservoir height variation “Hr(t)”, reservoir
inflow “Qin(t)”, hydro generation schedule “PHYg(t)”, water usage/consumption “QT(t)”,
the hydro virtual battery from saved water “Qs(t)”, grid load “PLD(t)”, penstock flowrate
“Qp(t)”, onshore wind output “PWDg(t)” and floating photovoltaic output “PPVg(t)”.
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3.2.2. Hydro-FPV-Wind Daily Dispatch (HFWDD) Model

The objective of the HFWDD model is to balance the seasonal load characteristic curve
on the grid by optimally dispatching the three generation sources (i.e., hydro, FPV and
wind). This entails developing a two-stage model that addresses the technical parameters
of the electrical network for any additional generation and, thereafter, optimizes the energy
system using a customized dispatch algorithm (Figure 6). Firstly, the extent of wind
and FPV integration on the grid that would negatively impact the network parameters
(i.e., power losses, voltage magnitude and stability) is assessed in the two-stage model.
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This is in line with previous research [33,42,108–114]. Secondly, seasonal hourly reservoir
inflows, water consumption targets, grid demand characteristics and the total generation
scenarios (wind, FPV and hydro) are incorporated into the model. Subsequently, the
grid load is served by prioritizing the integration of VRES [115] as readily available,
followed by a downward regulation of hydro-generation at any moment. This throttling
down of hydropower is equivalent to the water-saving potential (virtual hydro battery).
Nevertheless, limited reservoir capacity, coupled with a reduction in the grid demand,
could present storage challenges in a wet year (which is “rarely experienced”), hence
necessitating the opening of the floodgates to get rid of excess water. Similar optimization
and dispatch studies of RES were conducted by [111,116–126].
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Without putting the stochastic nature of wind and FPV power under consideration,
the optimization problem is the seasonal daily dispatch on a typical day, based on the
minimization of the operating cost of the existing automatic generation controller at the
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hydropower plant. Additionally, owing to the perceived low operational cost of wind and
FPV, the optimization problem also prioritizes the dispatch of VRES over other conventional
generation sources:

Mink → Convoperate(k) (2)

where “k” is the dispatch scenario for the day, including hydropower plant status, and
Convoperate(.) is the daily operating cost of the power plant.

Virtual storage, as indicated in Figures 5 and 6, was modeled in HomerPro in
Section 4.2.4. This looks at the availability of variable renewable energy sources (FPV
and wind). Based on this factor, the model calculates how much hydro would have to be
ramped down. The ramping down of hydro means that less water is utilized that is then
available later (i.e., at night when the sun is not shining, and also at times when the wind
is calm)—the dark/calm periods will require the saved water to be utilized.

Based on the relationship between hydrogeneration and the level of the reservoir, the
Qs(t) is determined. This also looks at the reservoir rule curves that must not be violated to
ensure optimal operation.

However, for a very wet year, which is “rarely experienced”, the storage can have
limitations in terms of reservoir capacity, and thus excess water is just wasted by opening
the flood gates.

Parameter Uncertainty of VRES

Adopted from [59,127], the wind and FPV outputs can be represented as shown below:

For wind→ PWDg,t ∈
[
PWDg,t(pre) − PWDg,t(flu), PWDg,t(pre) + PWDg,t(flu)

]
(3)

For FPV→ PPVg,t ∈
[
PPVg,t(pre) − PPVg,t(flu), PPVg,t(pre) + PPVg,t(flu)

]
(4)

where PWDg/PVg,t(pre) is the predicted VRES output, PWDg/PVg,t(flu) is the maximum output
fluctuation, and PWDg/PVg,t is the time-dependent power output of the VRES for any
given day.

Model Objective Function

Cost parameters are considered for the different generation stages to attain the eco-
nomical and optimum dispatch scenario “k”. The hydro unit’s generation cost Convoperate
(“Cope = in short form” = CHYg) is the first stage. The second stage (C+

ope) mostly includes
the hydro unit’s adjustment costs CHYg∆, curtailment costs of FPV and wind, given as
CPVg(curt) and CWDg(curt), respectively [128]. Thus, the cost minimization objective function
is given as:

Cope = CHDg = ∑T
t=1

(
a× P2

HYg,t + b× PHYg,t + c
)

(5)

C+ope = CPVg(curt) + CWDg(curt) + CHYg∆

= ∑T
t=1

[
yPVg(curt) ×

(
PPVg,t − PPVg,t(inject)

)
+ yHYg × ∆PHYg,t + yWDg(curt) ×

(
PWDg,t − PWDg,t(inject)

)] (6)

where the hydro units’ power output at time “t” is PHYg,t, PWDg,t(inject) and PPVg,t(inject)
are the wind and FPV injected power into the grid at time “t”, respectively,
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(“Cope = in short form” = CHYg) is the first stage. The second stage (C+ope) mostly includes 

the hydro unit’s adjustment costs CHYg∆, curtailment costs of FPV and wind, given as 

CPVg(curt) and CWDg(curt), respectively [128]. Thus, the cost minimization objective function is 

given as: 

Cope =  CHDg =  ∑(a ×  PHYg,t
2 + b × PHYg,t + c)

T

t=1

 (5) 

C+ope =  CPVg(curt) + CWDg(curt) + CHYg∆

=  ∑ [ʎPVg(curt) × (PPVg,t  −  PPVg,t(inject)) + ʎHYg  ×  ∆PHYg,t +  ʎWDg(curt)  × (PWDg,t  
T

t=1

−  PWDg,t(inject))] 

(6) 

where the hydro units’ power output at time “t” is PHYg,t, PWDg,t(inject) and PPVg,t(inject) are the 

wind and FPV injected power into the grid at time “t”, respectively, ʎHYg is the hydro units 

adjustment penalty price, ∆PHYg,t the power output adjustment of hydro units, ʎWDg(curt) and 

ʎPVg(curt) are curtailment penalty prices for wind and FPV, respectively, and “a”, “b” and 

“c” are hydro unit cost coefficients. 

HFWDD Model Constraints 

Hydro Constraints: 

PHYg(max) ≥ PHYg,t ≥ PHYg(min) (7) 

QHYg,t =  ʎb
HYg + ʎa

HYg × PHYg,t (8) 

Vflow(max) ≥  QHYg,t ≥ Vflow(min) (9) 

Qt+1 =  Qin,t − QHYg,t(curt) − QHYg,t +  Qs,t (10) 

Qmax ≥  Qs,t ≥  Qmin (11) 

Qs,1 = Qs,ini (12) 

Qs,T =  Qs,term (13) 

where ʎb
HYg and ʎa

HYg are hydro water conversion coefficients, Qs,term and Qs,ini are final and 

initial storage values of the reservoir, Qmax and Qmin are the upper and lower reservoir 

PVg(curt) are curtailment penalty prices for wind and FPV, respectively, and
“a”, “b” and “c” are hydro unit cost coefficients.

HFWDD Model Constraints

Hydro Constraints:
PHYg(max) ≥ PHYg,t ≥ PHYg(min) (7)

QHYg,t = yb
HYg + ya

HYg × PHYg,t (8)
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Vflow(max) ≥ QHYg,t ≥ Vflow(min) (9)

Qt+1 = Qin,t −QHYg,t(curt) −QHYg,t + Qs,t (10)

Qmax ≥ Qs,t ≥ Qmin (11)

Qs,1 = Qs,ini (12)

Qs,T = Qs,term (13)

where yb
HYg and ya

HYg are hydro water conversion coefficients, Qs,term and Qs,ini are final
and initial storage values of the reservoir, Qmax and Qmin are the upper and lower reservoir
storage limit at time “t”, QHYg,t is the water consumption at any time “t” of the hydro unit,
PHYg,t is the power output of the hydro unit at time “t”, Qin,t is the inflow of reservoir at
time “t”; Qs,t is the hydro reservoir storage at time “t”, QHYg,t(curt) is the curtailment of the
reservoir water, and Vflow(max) and Vflow(min) are the water consumption upper and lower
limits in a given period.
Power Flow Branch Constraints:

∑Ni
i=1(fbi × Pit) ≤ Sb(max) (14)

where Sb(max) is the branch maximum capacity, “i” is the power system node identifier, “b”
is the branch identifier, Ni is the number of system network nodes in total, Pi,t is the net
active power injected into the ith node. fbi is the sensitivity factor of the bth node.
Power Balance Constraints:

PWDg,t(pre) + PHYg,t + PPVg,t(pre) = PLD,t (15)

where PLD,t is the grid load of the system at any given time “t”.
Onshore Wind Power Constraints:

PWDg,t ≥ PWDg,t(inject) ≥ 0 (16)

where PWDg,t is the variable wind generator power output at time “t”.
Floating PV Power Constraints:

PPVg,t ≥ PPVg,t(inject) ≥ 0 (17)

where PPVg,t the variable FPV power output at time “t”.

4. Results and Discussions
4.1. Application of Appraisal and Ranking Methodology
4.1.1. Stage 1—Site Screening

The floating photovoltaics site screening process involved the definition of five criteria
that include a distance to protected zones greater than or equal to 500 m, a distance
to existing electrical infrastructure less than or equal to 10 km, a capacity factor (CF)
greater than or equal to 14%, and a water body surface area greater than or equal to
4000 m2. Against this benchmark, Zengamina, Victoria, and Lunzua run-of-river sites were
excluded on account of having a surface area <4000 m2 to accommodate a commercially
and economically viable FPV project. Further, wind site filtering involved the definition
of six criteria that include a distance to protected zones (i.e., national parks) greater than
or equal to 500 m, the security risk (i.e., war-prone area) of installation, an average wind
speed value at 150 m above ground level greater than or equal to 6 m/s, noise and flicker
allowance at five times the rotor diameter (5D), a distance to electrical infrastructure less
than or equal to 60 km, and a capacity factor greater than or equal to 26%. Due to the
security risk zone bordering the Democratic Republic of Congo, the Zengamina wind site
was excluded from the list of potential sites. This is in line with the World Bank findings
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on mapping security risk-prone areas for the installation of wind validation masts. Table 3
summarizes the stage 1 screening and filtering process for all the FPV and wind sites.

Table 3. Table showing the combined stage 1 screening outcome for both FPV and onshore wind sites.

ID #
Name of
Site (FPV
and Wind)

Screening Criteria (Yes/No)

Capacity
Factor Area

Distance to
Protected

Zone

Distance to
Grid/

Substation

Flicker and
Noise

Distance

Wind
Speed
(m/s)

Security
Risk

Site 1 KGU Yes Yes Yes Yes Yes Yes Yes

Site 2 Kariba Yes Yes Yes Yes Yes Yes Yes

Site 3 KGL FPV Yes Yes Yes Yes Yes Yes Yes

Site 4 Itezhi-
Tezhi Yes Yes Yes Yes Yes Yes Yes

Site 5 Lusiwasi Yes Yes Yes Yes Yes Yes Yes

Site 6 Lunzua Yes No Yes Yes Yes Yes Yes

Site 7 Musonda Yes Yes Yes Yes Yes Yes Yes

Site 8 Chishimba Yes Yes Yes Yes Yes Yes Yes

Site 9 Shiwangandu Yes Yes Yes Yes Yes Yes Yes

Site 10 Lunsemfwa Yes Yes Yes Yes Yes Yes Yes

Site 11 Mulungushi Yes Yes Yes Yes Yes Yes Yes

Site 12 Victoria
FPV Yes No Yes Yes Yes Yes Yes

Site 13 Zengamina Yes No Yes Yes Yes Yes No

4.1.2. Stage 2—Ranking and Scoring

Three ranking and scoring tables were developed; however, only the analysis for
the balanced ranking of the hybrid system is presented for simplicity. Table 4 illustrates
the site scoring results for a balanced ranking using the weighted sum method (WSM).
The distribution of the relative weight for the various attributes is as follows: demand
at 5%, ease of access at 15%, energy export at 20%, wind potential at 25% and floating
photovoltaics at 35%. Taking “FPV distance to grid” as an example under the “Energy
export” attribute layer, the application of the weight sum equation 1 is presented in Figure 7.
The results analysis places Kafue Gorge Upper (KGU) and Itezhi-Tezhi at second and first
rank, with total attribute values of 86.9% and 90%, respectively, while the least-ranked site
is Chishimba, with a total attribute combined value of 70.6%.

Figure 7 presents an example of how to apply the weighted sum method. This
looks at the “Energy Export attribute layer”, with a focus on the “Distance of the floating
photovoltaic plant from the grid”. With reference to Table 4, part 1 of Tables A1–A3 in
Appendix A, there are 5 attribute layers, namely, (i = 1) “Wind potential”, (i = 2) “Floating
PV potential”, (i = 3) “Energy export”, (i = 4) “Ease of access” and (i = 5) “Demand”.
These attribute layers have the following maximum weight distribution: attribute layer
(i = 1)→ 25%, (i = 2)→ 35%, (i = 3)→ 20%, (i = 4)→ 15%, (i = 5)→ 5%. Therefore, under
“select input parameters” in Figure 7, (i = 3) represents the energy export attribute layer,
with 20% as total weight. The energy export layer is further broken down in “FPV distance
to grid” given a maximum weight of 5%, “Wind distance to grid”, also given 5%, and “Grid
capacity availability”, given 10%. Under the “weigh input parameters” FPV distance to the
grid is appearing as the first layer (j = 1) under the energy export attribute layer. This is
assigned as “w1” with reference to Equation (1). Under “score each site against parameter”,
if the site’s FPV distance from the grid is less than or equal to 2 km, then according to
Table A1 in Appendix A, the suitability score for the site will be 100%. This is assigned
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as “a31” from Equation (1). Therefore, to get the overall site score, the product between
the assignment “w1” under “weigh input parameters” and the assignment “a31” under
“score each site against parameter” is calculated. Multiplying “w1” by “a31” translates into
5% × 100%, yielding a value of 5%. The process is repeated for all other attribute layers
and the layers contained underneath. The total site score is the summation of the wind
total, FPV total, energy export total, ease of access total and demand total.

Table 4. Table showing balanced scoring and ranking matrix. Analysis based on sources [70,75–78,94–103] (detailed table
shown in Appendix A—Tables A2 and A3).

Wind
Potential

FPV
Potential

Energy
Export

Ease of
Access Demand Site Total

Score *
(25% Weight)

Score *
(35% Weight)

Score *
(20% Weight)

Score *
(15% Weight)

Score *
(5% Weight)

(100%
Weight)

Rank # Name of Site Wind ∑ FPV ∑ Export ∑ Access ∑ Demand ∑
Score *
Weight

=1 Itezhi-tezhi
FPV/wind site 22.5% 35.0% 12.5% 15.0% 5.0% 90.0%

=2 KGU FPV/wind site 21.3% 30.6% 18.8% 11.3% 5.0% 86.9%

=3 KGL FPV/wind site 25.0% 26.3% 15.0% 13.8% 5.0% 85.0%

=3 Kariba FPV/wind site 18.8% 26.3% 20.0% 15.0% 5.0% 85.0%

=3 Lusiwasi
FPV/wind site 20.0% 35.0% 12.5% 15.0% 2.5% 85.0%

=6 Musonda
FPV/wind site 22.5% 30.6% 8.8% 15.0% 2.5% 79.4%

=6 Mulungushi
FPV/wind site 22.5% 30.6% 10.0% 13.8% 2.5% 79.4%

=8 Shiwangangu
FPV/wind site 21.3% 26.3% 12.5% 13.8% 2.5% 76.3%

=9 Lunsemfwa
FPV/wind site 25.0% 21.9% 8.8% 15.0% 2.5% 73.1%

=10 Chishimba
FPV/wind site 20.0% 21.9% 11.3% 15.0% 2.5% 70.6%
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4.2. Application of Design Scoping Methodology—Kafue Gorge Upper Case Study

After appraising the potential wind and FPV sites, the stakeholder (ZESCO Ltd.) was
presented with the three ranking matrices (FPV, onshore wind and balanced) of the ten
potential sites to choose from. The power utility opted to adopt the balanced ranking for
the hybrid energy system, with Kafue Gorge Upper (KGU) as the chosen candidate site for
detailed design. Even though Itezhi-Tezhi (ITT) was ranked first over KGU, which was
second under the balanced scoring, the latter was chosen over the former owing to the
following factors: the presence of a data validation wind mast at KGU, the presence of
debris and dead trees in the ITT reservoir, the distance to the demand center (300 km from
ITT, compared to 100 km for KGU), less reliability and stability of the grid at ITT, with one
220 kV line emanating from ITT compared to three 330 kV lines from KGU to the grid.

4.2.1. VRES Grid Impact Study

Using the power system analysis toolbox (PSAT), the Zambian electrical power grid
was modeled at a 330 kV voltage level comprising a 27–bus system. The model for
the existing network had a real and reactive power load distribution of 2383 MW and
1061.8 MWVAr, respectively. The total modeled existing generation was 2530.6 MW real
power and 857.4 MVAr reactive power, comprising the following power stations: Itezhi-
Tezhi via Nambala, Lunzua via Kasama, Victoria Falls via Mukuni, Maamba Collieries
Limited (MCL), PV plant at Lusaka South Multi-Facility Economic Zone (LSMFEZ), Kariba
North Bank and Kafue Gorge Upper. For additional generation, 200 MW of VRES was
later integrated and modeled, comprising 100 MW FPV and 100 MW wind at the KGU
generation bus. The actual PSAT single-line diagram model for the network is shown in
Appendix B. The key summary results for the grid impact of VRES are presented below.

Analysis of Existing Network

Figure 8 shows the voltage violations at 11 out of the 27,330 kV buses for the existing
network before the addition of compensating equipment and additional generation (VRES,
in this case). According to the Zambian grid code limits, the permissible and acceptable
voltage should fall in the range between 313.5 and 346.5 kV, which is a tolerance of +/−5%.
The total power losses of the existing network were 1475 MW real and −204.3 MVAr
reactive power, as shown in the global power summary in Figure 9.

Analysis after VRES Integration

The addition of network compensating equipment corrected all 11 voltage violations
with the integration of VRES at the KGU bus, comprising 100 MW wind and 100 MW
floating photovoltaics, improving the voltage magnitude profile even further at buses near
the KGU generation bus (Figure 10). The integration of 200 MW of VRES contributed to
the reduction in the voltage support requirement by the network, owing to the drop in
the generated reactive power by the Kafue Gorge hydro plant from 239 to 201 MVAr. The
results also showed all the line flows to be within range (less than the 700 MVA maximum
line capacity). Moreover, VRES integration also reduced the network’s real power losses by
5 percent (from 147 MW to 140 MW), as can be seen in Figure 11.
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Figure 8. Figure showing the existing 330 kV bus voltage profile without VRES integration and
reactive compensation at Luano, Kansanshi, Lumwana, Kitwe, Kalumbila, and Chipata West
network buses.
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Figure 9. Figure showing the global power summary for the existing network.
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Figure 10. Showing bus voltage after adding network compensation and VRES.
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Figure 11. Showing power summary after VRES integration.

4.2.2. Hydro Modeling Results Analysis at KGU

The Kafue Gorge Upper hydro generation was modeled in iHoga using the power
plant ratings provided by the national power utility (ZESCO Ltd. located in Zambia).
The iHoga model for one turbine has 4% losses in penstock, 0% daily/hourly variability
and 85% total turbine efficiency. The key summary results of the model taking a typical
winter (i.e., June) and summer (i.e., November) month are presented in Figure 12a–d. In
June, the maximum power output of the hydropower plant was 805 MW, corresponding
to a discharge rate of 227.8 m3/s and reservoir level of 974.7 m above sea level, while the
minimum generation output was 697 MW, corresponding to a discharge rate and level of
197.9 m3/s and 974.9 m, respectively. In the month of November, hydro generation output
ranged between 648 and 712 MW, corresponding to a discharge rate and level range of
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185–201 m3/s and 974.5–974.7 m, respectively. Figure 12e shows the hydro-generation
hourly time-series graphs, serving a fraction of the total national grid load for the first day
of each month of January, March, June, September and November. On 1 January, KGU
generated 10.69 GWh of hydro, with an evening peak of 1.99 GWh, between 5 p.m. and
9 p.m., to serve about 27% of the total national grid demand for the day. KGU generated
15.6 GWh of hydropower on 1 March, with an evening peak of 3 GWh between 5 p.m.
and 9 p.m., to serve about 46% of the total national electrical grid demand for the day.
On 1 June, approximately 13.8 GWh of energy was generated, with an evening peak of
2.7 GWh between 5 p.m. and 9 p.m., to serve about 34.4% of the total demand for the day.
On 1 September, 14 GWh of hydro-generation was produced, with an evening peak of
2.7GWh to serve 36% of the total grid demand for the day. Further, 1 November yielded
12.6 GWh of hydropower, with an evening peak of 2.4 GWh between 5 p.m. and 9 p.m., to
serve 29.6% of the grid demand for the day.
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4.2.3. VRES Modeling and Results Analysis

Results analysis for the modeling and design of the 100 MWac onshore wind and
116MWdc floating photovoltaics at Kafue Gorge Upper hydropower plant is presented.

Floating PV

Detailed design and modeling of the FPV system were performed using the Photo-
voltaic System (PVSYST) software. A form factor (DC/AC ratio) of 1.16 was adopted for
the project, based on industry practice for Southern Africa. The system design comprises
a parallel connection of eight sub-arrays. Each sub-array comprises one hundred and
twenty series-strings of seventeen PV solar modules (unit photovoltaic module rating of
285 watt-peak with 72 polycrystalline cells) connected to an inverter rated at 500 kWac,
with the A/C combiner box linking twenty-five inverters in parallel for 1 sub-array. Firstly,
the photovoltaic module and array characteristics were analyzed, based on the results
in Figures 13 and 14. The average PV module running temperature of between 10 and
65 ◦C yielded a minimum of 60 h of operation throughout the year, with a design standard
irradiation of 1 kW/m2, an operating temperature range between 10 and 70 ◦C, coupled
with corresponding module efficiency between 15.8 and 11%, respectively, at a given oper-
ating temperature range. However, at all irradiation levels, an increase in efficiency was
observed with a decrease in temperature. Additionally, at 1 kW/m2, the PV module power
output at maximum power point (MPP) was found to be 229.1 W (20 percent decrease) and
305.3 W (7 percent increase) at the highest and lowest operating temperatures, respectively.

According to Figure 15, the annual energy yield injected into the grid from the FPV
system was 214.4 GWh/year. August had the most FPV energy injection into the grid, with
21.29 GW, while January had the least, with 13.59 GWh. Moreover, August and October
had the most average global horizontal irradiation of 187.6 and 193.4 kWh/m2, respectively,
while January and February had the least, with 155.3 and 155.2 kWh/m2, respectively.
October had the highest average ambient temperature of 25.61 ◦C, while July had the least,
at 16.78 ◦C. This corresponds to a monthly average system efficiency of 11.92 and 12.53 in
the hottest and coldest months, respectively.
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It must be mentioned that in the case of generation power being greater than that
injected, as indicated in Equation (17), the excess can still be injected as the local and
regional demands are far higher. The case study only serves a fraction of the entire national
demand; therefore, any excess can still be injected for local (Zambian) consumption or to
meet part of the Southern African Power Pool’s demand.

System optimization of the FPV system was performed by reviewing the impact
of azimuth, pitch, tilt angle and ground-cover ratio (GCR) on grid-injected energy per
year. The PVSYST embedded algorithm was used in the system optimization [129]. In the
PVSYST software, after the case study location coordinates are entered, the meteorological
data is selected from the list of databases. Thereafter, the design and system specifications
are selected. The tilt angle values from 0 to 90 degrees are selected, with a sensitivity
of 1◦ intervals, at an azimuth of 0 degrees. The azimuth is then changed to 180◦ while
maintaining the same tilt angle inputs [129]. The objective function is maximizing the
energy injected into the grid, which gives the simulation output in GWh. The embedded
algorithm carries out a parametric analysis to search for the optimal point and plots the
curves accordingly for all the input steps [129]. The ground cover ratio is optimized by
looking at the ratio of the active area to the ground area. In PVsyst, the “active area” is
the area of one module (length x width), multiplied by the number of modules, while the
“ground area” is the area occupied by the PV array. PVSYST maximizes the injected output
by tracking this ratio. The closer the ratio is to unity, the lower the injected energy into the
grid. Regarding the “pitch”, PVSYST will maximize the energy output by increasing the
pitch. However, this requires sound engineering judgment in design by factoring in the
land constraints for a particular project. Figure 16a shows a 2.6% increase in grid injected
energy yield (from a base value of 214.4 to 220 GWh) at a GCR of 5%, while there was
a steep decrease in yield of between 80 and 100% of the GCR ratio. Figure 16b shows
that the maximum annual yield, between 214 and 215 GWh, is injected into the grid for
tilt angles between 10 and 20◦ for the location in question. Figure 16c reveals that more
energy is injected into the grid with every step increase in pitch (i.e., a pitch of 15 m
yielded more energy compared to the baseline design value of 3 m). However, for practical
considerations on space constraints, the scenario regarding pitch calls for careful analysis
because, for a 400% increase (from 3 m to 15 m) in pitch, only a corresponding 2.5% increase
in grid injected energy was obtained. Furthermore, a negative and positive sensitivity
analysis of the azimuth angle from a baseline value of 0◦ yielded a reduction in grid-injected
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energy. This is because the baseline value was already at the optimized azimuth angle,
as illustrated in Figure 16d. Additional analysis was able to compare the energy yield
and performance ratio (PR) using the PVSYST software adjustments of the albedo and
heat loss factor or U–value for floating photovoltaics (0.1 albedo and U-value 31 W/m2K)
and ground-mounted (0.2 and 20 W/m2K) installations, in line with other research [72].
The results show that a floating PV has better performance (PR of 83.5% and energy yield
of 214.4 GWh/y) compared to a ground-mounted system (PR of 79.3% and energy yield
of 204.4 GWh/y) at the same location with similar design parameters (i.e., the tilt angle,
azimuth, pitch, GCR). PVSYST was also used to evaluate the economics of the floating
photovoltaic system. The analysis revealed that the cost of producing 214.4 GWh/year of
energy at an investment cost of GBP 0.68/Wp was GBP 0.04/kWh, excluding operation and
maintenance (O&M) costs. This FPV LCOE is competitive, with a value of GBP 0.0342/kWh
and GBP 0.0335/kWh, obtained by Maronga et al. [54] and RES4Africa [130], respectively,
for ground-mounted PV. Homerpro gave a more conservative annual yield of 175 GWh at
an LCOE of GBP 0.067/kWh (including O&M); however, this was without factoring in the
water albedo and heat loss factor of the PV module’s floating island. This goes to show
that a reduction in annual energy yield by approximately 18.4% increases the LCOE by
almost 40% for the PVSyst and Homerpro cases that are highlighted. The cost summary
and energy yield distribution for FPV and wind are summarized in Table 5.
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Figure 16. (a) Optimization of injected energy vs. ground cover ratio. (b) Energy vs. panel tilt angle.
(c) Energy vs. pitch in meters. (d) Injected energy vs. azimuth angle.
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Table 5. Table showing the cost and energy production distribution (cost breakdown sources [130,131]).

FPV (116 MWpdc/100 MWac) Wind (100 MWac) FPV + Wind

CAPEX
GBP 80,233,200.00 GBP 109,393,980.00 GBP 189,627,180.00

GBP 0.69/kWp GBP 1.09/kWp GBP 0.88/kWp

OPEX
GBP 1,679,083.20 GBP 2,00,000.00 GBP 3,264,503.20

GBP 0.017/kWp GBP 0.02/kWp GBP 0.017/kWp

GWh/year

214.4 (in PVSyst) @
100 MWac output.
175 (Homerpro) @
96 MWpac output.

295 (in Renewables Ninja) @
100 MW.

166 (in Homperpro) @
75 MW output

513 (PVSyst + Renewables Ninja).
341 (in Homerpro)

Note: The hydro model in Homerpro had a capital cost of GBP 2.8/Wp with an operation and maintenance cost of GBP 0.017/Wp.

Onshore Wind

Homerpro and Renewables Ninja were used in a complementary fashion in the analy-
sis of the KGU wind-farm output. Owing to the wide coverage of its dataset, Renewables
Ninja was used to simulate the output potential of each wind turbine, whose design char-
acteristics included: 129 m hub height, 142 m rotor diameter and 4 MW power rating per
turbine. Thereafter, the Renewables Ninja wind speed output was exported to Homerpro
to facilitate detailed analysis, to include the practical losses imposed on a typical wind
farm with 25 by 4 MW turbines (i.e., wake effects, curtailment losses etc.). With the wind
farm capacity density of approximately 6.2 MW/km2, an optimistic annual energy yield of
294 GWh was registered at the wind farm excluding system losses. However, Homerpro
yielded a more conservative annual energy value, with a total of 8174 h of operation. In this
scenario, about 167 GWh/year of energy was produced at a competitive LCOE of about
GBP 0.07/kWh, as compared to the optimistic forecasted LCOE value of GBP 0.042/kWh
obtained in the recent RES4Africa study about Zambia for the 2021/2022 benchmark [130].
The higher LCOE of wind compared to FPV is due to the fact that the resource potential
for solar photovoltaics is pronounced, compared to wind in the Zambian context [30–32].
As illustrated from Figure 17a–c below, the total wind energy production on 1st January
was 553.87 MWh with a peak energy of 217.54 MWh between 4–8 a.m. On 1 March, the
total wind energy generated was 983.18 MWh with a peak energy of 186.1MWh between
6 a.m. and 10 a.m. and 207.2 MWh between 7 p.m. and 11 p.m. The 1st of June yielded
375.17 MWh of wind energy with a peak of 132.27 MWh between 7 a.m. and 12 p.m. and
98.2 MWh between 4 p.m. and 9 p.m. On 1 September, approximately 1654.2 MWh was
generated from wind with a peak of 422.2 MWh between 6 a.m. and 11 a.m. Furthermore,
1809.66 MWh of wind was generated on 1 November, with a peak of 457.88 MWh between
6 a.m. and 11 a.m. and 385.8 MWh between 2 p.m. and 7 p.m. Any excess power indicated
in Equation (16) is treated in a similar manner to FPV and is injected to meet additional
local or regional demand.

4.2.4. Optimal Dispatch of Hydro and VRES
Hybrid System Details

With a Homerpro model (Figure 18) comprising customized virtual storage, a cus-
tomized hydro initially modeled in iHoga, a PVSYST-based FPV system, and onshore wind
values based on Renewables Ninja wind speed data, the following analysis can be made:
the Homer Matlab Dispatch was implemented using a customized dispatch algorithm
and utilized 5 hydro units, which is equivalent to 700 MW, 100 MWp of FPV, 100 MWp
of wind. The Matlab code was used to ascertain a customized dispatch with high VRES
penetration. Homerpro calls the Matlab Dispatch at the beginning of each time step in
the simulation. The Matlab Dispatch has three input variables, namely, simulation_state,
simulation_parameters and custom_variables. The model virtual storage is dependent on
available water in the dam and the floating PV and wind potential.
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Figure 17. (a) June 3D wind speed and power vs. time. (b) November 3D wind speed and power vs. time. (c) Daily seasonal
wind farm output.
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Figure 18. Graphic showing a hybrid energy system schematic in Homerpro.

The Custom Virtual Hydro Battery at Kafue Gorge has a reservoir that can store an
assumed maximum capacity of 20 million cubic meters of water (0.5 m rise, assuming it is
operating at a minimum elevation of 974 m above sea level), which can discharge over a
173 h (20,000,000 m3/(32 m3/s × 60 × 60) period at a rate of 32 m3/s. The effective head
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is ~382 m, and the generator efficiency is ~(85–90)%; the power and energy of the Virtual
Hydro Battery system during discharging can be calculated as follows:

Discharging:
Power generated = (p) × (g) × (v) × (h) × (eff)
where (p) is the density of water with a value of 1000 kg/m3, (g) is the gravitational

constant of 9.81 m/s2, (v) is the flow rate in m3/s, (h) is the head of 382 m, and (eff) is the
generator efficiency value of 90%.

Power Generated = 1000 × 9.81 × 32 × 382 × 0.9 ~= 108 MW.
For a 20-million-meter cube of water at a flow rate of 32 m3/s, the water utilization

duration is approximately 173 h for one turbine, based on the plant rating table shown
above. However, if more turbines operate to consume the stored water, the duration would
be proportional to the number of units in operation. The electrical energy generated over
the 173 h is given below.

Energy generated = Power generated × hours of usage
Energy generated = 108,000 kW ×173 h = 18,684,000 kWh (~18.7 GWh)
Charging:
The initial charging assumes having a wet season and thus an abundant water

supply, while other charging periods of the virtual battery system involve throttling
down on the hydro when there is an availability of floating photovoltaics and onshore
wind. The round-trip efficiency of the virtual battery is the efficiency of the turbo-
generator unit, including friction losses in the penstock (assumed to be 90% total effi-
ciency). The maximum capacity is the maximum electrical output, divided by the nominal
voltage = 18,684,000 × 1000/17,500 = ~1,067,657 amp hours, this assumes the utilization
of a generation voltage of 17.5 kV for storage calculations at KGU.

Optimal Daily Dispatch and Reservoir Water Saving

The optimal dispatch of the hybrid energy system at KGU involved the prioritizing
of FPV and wind to serve the load and the excess met by hydropower. From Figure 19a
below, 1.15 GWh of VRES generation dispatch translated into a reservoir water-saving
potential of 9.5% (equivalent to 1.02 GWh of generation) on 1 January. According to
Figure 19b, a water-saving potential of 9.7% (equivalent to 1.52 GWh of generation) was
realized with a dispatch of 1.67 GWh of VRES on 1 March. Figure 19c shows a water-saving
potential of 7.2% with a dispatch of 1.14 GWh of VRES on 1 June. Both 1 September
and 1 November yielded better water-saving potentials of 16.8% and 18.7% with VRES
dispatch of 2.52 GWh and 2.35 GWh, respectively (Figure 19d,e). Therefore, using the
customized Homer-Matlab dispatch code, 4.93 TWh of annual energy consumption was
served, translating into 28 percent more demand served when compared to other default
dispatch strategies embedded in Homerpro. This load was met by 166 GWh/year of wind,
175 GWh/year of floating photovoltaics, in the presence of 4.59 TWh of hydrogeneration
(five out of six 140 MW hydrogenator units with a 10% reserve operating margin per unit)
and at a competitive levelized cost of energy of GBP 0.055/kWh. The undispatched hydro
unit presents a virtual storage potential of approximately 108 MW by a 7.4% reduction
in annual hydropower generation. Moreover, the water saving potential in this study
excludes the added benefit of reduced evaporation owing to the presence of retrofitted
solar PV panels on the hydro reservoir.
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Figure 19. (a) Optimal daily dispatch of hydro, FPV and wind on 1 January to serve a fraction of the grid demand.
(b) Optimal daily dispatch on 1 March. (c) Optimal daily dispatch on 1 June. (d) Dispatch on 1 September. (e) Dispatch on
1 November.

5. Conclusions

This study presented a comprehensive assessment of integrating onshore wind and
floating photovoltaics that are adjacent to future and existing hydropower sites in Zambia.
All the project objectives were successfully achieved, and these included site appraisal
methodology formulation to score and rank possible hydropower sites for the potential
addition of onshore wind and retrofitting of floating PV, development and scoping of a
case study design methodology and its application. The authors presented an application
of the devised screening and ranking multicriteria-based methodology for floating PV
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and onshore wind, near hydro sites. The extensive data collection for stage 1, filtered off
3 sites (Lunzua, Victoria and Zengamina), thereby presented the remaining 10 sites to
the stage 2 scoring and ranking process. This ranking process was developed for three
scenarios, which are the balanced hybrid, floating PV and onshore wind models. The
three-level scoring and ranking procedure yielded the following results: the balanced
ranking placed Itezhi-tezhi and Kafue Gorge Upper (KGU) at first- and second-rank, with
total attribute values of 90% and 86.9%, respectively; FPV ranking placed Itezhi-tezhi and
Kafue Gorge Upper (KGU) at first- and second-rank, with total attribute values of 95% and
92.5%, respectively; the wind ranking placed Kafue Gorge Lower (KGL) and Kafue Gorge
Upper (KGU) at first- and second-rank, with total attribute values of 93.8% and 83.8%,
respectively. In all the three scoring and ranking levels, the Chishimba site was ranked the
least. This study presents great insight for planners and prospective investors in floating
photovoltaics and onshore wind as the factors influencing the suitability of the respective
sites can easily be understood.

Moreover, the authors developed a scoping design methodology to be applied at any
one of the 10 potential sites. The summarized methodology for the case study application
includes assessing the technical parameters of the local electrical grid for integration of
variable renewable energy sources (VRES), assessing current seasonal hydro generation
and grid electrical demand in a year on an hour-by-hour basis, detailed assessment and
design of the VRES (floating photovoltaics and onshore wind) for the chosen case study,
assessing the storage potential (implied by throttling down hydro in the presence of VRES
for the reservoir type), optimizing daily energy production of the system within grid
constraints and ascertaining the levelized cost of the energy of the system.

The results of the case study at Kafue Gorge Upper were promising, with VRES
integration potential within grid limits of 341 GWh and 508 GWh per annum, for the
conservative and optimistic case, respectively. Furthermore, it is worth noting that the
floating PV is not being presented as a competitor to ground-mounted systems, but rather
as a complementary technology in specific applications (i.e., retrofitting on hydro reser-
voirs). Along with providing such benefits as reduced evaporation and algae growth,
FPV systems have lower operating temperatures and potentially reduce the costs of solar
energy generation. To put this into perspective, the current study using PVSYST showed
that floating photovoltaics have a better energy yield compared to a ground-mounted
system, as evidenced by a 7.4%, 5.8% and 4.9% increase in energy production for the
freestanding, small-footprint and large-footprint FPV configurations, respectively, at a
reduced generation cost of GBP 0.04/kWh.

Therefore, floating PV and onshore wind integration could present added techno-
economic benefits by fast-tracking new capacity development with opportunities for private
investments (IPPs), new opportunities for the Zambian service and manufacturing sectors,
power structure decentralization, owing to the wide spread of the renewable resources in
the country (i.e., solar PV and wind are more diffused) compared to localized hydropower
projects (usually located near large lakes and rivers).

6. Recommendations

The following future work is recommended to add more value and traction to the
project research:

# An opportunity to conduct detailed financial and uncertainty analysis to cement
project bankability.

# The conducting of pre-feasibility studies (i.e., bathymetry, environmental impact
assessment, geotechnical and soil analysis of the reservoir/dam).

# The potential to widen the study scope to include all viable water bodies in the
country (both natural and man-made).

# An opportunity to assess the grid impact at the other 9 ranked sites to ascertain
overall impact on voltage stability and magnitude profile, network power losses,
operating cost differential for different unit commitment scenarios. Moreover, there
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is the potential to conduct detailed network analysis to cover: N-1static security
assessment, network fault level analysis and protection coordination, short-term and
long-term frequency response, the effects of a spinning reserve, transient and dynamic
stability performance, and voltage regulation during transience. Consequently, these
studies will further provide the necessary technical requirements in the national grid
code for large-scale VRES integration.

# Additionally, this study will pave the way for future research in optimizing the dis-
patch of VRES through an enhanced forecasting model for wind and PV (with the
utilization of artificial intelligence and machine learning such as deep neural net-
works). This will help reduce power balancing costs for large-scale VRES integration.
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Appendix A

Appraisal and Ranking Methodology.

Table A1. Showing the site attribute score for FPV, Wind and Hybrid.

Suitability
Score

Part 1: Balanced Score Attribute Distribution [70,75–78,94–103].

Wind Potential (25% Relative Weight) FPV Potential (35% Relative
Weight) Energy Export (20% Relative Weight) Ease of Access (15% Relative Weight) Demand (5%

Rel. Weight)

Number of
Turbines

Capacity
Factor (%) Slope (%) Area (km2) Capacity

Factor (%)

FPV
Distance to
Grid (km)

Wind
Distance to
Grid (km)

Grid
Capacity
(MVA)

Land Use Land
Ownership

Distance to
Road (km)

Distance to
Demand

(km)

High (100%) >20 >=40 0–<7 >= 10 >=14 <=2 0–<=15 >=700 No current use Customary
/State 0–4 <=50

Medium
(75%) >10–<=20 >=35, < 40 >=7–<14 >=1, <10 - >=5, <2 >15–<=30 <700–>=400 - - 4–8. 50–100

Low (50%) >5–<=10 >=30, <35 >=14–<20 >=0.1, <1 - >=7.5, < 5 >30–<=45 <400–>=100 - - 8–12. 100–150

Lowest (25%) >=1–<5 >=26, <30 >=20–<=30 >= 0.004, <0.1 - <=10, < 7.5 >45–<=60 <100–>=1 Agriculture Private 12–16. 150–200

Unsuitable 0 <26 >30 <0.004 >10 >60 <1 Protected/sensitive
land - - >=200

Part 2: Floating Photovoltaic (FPV) Attribute Score Distribution [70,75–78,94–103].

FPV Potential (60% Relative Weight) Energy Export (20% Relative Weight) Ease of Access (15% Relative Weight) Demand (5% Relative Weight)

Area (km2) Capacity
Factor (%) FPV Distance to Grid (km)

Grid
Capacity
(MVA)

Land Use Land
Ownership

Distance to
Road (km) Distance to Demand (km)

High (100%) >= 10 >=14 <=2 >=700 No current use Customary/State 0–<=4 <=50

Medium
(75%) >=1, <10 >=5, <2 <700–>=400 - - >4–<=8. >50–<=100

Low (50%) >=0.1, <1 >=7.5, < 5 <400–>=100 - - >8–<=12. >100–<=150

Lowest (25%) >= 0.004, <0.1 <=10, < 7.5 <100–>=1 Agriculture Private >12–<=16. >150–<=200

Unsuitable <0.004 >10 <1 Protected/sensitive
land - - >200
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Table A1. Cont.

Part 3: Onshore Wind Attribute Score Distribution [70,75–78,94–103].

Wind Potential (60% Relative Weight) Energy Export (20% Relative
Weight) Ease of Access (15% Relative Weight) Demand (5% Relative

Weight)

Number of Turbines Capacity
Factor (%) Slope (%)

Wind
Distance to
Grid (km)

Grid
Capacity
(MVA)

Land Use Land
Ownership

Distance to
Road (km) Distance to Demand (km)

High (100%) >20 >=40 0–<7 0–<=15 >=700 No current use Customary/State 0–<=4 <=50

Medium
(75%) >10–<=20 >=35, < 40 >=7–<14 >15–<=30 <700–>=400 - - >4–<=8. 50–100

Low (50%) >5–<=10 >=30, <35 >=14–<20 >30–<=45 <400–>=100 - - >8–<=12. 100–150

Lowest (25%) >=1–<5 >=26, <30 >=20–<=30 >45–<=60 <100–>=1 Agriculture Private >12–<=16. 150–200

Unsuitable 0 <26 >30 >60 <1 Protected/sensitive
land - - >=200

Table A2. Showing balanced scoring and ranking matrix results.

Wind Potential (25% Weight) FPV Potential (35% weight)

Score * Weight
(10%)

Score * Weight
(10%) Score * Weight (5%) ∑

Score * Weight
(17.5%)

Score * Weight
(17.5%) ∑

Rank # Name of Site Number of
Turbines Capacity Factor Slope Wind Total Area Capacity Factor FPV Total

=1′ Itezhi-tezhi FPV/wind site 10.0% 7.5% 5.0% 22.5% 17.5% 17.5% 35.0%

=2′ KGU FPV/wind site 10.0% 7.5% 3.8% 21.3% 13.1% 17.5% 30.6%

=3′ KGL FPV/wind site 10.0% 10.0% 5.0% 25.0% 8.8% 17.5% 26.3%

=3′ Kariba FPV/wind site 10.0% 5.0% 3.8% 18.8% 8.8% 17.5% 26.3%

=3′ Lusiwasi FPV/ wind site 10.0% 5.0% 5.0% 20.0% 17.5% 17.5% 35.0%

=6′ Musonda FPV/wind site 10.0% 7.5% 5.0% 22.5% 13.1% 17.5% 30.6%

=6′ Mulungushi FPV/wind site 10.0% 7.5% 5.0% 22.5% 13.1% 17.5% 30.6%

=8′ Shiwangangu FPV/ wind site 10.0% 7.5% 3.8% 21.3% 8.8% 17.5% 26.3%

=9′ Lunsemfwa FPV/wind site 10.0% 10.0% 5.0% 25.0% 4.4% 17.5% 21.9%

=10′ Chishimba FPV/wind site 10.0% 5.0% 5.0% 20.0% 4.4% 17.5% 21.9%
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Table A3. Showing continuation of balanced scoring and ranking matrix results.

Energy Export (20% Weight) Ease of Access (15% Weight) Demand (5%
Weight)

Site Total
(100%

Weight)

Score *
Weight (5%)

Score *
Weight (5%)

Score *
Weight
(10%)

∑
Score *

Weight (5%)
Score *

Weight (5%)
Score *

Weight (5%) ∑
Score *

Weight (5%) ∑ ∑

Rank# Name of Site
FPV

Distance to
Grid

Wind
Distance to

Grid

Grid
Capacity

(10%)
Total Land Use

(5%)
Land

Ownership
Distance to

Road Total Distance to
Demand

Demand
Total

Score *
Weight

=1′ Itezhi-tezhi FPV/wind site 5.0% 2.5% 5.0% 12.5% 5.0% 5.0% 5.0% 15.0% 5.0% 5.0% 90.0%

=2′ KGU FPV/wind site 5.0% 3.8% 10.0% 18.8% 5.0% 5.0% 1.3% 11.3% 5.0% 5.0% 86.9%

=3′ KGL FPV/wind site 2.5% 2.5% 10.0% 15.0% 5.0% 5.0% 3.8% 13.8% 5.0% 5.0% 85.0%

=3′ Kariba FPV/wind site 5.0% 5.0% 10.0% 20.0% 5.0% 5.0% 5.0% 15.0% 5.0% 5.0% 85.0%

=3′ Lusiwasi FPV/ wind site 5.0% 5.0% 2.5% 12.5% 5.0% 5.0% 5.0% 15.0% 2.5% 2.5% 85.0%

=6′ Musonda FPV/wind site 1.3% 5.0% 2.5% 8.8% 5.0% 5.0% 5.0% 15.0% 2.5% 2.5% 79.4%

=6′ Mulungushi FPV/wind site 2.5% 5.0% 2.5% 10.0% 5.0% 5.0% 3.8% 13.8% 2.5% 2.5% 79.4%

=8′ Shiwangangu FPV/ wind site 5.0% 5.0% 2.5% 12.5% 5.0% 5.0% 3.8% 13.8% 2.5% 2.5% 76.3%

=9′ Lunsemfwa FPV/wind site 5.0% 1.3% 2.5% 8.8% 5.0% 5.0% 5.0% 15.0% 2.5% 2.5% 73.1%

=10′ Chishimba FPV/wind site 5.0% 3.8% 2.5% 11.3% 5.0% 5.0% 5.0% 15.0% 2.5% 2.5% 70.6%
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Appendix B

ZESCO Power System Analysis Toolbox Models.
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Figure A3. Layout showing the PSAT FPV and wind integration model for the 330 kV Zambian network.

Table A4. Showing the power system modeling data.

Base MVA 100 Shunt Compensation

Station Rating
(MVAr)

Kitwe 20

330kV Line Parameters Lumwana 20

R (p.u/km) X (p.u/km) B (p.u/km) Kansanshi 20

0.00004 0.000315 0.003708

SVCs

220kV Line Parameters Station Rating
(MVA)

R (p.u/km) X (p.u/km) B (p.u/km) Kitwe 35

0.000115 0.000682 0.001701 Luano 80

132kV Line Parameters

R (p.u/km) X (p.u/km) B (p.u/km)

0.001224 0.002365 0.000486

FROM TO km R(p.u) X(p.u) B(p.u) Voltage Level
(kV)

Rating
(MVA)

Kafue Gorge Leopards
Hill 47 0.00188 0.014805 0.174276 330 700

Kafue Gorge Kafue West 43 0.00172 0.013545 0.159444 330 700

Kariba North Leopards
Hill 123 0.00492 0.038745 0.456084 330 700

Leopards
Hill Kabwe 97 0.00388 0.030555 0.359676 330 700
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Table A4. Cont.

Kabwe Kitwe 211 0.00844 0.066465 0.782388 330 700

Kabwe Luano 247 0.00988 0.077805 0.915876 330 700

Kabwe Pensulo 298 0.01192 0.09387 1.104984 330 700

Kitwe Luano 40 0.0016 0.0126 0.14832 330 700

Kitwe Chambishi 21.5 0.00086 0.0067725 0.079722 330 700

Chambishi Luano 21.5 0.00086 0.0067725 0.079722 330 700

Luano Kansanshi 196 0.00784 0.06174 0.726768 330 700

Kansanshi Lumwana 72 0.00288 0.02268 0.266976 330 700

Kafue West Lusaka West 51 0.00204 0.016065 0.189108 330 700

Kafue West Kafue Town 3 0.00012 0.000945 0.011124 330 700

Kafue West Leopards
Hill 53 0.00212 0.016695 0.196524 330 700

VicFalls Muzuma 159 0.018285 0.108438 0.270459 220 230

Muzuma Kafue Town 189 0.021735 0.128898 0.321489 220 230

Luano Michelo 44 0.00506 0.030008 0.074844 220 375

Michelo Karavia 8 0.00092 0.005456 0.013608 220 375

Leopards
Hill Roma 28 0.034272 0.06622 0.013608 132 85

Leopards
Hill Coventry 28 0.034272 0.06622 0.013608 132 85

Roma Lusaka West 21 0.025704 0.049665 0.010206 132 85

Lusaka West Roma 21 0.025704 0.049665 0.010206 132 85

Transformers

Station Qty x(p.u) Rating Ratio

Kafue Town 1 0.185 60 220/88

Kafue Town 1 0.1707 60 330/88

Lusaka West 1 0.056 125 330/132

Leopard Hill 2 0.056 125 330/132

Kitwe 6 0.042 125 330/220

Luano 4 0.042 125 330/220
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