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Abstract: The traditional model predictive control (tMPC) algorithms have a large amount of online
calculation, which makes it difficult to apply them directly to turboshaft engine–rotor systems because
of real time requirements. Therefore, based on the theory of the perturbed piecewise affine system
(PWA) and multi-parameter quadratic programming explicit model predictive control (mpQP-eMPC)
algorithm, we develop a controller design method for turboshaft engine–rotor systems, which can be
used for engine steady-state, transient state and limit protection control. This method consists of two
steps: controller offline design and online implementation. Firstly, the parameter space of the PWA
system is divided into several partitions offline based on the disturbance and performance constraints.
Each partition has its own control law, which is in the form of piecewise affine linear function between
the controller and the parameters. The control laws for those partitions are also obtained in this offline
step. After which, for the online control implementation step, the corresponding control law can be
obtained by a real-time query of a corresponding partition, which the current engine state falls into.
This greatly reduces the amount of online calculation and thus improves the real-time performance
of the MPC controller. The effectiveness of the proposed method is verified by simulating the steady-
state and transient process of a turboshaft engine–rotor system with a limit protection requirement.
Compared with tMPC, an mpQP-eMPC based controller can not only guarantee good steady-state,
dynamic control performance and limit protection, but can also significantly improve the real-time
performance of the control system.

Keywords: real-time control; turboshaft engine limit protection; perturbed piecewise affine systems;
multi-parameter quadratic programming; explicit model predictive control

1. Introduction

Helicopters play an important role in short distance transportation, aerial photography,
agriculture, disaster search and rescue and other fields. The power unit of a helicopter
is important and the turboshaft engine is the main selection for most helicopters in the
world because of its high power-to-weight ratio and low vibration. Therefore, improving
the reliability and advancement of the turboshaft engine control system is the key to
improving the overall maneuverability of the helicopter to meet the needs of modern
industry, agriculture and military [1]. Since the dynamics of the propeller rotor and
the engine are coupled through the gear transmission system, the working state of the
turboshaft engine will be affected by the propeller rotor load with large inertia. The low
dynamic characteristic of a high inertia rotor load creates a great challenge for the design
of a high performance control system.

The difficulties in the design of turboshaft engine control systems are mainly reflected
in two aspects. First, the turboshaft engine and the rotor system are directly connected
through physical structures, such as gearboxes and driven shafts, which makes a strong
dynamics coupling between the two independent systems. Currently, for most turboshaft
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engines, a traditional PID linear controller with MAX–MIN high–low selection logic struc-
ture is widely used. However, for this nonlinear dynamic system with strong coupling
dynamics and strong constraints, the performance of this kind of controller is unsatisfying.
The acceleration and deceleration transition is slow, and the overshoot and droop can
reach 4%, which causes great damage to the engine’s life span and safety [2]. Therefore,
the traditional PID controller has been unable to meet the performance requirements
of modern high-performance turboshaft engines due to its limitations. The research on
new control algorithms to adapt to the rapid development of turboshaft engines has
become of great interest to controller designers. Thanks to the development of MPC meth-
ods, research on MPC methods for turboshaft engine control has been attractive to the
engineering community.

MPC originated in the 1970s. Due to its unique advantages, such as the ability to
predict future output, process constrained optimization, and the ability to suppress un-
modeled dynamic error and environmental disturbance uncertainty, it has been widely
discussed by the industry [3–5], and has been successfully applied in industrial process
control with slow dynamic characteristics such as petroleum smelting and chemical indus-
try [6–8]. Currently, all the application research of turboshaft engines that we can find is
particularly scarce and most of the model predictive controller designs for aeroengines are
focused on solving the model mismatch phenomenon. At the present time, the real-time
research on model predictive controllers for turboshafts is limited. However, in the face of
the complex nonlinear dynamic system of turboshaft engines with strong rotor coupled
dynamics and strong constraint conditions, and due to the huge amount of calculation
in the optimization process, it is difficult to apply in real-time and online engineering,
and its development has thus been limited in recent years. In summary, since there are
few model predictive real-time controller designs of turboshaft engines and the real-time
performance is of great importance for engines, mpQP-eMPC real-time research is carried
out in this paper.

In order to solve the problem introduced by the large number of online calculations
of tMPC, Bemporad proposed the mpQP-eMPC algorithm based on multi-parameter
quadratic programming theory in [9]. Parametric programming is a kind of optimiza-
tion problem with parameters; multi-parameter quadratic programming is popular in
academia because of its convexity [10,11]. Due to the partition of the parameter space, the
multi-parameter quadratic programming has the ability to obtain the explicit controller
offline, which can simplify the process of the online solution [12–14]. The mpQP-eMPC
based on parametric quadratic programming can reduce the online computing time to
meet the real-time requirements. Considering the high real-time requirements of a tur-
boshaft engine rotor system’s control system, this paper will design a turboshaft engine
controller based on mpQP-eMPC to solve the problem of tMPC being unable to guarantee
real-time performance.

Based on the perturbed PWA model of turboshaft engine rotor systems, through
theoretical derivation, this paper transforms the control problem of turboshaft engines
into a standard mpQP-eMPC controller design problem. The specific solution of the affine
function relationship is also derived. The control design process of turboshaft engines
proposed in this paper is described as follows: Firstly, the parameter space is reasonably
partitioned. By way of the derivation introduced in this paper, the detailed piecewise affine
linear function relationship between the controller and the related parameters on each
parameter partition is obtained. These are all conducted in the offline step. Then, during
online implementation, the optimal control decision of the turboshaft engine–rotor system
is obtained by querying the partition of the system state. The simulation results show
that mpQP-eMPC is better than tMPC in ensuring the steady-state and transient dynamic
performance of the turboshaft engine rotor system, and the average calculation time of
mpQP-eMPC is 0.002 times that of tMPC, which can meet the real-time requirements.

The rest of the paper is organized as follows: Section 2 briefly introduces the turboshaft
engine–rotor system and its perturbed PWA model. Section 3 presents the mpQP-eMPC
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algorithm for the turboshaft engine–rotor system. In Section 4, a simulation study on
a turboshaft engine–rotor system is presented to verify the proposed method. Finally,
Section 5 concludes the paper.

2. Turboshaft Engine–Rotor System and Its Perturbed PWA Model

The turboshaft engine–rotor system is shown in Figure 1 and its main control objective
is to keep constant power turbine rotation speed by quickly adjusting the gas turbine rota-
tion speed through changing the input fuel flow when the collective pitch changes under
different flight tasks. This is necessary to meet the requirements of the rotor load changes
of the helicopter. The controller should ensure that the acceleration and deceleration time
is as short as possible during the transition state, and the key performance parameters of
the engine are within the limits in the meantime.

Flight environment
Intake Compressor

Gas turbinePower turbine

Rotor of helicopter

Inlet air flow

Combustion chambers

Nozzle

Exhaust

Power

Rotor speed

Collective 

pitch

Power

Rotor

dynamic

 model

Rotor acceleration

Cooling 

air

flow

Figure 1. The structure diagram of the turboshaft engine–rotor system.

The state space nonlinear equations of the turboshaft engine–rotor system are de-
scribed as follows: [

ṅg
ṅp

]
= f

([
ng
np

]
, w f , xcpc, H, Ma

)
, (1)

where
[

ng
np

]
are the state variables of the system, ng is the rotation speed of the gas

turbine, np is the rotation speed of the power turbine, w f is the fuel input of the turboshaft
engine, and the disturbance input is the collective pitch input xcpc of the rotor system, the
flight altitude is H and the flight Mach number is Ma.

Equation (1) only highlights the input and output parameters without providing the
explicit relationship between them. In fact, we cannot build this explicit input–output
function expression of the engine. Therefore, for the requirements of controller design, the
construction work of the PWA system is carried out based on the component-level model
shown in Figure 1.

Since the dynamic process of the turboshaft engine–rotor system (shown in Figure 1)
and Equation (1) is highly nonlinear and has strong coupling characteristics, the controller
design is completed by considering the PWA modeling method. Firstly, the nonlinear state
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space model of the turboshaft engine–rotor system is linearized in the ground state (H = 0,
Ma = 0). At s steady-state working points, the discrete turboshaft engine rotor-system
PWA model is established: xi(k + 1) = Aixi(k) + Biui(k) + Bi

wwi, ∀
[

xi(k)
ui(k)

]
∈ Ωi, i = 1 . . . s

yi(k) = Cixi(k),
(2)

where xi = xi − xi
0 =

[
ni

g
ni

p

]
−
[

ni
g0

ni
p0

]
, ui = wi

f −wi
f 0, wi=xcpci − xcpci

0, i represents the

ith linear system. High altitude and other flight conditions can be transformed into ground
states by similarity theory, so as to realize the full flight envelope control of the engine.

Remark 1. Through a lot of simulation research and a contrast between the PWA and the turboshaft
engine results, the final value of s is determined with s = 10. The matching between the two when
s = 10 will be proven in Section 4.1.

3. mpQP-eMPC Algorithm for Turboshaft Engine–Rotor System

The mpQP-eMPC structure of the turboshaft engine–rotor system is shown in Figure 2.
The design process can be divided into two steps:

• The tMPC optimization problem of the turboshaft engine–rotor system is transformed
into a standard mpQP-eMPC problem;

• The turboshaft engine controller design based on mpQP-eMPC.

Off-line explicit controller

Optimization problem

Prediction model

Feedback correction

Receding horizontal optimization 

Tracking signal

Disturbance

Turboshaft engine-rotor system

Optimization query table

Figure 2. The structure diagram of mpQP-eMPC.

3.1. Standard mpQP-eMPC Algorithm

Firstly, the standard description of mpQP-eMPC with parameter z1 is shown
as follows:

min
Z

1
2

ZT HZ

s.t. GZ 6 W + SZ1,
(3)
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where Z is the optimization variable and Z1 is the optimization parameter. Matrices H, G
and W are the weight matrix of objective function and constraints matrices, respectively.
One of the objectives in this paper is to convert the parameters in Equation (2) and the
classical MPC control into the standard mpQP-eMPC problem in Equation (3).

The mpQP-eMPC explicit solution is based on the concepts of polytopic partition and
piecewise affine function.

Definition 1 ([10]). If a polyhedron set {ϑl}L
l=0 = {ϑ0, ϑ1, · · · , ϑL} and a polyhedron ϑ satisfy

the following conditions, then the polyhedron set {ϑl}L
l=0 = {ϑ0, ϑ1, · · · , ϑL} is a polyhedron

partition of polyhedron ϑ:

⋃L

l=0
ϑl = ϑ(

ϑl
/

∂ϑl
)⋂ (

ϑq
/

∂ϑq
)
= ∅, ∀l 6= q.

(4)

Definition 2 ([10]). Consider the function f : ϑ→ Rd, d ∈ N+ , {1, 2, · · · ,}, if there is always
a polyhedral partition of the set ϑ, {ϑl}L

l=0 = {ϑ0, ϑ1, · · · , ϑL}, such that f (Z1) = FlZ1 + Gl ,
Z1 ∈ ϑl , then the function f is said to be piecewise affine.

Based on Definitions 1 and 2 and Lemma 1, the explicit optimal solution of (3) can
be obtained.

Lemma 1 ([9]). Based on the multi-parameter programming method to solve the optimization
problems (3), then its feasible region is convex and the optimal solution is continuous and piece-
wise affine:

u(Z1) = FlZ1 + Gl , Z1 ∈ ϑl =
{

Z1 ∈ Rd|HlZ1 6 Kl

}
. (5)

Lemma 1 serves as a tool to obtain the explicit expression of the mpQP-eMPC controller
for the turboshaft engine–rotor and will be used in the rest of this article.

3.2. Transformation of Turboshaft Engine Controller and mpQP-eMPC Controller

The traditional tMPC control algorithm of the turboshaft engine is described as follows:

min
U={u(k),...,u(k+Nu−1)}

Ny

∑
j=1

{
[y(k+j|k)− r(k)]TQ[y(k+j)− r(k)] + U(k + j|k)T RU(k + j|k)

}
s.t.

ymin ≤ yk+j|k ≤ ymax

umin ≤ uk+j ≤ umax.

(6)

In order to transform the tMPC of the turboshaft engine into the standard mpQP-
eMPC form, the state prediction equation and output prediction equation of the perturbed
PWA system are calculated based on (2).

State prediction equation: xi(k + 1)
...

xi(k + ny
)
 = Pi

xxi(k) + Pi
uUi(k) + Pi

wvi(k). (7)

Output prediction equation: yi(k + 1)
...

yi(k + ny
)
 =

 Cxi(k + 1)
...

Cxi(k + ny
)
 = Pi

yxxi(k) + Pi
yuUi(k) + Pi

ywvi(k), (8)

where
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Pi
x =

 A
...

ANy

, Pi
u =


Bi 0 · · · 0

AiBi Bi · · · 0
...

...
. . .

...
ANy−1Bi ANy−2Bi · · · Bi



Ui(k) =

 u(k)
...

u
(
k + Ny − 1

)
, Pi

w =


Bi

w 0 · · · 0
AiBi

w Bi
w · · · 0

...
...

. . .
...

ANy−1Bi
w ANy−2Bi

w · · · Bi
w



vi(k) =

 w(k)
...

w
(
k + Ny − 1

)
, Pi

yx =

 Ci A
...

Ci ANy



Pi
yw =


CiBi

w 0 · · · 0
Ci AiBi

w CiBi
w · · · 0

...
...

. . .
...

Ci ANy−1Bi
w Ci ANy−2Bi

w · · · CiBi
w



Pi
yu =


CiBi 0 · · · 0

Ci AiBi CiBi · · · 0
...

...
. . .

...
Ci ANy−1Bi Ci ANy−2Bi · · · CiBi.


The parameter constraints conditions of Equation (6) are equivalent to:

Ny−1

∑
j=0

{[
yi(k+j|k)− r(k)

]TQi[yi(k+j)− r(k)
]
+ ui(k + j|k)T Rui(k + j|k)

}

=

 yi(k|k)− r(k)
...

yi(k+ny − 1|k)− r
(
k+ny − 1

)


T

Qi

 yi(k|k)− r(k)
...

yi(k+ny − 1|k)− r
(
k+ny − 1

)
+ UiT RiUi.

(9)

Furthermore, the prediction Equations in (7) and (8) are brought into Equation (9)
to obtain:

Ny−1

∑
j=0

{[
yi(k+j|k)− r(k)

]TQi[yi(k+j)− r(k)
]
+ ui(k + j|k)T Rui(k + j|k)

}
=
{

Pi
yxxi(k) + Pi

yuUi(k) + Pi
ywvi(k)− r(k)

}T
Qi
{

Pi
yxxi(k) + Pi

yuUi(k) + Pi
ywvi(k)− r(k)

}
+ Ui

T
RiUi

=
{

Pi
yxxi(k) + Pi

yuUi(k) + Pi
ywvi(k)− r(k)

}T
Qi
{

Pi
yxxi(k) + Pi

yuUi(k) + Pi
ywvi(k)− r(k)

}
+ Ui

T
RiUi

=

[ Pi
yx Pi

yw −Ii
] xi(k)

vi(k)
r(k)

+ Pi
yuUi


T

Q

[ Pi
yx Pi

yw −Ii
] xi(k)

vi(k)
r(k)

+ Pi
yuUi

+ Ui
T

RiUi.

(10)

Let
Π1=

[
Pi

yx Pi
yw −Ii

]T
Qi
[

Pi
yx Pi

yw −Ii
]

Π2 =
[

Pi
yx Pi

yw −Ii
]T

QiPi
yuUi

Π3 =
(

Pi
yu

)T
QiPi

yu + Ri,
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then:

min
U={uk ,...,uk+Nu−1}

Ny−1

∑
j=0

{[
yi(k+j|k)− r(k)

]TQi[yi(k+j)− r(k)
]
+ ui(k + j|k)T Rui(k + j|k)

}

=

 xi(k)
vi(k)
r(k)

T

Π1

 xi(k)
vi(k)
r(k)

+ min
U={uk ,...,uk+Nu−1}

2

 xi(k)
vi(k)
r(k)

T

Π2Ui + 1
2 Ui

T
2Π3Ui

.

(11)

The optimization problem of Equation (6) is equivalent to:

GU ≤W + E

 xi(k)
vi(k)
r(k),

 (12)

where
G =

[
I −I Pi

yu −Pi
yu

]

W =


 I

...
I

umax −

 I
...
I

umin

 I
...
I

ymax −

 I
...
I

ymin


E =

[
0 0

[
−Pi

yx −Pi
yw 0

] [
Pi

yx Pi
yw 0.

] ]
Finally, let

Z1 =

 xi(k)
vi(k)
r(k)


Z = Ui + (Π3)

−1 ∗Π2Z1

S = E + G ∗ (2Π3)
−1(2Π2)

T

then Equation (6) can now be transformed into a standard mpQP-eMPC:

min
Z

1
2 ZT2Π3Z

s.t.GZ ≤W + SZ1.
(13)

Remark 2. The transformation is necessary. The benefit from the standard form of mpQP-eMPC,
the deducing procedure of explicit expression in solving the optimization problem based on KKT
conditions becomes simpler, more concise and easier to understand.

3.3. Offline Solution Algorithm of Turboshaft Engine Controller Based on mpQP-eMPC

The transformation of the turboshaft engine–rotor system tMPC into the standard
mpQP-eMPC optimization problem is completed as above, and the turboshaft engine con-
troller offline step can now proceed by referring to the mpQP-eMPC algorithm procedure.

Lemma 2 ([15]). For any partition {ϑl}L
l=0 = {ϑ0, ϑ1, · · · , ϑL} of the parameter space ϑ, suppose

that the optimization problem (13) on ϑl satisfies both the linear independent constraint condition
LICQ and the strict complementary relaxation condition, and (13) has an initial feasible solution

Z10 =

 x0(k)
v0(k)
r0(k)

 in ϑ, then the optimal solution of the optimization problem (13) is as follows:

[
Z(x)
λ(x)

]
= −(M0)

−1N0(Z1 − Z10) +

[
Z0
λ0,

]
(14)
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where M0 =


2Π3 GT

1 · · · GT
1

−λ1G1 −V1 · · · −Vq
...

...
. . .

...
−λpGq −V1 · · · −Vq

, N0 =
[

Y λ1S1 · · · λpSp
]
, Vi = GiZ0 −

Wi − SiZ10, Gi, Si and Wi represent the ith row of matrix G, S, and W respectively. Y is a zero
matrix of dimension s× n, λ0 = λ(x0) is a set of nonnegative Lagrange multipliers, Z0 = Z(Z10)
is a set of initial feasible solutions of optimization problem (13).

From Lemma 2, it is not difficult to find that the key to solving the optimization
problem is to determine a partition {ϑ0, ϑ1, · · · , ϑL} of ϑ and the feasible solutions Z10 and
Z0 on any partition ϑl . The partition of ϑ can refer to the method in Lemma 3.

Lemma 3 ([9]). Suppose ϑ ⊆ Rd is a polytope (polyhedron), ϑ0 , {Z1 ∈ ϑ : H0Z1 6 K0} is a
subset of ϑ ⊆ Rd, and ϑ0 6= ∅. Let L = dim(K1), ϑrest ,

⋃L
l=1 ϑl ,

ϑl = {Z1 ∈ ϑ : HlZ1 ≤ Kl}, l = 1, · · · , L. (15)

then: {ϑ0, ϑ1, · · · , ϑL} is a partition of ϑ, where Hl =

[
−Tl
Tj

]
, Kl =

[
−θl
θj

]
, ∀j < l.

Next, the explicit expression of the mpQP-eMPC controller is given through the
following theorem.

Theorem 1. Assuming that the parameter space partition {ϑ1, ϑ2, · · · , ϑL} of the perturbed PWA
system (2) is obtained based on the method in Lemma 3, where Fl

′
is the first m rows of matrix

−(M0)
−1N0, Gl

′
is the first m rows of matrix (M0)

−1N0Z10 + Z0, and m is the number of rows
of Z, then the mpQP-eMPC controller of the turboshaft engine–rotor system is continuous, and its
explicit expression on any partition is as follows:

Ui = FlZ1 + Gl , Fl = Fl
′ − (Π3)

−1 ∗Π2, Gl = Gl
′
. (16)

Proof. From Lemma 1, we can see that the mpQP-eMPC controller of the turboshaft
engine–rotor system is continuous. Based on Lemma 2, Z(Z1) = Fl

′
Z1 + Gl

′
. Because

Z = Ui + (Π3)
−1 ∗Π2Z1, therefore:

Ui =
(

Fl
′ − (Π3)

−1 ∗Π2

)
Z1 + Gl

′
= FlZ1 + Gl

Thus, Theorem 1 is proved.

Furthermore, with the help of Chebyshev distance, a feasible solution Z10 of the
optimization problem (13) in any partition ϑl is obtained:

max
Z1,Z,ε

ε

s.t.
−TlZ1 < −θl
TjZ1 ≤ θj, ∀j < l
GZ ≤W + SZ1.

(17)

If ε ≤ 0, then the problem in (13) is infeasible for all Z1 in ϑl . Otherwise, we fix
Z1 = Z10 and obtain Z0 based on the following standard quadratic optimization problem:
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min
Z

1
2 ZT HZ

s.t.
GZ ≤W + SZ1
− TlZ1 < −θl
TjZ1 ≤ θj, ∀j < l.

(18)

Finally, based on Lemmas 2 and 3, solutions Z10 and Z0 of Equations (17) and (18), and
Theorem 1, the mpQP-eMPC controller algorithm of the turboshaft engine rotor system is
summarized in Algorithm 1.

Algorithm 1 mpQP-eMPC Controller Iteration Algorithm
Step 1: In the space GZ 6 W + SZ1, based on the optimization problem (17), find

the initial value of the parameter Z10;

Step 2: Fix Z10, and obtain
[

Z0
λ0

]
by solving quadratic programming

optimization problem Equation (18);

Step 3: Determine the critical region ϑl near the equilibrium point
[

Z0
λ0

]
by

judging whether λ0 is greater than 0;
Step 4: Based on Equation (16) in Theorem 1. to obtain the expressions of[

Z(x)
λ(x)

]
and u(x) in the critical region ϑl ;

Step 5: Divide the critical region ϑl based on Lemma 3 to obtain the subcritical
region ϑli of this critical region;

Step 6: Repeat the above steps to segment each subcritical domain ϑli iteratively,

and determine the values of
[

Z(x)
λ(x)

]
and u(x) in each polyhedron (polyhedron)

based on Theorem 1.

3.4. Analysis of the Influence of Ny on the Partition Number of Parameter Space

The length of the prediction horizon Ny has a direct impact on the number of parameter
space partitions. In general, the larger the Ny, the more parameter space partitions, and the
longer the time it takes to find the controller during the online query procedure. However,
the length of Ny is not the bigger the better. The case of xcpc = 80 in the turboshaft engine
is taken as an example to illustrate this argument.

The linear system at xcpc = 80 (corresponding to the linear system with i = 3 in (1))
is considered:

A =

[
0.9701 −2.9772× 10−4

0.0011 0.9992

]
, B =

[
0.0062

2.3121× 10−4

]
, C =

[
1 0

]
, w =

[
7.2072× 10−8

−4.8147× 10−4.

]
(19)

Note that matrices A, B, C and w are the results of normalization and discretizing.
For Ny = 3 and Ny = 30, respectively, based on the iterative algorithm summarized in

Table 1, the explicit model predictive controllers are designed for the system (19) according
to the given values in Table 1.

Table 1. Simulation parameter table.

Q R Ts

[
ng0
np0

]
w f 0 xcpc0 Constraints

500 0.01 0.01
[

42,309
20,900

]
0.0747 80 0.064 6 w f 6 0.1 41,304 6 y 6 43,650
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Among them, Figures 3 and 4 are the simulation results when Ny = 3; Figures 5 and 6
show the simulation results when Ny = 30. It can be seen from Figures 3 and 5 that, when
Ny = 3, the system state space can be divided into five partitions, and when Ny = 30,
the system state space can be divided into 33 partitions. That is to say, the larger the Ny,
the more divisions of the interval division. However, when Ny = 30, only the number of
parameter space partition changes, and the controller value does not change greatly. In this
case, the dynamic performance of the controlled plant is consistent with that of Ny = 3.
Therefore, when the turboshaft engine rotor system is considered, the size of Ny should
be selected reasonably according to the dynamic of the system to reduce the online online
controller query time.

Figure 3. The partition of state space: Ny = 3.
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Figure 4. Affine function relationship between controller and state partition: Ny = 3.

Figure 5. The partition of state space: Ny = 30.
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Figure 6. Affine function relationship between controller and state partition: Ny = 30.

4. Simulation Example

Under flight condition H = 0, Ma = 0, ten equilibrium points are selected to establish
the PWA system for the turboshaft engine–rotor component-level nonlinear model. Some
of the PWA models are shown as follows; the others are similar.

Equilibrium point 1 (i = 1): xcpc = 100,
[

ng np
]

=
[

44,679.7259 20,900
]

A1 =

[
0.9665 −0.0003
0.0009 0.9988

]
B1 =

[
0.0061
0.0002

]
w1 =

[
1.0258× 10−7

−0.0006.

]
(20)

Equilibrium point 2 (i = 2): xcpc = 90,
[

ng np
]

=
[

43,393.4576 20,900
]

A2 =

[
0.9641 −0.0003
0.0011 0.9990

]
B2 =

[
0.0066
0.0002

]
w2 =

[
8.8320× 10−8

−0.0006.

]
(21)

Equilibrium point 6 (i = 6): xcpc = 50,
[

ng np
]

=
[

39,059.0789 20,900
]

A6 =

[
0.9803 −0.0004
0.0007 0.9997

]
B6 =

[
0.0069
0.0002

]
w6 =

[
2.8358× 10−8

−0.0002.

]
(22)

Equilibrium point 8 (i = 8): xcpc = 30,
[

ng np
]

=
[

38,007.2583 20,900
]

A8 =

[
0.9807 −0.0003
0.0007 0.9998

]
B8 =

[
0.0075
0.0002

]
w8 =

[
2.5422× 10−8

−0.0001.

]
(23)

Equilibrium point 10 (i = 10): xcpc = 10,
[

ng np
]

=
[

37,119.1035 20,900
]

A10 =

[
0.9820 −0.0004
0.0005 0.9998

]
B10 =

[
0.0078
0.0001

]
w10 =

[
1.4611× 10−8

−6.6602× 10−5.

]
(24)

Note that all the matrices appearing in the (20)–(24) are the results of normalization
and discretizing.

4.1. PWA System

Based on two groups of different input signals, the effectiveness of PWA system
modeling is verified.

(1) Figure 7 shows the step input signal of the engine fuel and rotor system (including
the large step signal in the first 250s and the small step signal in the last 950s). The
speed response curves of PWA system and turboshaft engine–rotor system are shown
in Figures 8 and 9. Among them, the maximum overshoot of power turbine speed np
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is 0.9569%, the steady-state modeling error is less than 0.024%. The transition and the
steady-state modeling error of gas turbine rotaion speed ng are both less than 0.01%.

Figure 7. Step input signals of fuel w f and collective pitch xcpc.
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Figure 8. Speed response curves of power turbine.
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Figure 9. Speed response curves of gas turbine.

(2) Figure 10 shows the ramp input signals of engine fuel w f and collective pitch xcpc
of the rotor system. The speed response curves of the PWA system and the turboshaft
engine–rotor system are shown in Figures 11 and 12. According to the response curves
of power turbine rotation speed np and gas turbine rotation speed ng, the steady-state
and dynamic errors of np are less than 0.24%; The steady and dynamic error of ng is less
than 0.01%. Therefore, the output of the PWA system is basically consistent with the
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nonlinear model of the turboshaft engine rotor system, which meets the requirements of
the controller design.

4.2. mPQP-eMPC Controller

In the design process of the control system, by making u(k) = u(k− 1) + ∆u(k), an
integral unit is added to ensure the steady-state servo tracking without static error, and
the fuel change rate limit is introduced into the optimization problem (13) to take into
consideration actuator position saturation and rate saturation.

Figure 10. Ramp input signals of fuel w f and collective pitch xcpc.
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Figure 11. Speed response curves of power turbine.
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Based on the constraints and parameter settings in Table 2, the explicit model pre-
dictive controller is designed according to procedures proposed in the above contents and is
compared with the tMPC method, where Q is [1,1,1,1,1,1,2,1,0.1,1]T and R is
[0.1,0.2,0.1,0.2,0.2,0.2,0.5,0.5,0.01,0.1]T .

Table 2. Simulation parameter table.

Ny Ny Ts

[
ng0
np0

]
w f 0 xcpc0 Constraints

3 3 0.01
[

37,119
20,900

]
0.0319 10 0.002 6 w f 6 0.11 30,000 6 y 6 45,000

The input signal of collective pitch is designed to simulate vertical take off and landing
procedure of the helicopeter (Figure 13): During the first 10 s, the collective pitch lever
is pushed up quickly to make a rapid step change of xcpc value from 10% to 100%. The
turboshaft engine will have to transfer from idle working state to maximum power state
quickly. This is to simulate the vertical take-off process. After working on xcpc = 100%
for approximately 100 s, the collective pitch lever is pulled down in two steps to make
xcpx drop from 100% to 10% which realizes rapid vertical descent process. The helicopter
vertical climbing process is also simulated: the collective pitch slowly increases from 10%
position to 100% position step by step. The simulation results are shown in Figures 14–17.

Figure 14 shows the fuel flow response curves in two comparative algorithms. The
controller based on the mpQP-eMPC algorithm proposed in this paper can ensure that the
fuel flow reaches the limit line quickly without exceeding the limit. The fuel rate response
curve is shown in Figure 15: the mpQP-eMPC based algorithm can ensure that the fuel rate
is close to the limit line as soon as possible but keeps within the limited change rate range
in the same time. The system dynamic response performance is thus improved. Figure 16
shows the speed response curve of gas turbine under two comparative algorithms: the
mpQP-eMPC based method does not exceed the limited range for the rotation speed of gas
turbine, while under the control of tMPC, the rotation speed of the gas turbine violates the
speed constraint for a certain period of time. Figure 17 shows the rotation speed response
curve of the power turbine under two comparative controllers: the power turbine rotation
speed response under the mpQP-eMPC based controller is faster than that under the control
of tMPC. The rotation speed overshoot under the mpQP-eMPC controller is also smaller
whose maximum value is less than 1.44% compared to 2.4% under the control of tMPC.
The steady-state control error is less than 0.005% with the controller proposed in this paper.
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4.3. Real-Time Verification of Mpqp-Empc

In order to verify the real-time performance of the mpQP-eMPC control algorithm,
based on a 3.4 GHz Intel processor, simulation verification is carried out considering the
different length prediction time domain. The selection of Ny is shown in Table 3. In addition,
the sampling time Ts is 0.01 (sec) for simulation setting, and the change of collective pitch
xcpc is the same as shown above in Figure 13.

Figure 13. The input signal of collective pitch.
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Figure 14. The response curves of fuel w f .
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Figure 16. Speed response curves of power turbine.
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Figure 17. Speed response curves of gas turbine.

Table 3. Real time verification table.

Ny Partition Number
Average Computing Time Maximum Computing Time

mpQP-eMPC tMPC mpQP-eMPC tMPC

3 225 7.8270×10−6 0.4209× 10−2 3.5050× 10−4 3.9680× 10−2

5 1557 7.9000× 10−6 0.4782× 10−2 2.6660× 10−4 1.1966× 10−2

7 5892 9.1960× 10−6 0.5331× 10−2 7.1950× 10−4 3.2030× 10−2

9 18,888 8.0130× 10−6 0.5265× 10−2 2.1990× 10−4 2.7146× 10−2

The comparison simulation results of the two methods are shown in Table 3, and the
comparison simulation results are shown in Figures 18–21.

Figure 18 shows the calculation time of different algorithms at each sampling time
when Ny = 3. The average calculation time of the mpQP-eMPC controller is 7.8270× 10−6 s,
and the maximum calculation time is 3.5050× 10−4 s; The average computing time of
the traditional MPC controller is 0.4209× 10−2 s, and the maximum computing time is
3.9680× 10−2 s.

Figure 19 shows the calculation time of different algorithms at each sampling time
when Ny = 5. The average calculation time of the mpQP-eMPC controller is 7.9000× 10−6 s,
and the maximum calculation time is 2.6660× 10−4 s; the average computing time of
the traditional MPC controller is 0.4782× 10−2 s, and the maximum computing time is
1.1966× 10−2 s.
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(a) (b)
Figure 18. When ny = 3, at each sampling time: (a) mpQP-eMPC calculation time; (b) tMPC calculation time.

(a) (b)
Figure 19. When ny = 5, at each sampling time: (a) mpQP-eMPC calculation time; (b) tMPC calculation time.

Figure 20 shows the calculation time of different algorithms at each sampling time
when Ny = 7. The average calculation time of the mpQP-eMPC controller is 9.1960× 10−6 s,
and the maximum calculation time is 7.1950× 10−4 s; the average computing time of
the traditional MPC controller is 0.5331× 10−2 s, and the maximum computing time is
3.2030× 10−2 s.

Figure 21 shows the calculation time of different algorithms in each sampling time
when Ny = 9. The average calculation time of mpQP-eMPC controller is 8.0130× 10−6 s,
and the maximum calculation time is 2.1990 ×10−4 s; the average computing time of
the traditional MPC controller is 0.5265 × 10−2 s, and the longest computing time is
2.7146× 10−2 s.

Remark 3. References [16,17] also offer different methods to improve the real-time property, such
as Mehdi Hosseinzadeh using the explicit reference governor to enhance the real time character
in [16]. Meanwhile, reference [17] has also done a lot of related work on this, and the method
proposed in [17] can be seen as an extension of the method in [16]. In addition, there are some robust
methods that can improve the real-time performance of the model predictive algorithm [4]. However,
considering that inequality scaling is involved and the special research objects, such as turboshaft
engines, have strict requirements on the performance of the control system, we have not tried these
methods to improve the real-time performance. However, these methods are indeed worth trying,
and this may be an important part of our work in the future.
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(a) (b)
Figure 20. When ny = 7, at each sampling time: (a) mpQP-eMPC calculation time; (b) tMPC calculation time.

(a) (b)
Figure 21. When ny = 9, at each sampling time: (a) mpQP-eMPC calculation time; (b) tMPC calculation time.

5. Conclusions

A real-time explicit model prediction control for turboshaft engines based on multi-
parameter quadratic programming is proposed. Firstly, the perturbed PWA system is
constructed. Then, based on the theory of PWA and multi-parameter quadratic program-
ming, the mpQP-eMPC controller is designed for turboshaft engine–rotor systems. Finally,
the effectiveness of the proposed method is verified by simulating the steady-state and
transient process of a turboshaft engine–rotor system with a limit protection requirement.
The simulation result proves that: (1) the perturbed PWA linear modeling method is accu-
rate enough; (2) under the proposed mpQP-eMPC based controller, the system dynamic
performance is improved while obeying certain constraints at the same time; (3) it breaks
through the bottleneck of tMPC finding it difficult to guarantee the real-time performance
of turboshaft engines.

There are many ways to improve the real-time performance, but we just tried one of
these methods on the turboshaft engine. The focus of future research can be to try a variety
of methods to enhance the real-time performance of the MPC algorithm and to finally de-
termine a method that can best improve the control performance of the turboshaft engine.
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Parameter Symbol

ng Gas turbine rotation speed
ng0 Gas turbine rotation speed at equilibrium point
np Power turbine rotation speed
np0 Power turbine rotation speed at equilibrium point
xcpc Collective pitch input of rotor system
xcpc0 Collective pitch input at equilibrium point
w f Engine fuel input
w f 0 Engine fuel input at equilibrium point
H Helicopter flight altitude
Ny Prediction horizon
Ma Helicopter flight Mach number
Nu Control horizon
MPC Model predictive control
tMPC Traditional model predictive control
mpQP-eMPC Multi-parameter quadratic programming explicit model predictive control
PWA Piecewise affine system
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