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Abstract: Interpretable and scalable data-driven methodologies providing high granularity baseline
predictions of energy use in buildings are essential for the accurate measurement and verification of
energy renovation projects and have the potential of unlocking considerable investments in energy
efficiency worldwide. Bayesian methodologies have been demonstrated to hold great potential
for energy baseline modelling, by providing richer and more valuable information using intuitive
mathematics. This paper proposes a Bayesian linear regression methodology for hourly baseline
energy consumption predictions in commercial buildings. The methodology also enables a detailed
characterization of the analyzed buildings through the detection of typical electricity usage profiles
and the estimation of the weather dependence. The effects of different Bayesian model specifica-
tions were tested, including the use of different prior distributions, predictor variables, posterior
estimation techniques, and the implementation of multilevel regression. The approach was tested
on an open dataset containing two years of electricity meter readings at an hourly frequency for
1578 non-residential buildings. The best performing model specifications were identified, among the
ones tested. The results show that the methodology developed is able to provide accurate high gran-
ularity baseline predictions, while also being intuitive and explainable. The building consumption
characterization provides actionable information that can be used by energy managers to improve
the performance of the analyzed facilities.

Keywords: Bayesian; baseline; energy; efficiency; probabilistic; uncertainty; buildings; savings

1. Introduction

In 2019, CO, emissions related to the operation of buildings have reached a historical
peak of 10 GtCO,, representing 28% of total global carbon dioxide emissions, as shown in
the latest reports of the Global Alliance for Buildings and Construction [1]. While the energy
intensity of the building sector has been steadily decreasing since 2010, an average annual floor
area growth rate of around 2.5% has been enough to offset this trend [2]. This highlights a vast
energy efficiency potential, linked with building energy codes lagging behind in emerging
economies and renovation rates remaining low in developed nations. In Europe, only about
1% of the existing building stock is renovated each year, but energy retrofitting projects might
have the potential to lower the EU’s total CO, emissions by 5% [3].
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The lack of methods to accurately quantify the savings generated by energy efficiency
projects represents a significant barrier towards the attraction of financial investments
in this field [4]. In recent years, investments in renewable energy worldwide have been
higher than those in energy efficiency by approximately 20% [5]. One of the reasons is
the possibility of directly metering the energy generated (and therefore the return on
investment), as opposed to rough estimations of savings in the case of energy renovation
projects. Afroz et al. highlighted how the use of different baseline models can provide very
different savings results, and how it is becoming a usual practice in the industry to prefer
practical and intuitive models to more sophisticated ones with higher accuracy but poor
interpretability [6]. Additionally, different studies have shown that accurately quantifying
the uncertainty of obtained savings estimates is of utmost importance in energy efficiency
projects, but that the commonly employed methods have a tendency to underestimate said
uncertainty [7].

Alongside traditional energy efficiency programmes, in recent years, new business
schemes are arising from the intersection between energy efficiency and demand side
flexibility [8]. Projects with these characteristics require advanced baseline estimation
techniques that are able to accurately and dynamically estimate both energy savings and
dynamic uncertainty bands at the hourly or sub-hourly level. Two schemes worth men-
tioning in this field are Pay for Performance (P4P) [9] and Pay for Load Shape (P4LS) [10],
in which customers are dynamically compensated for changing their consumption load
shape in order to match the evolving conditions of the grid. These new approaches that
combine energy efficiency and demand side flexibility arise from a necessity of not only
lowering the overall energy usage intensity of the built environment, but also creating a
permanent shift of the consumption curve in order to match the hours of highest energy
production from renewable sources [11]. These findings highlight that novel measurement
and verification (M&V) methodologies that are able to accurately estimate achieved hourly
savings and uncertainty bands, as well as displaced loads, have the potential of unlocking
considerable investments in energy efficiency [12].

1.1. M&V Background

One of the main applications building energy baseline models are used for is the
measurement and verification of energy efficiency savings. The International Performance
Measurement and Verification Protocol IPMVP) defines measurement and verification
as the practice of using measurements to reliably determine actual savings generated
thanks to the implementation of an energy management program within an individual
building or facility [13]. As energy savings are a result of not consuming energy, they
cannot be directly quantified. The usual approach for estimating savings achieved by
energy efficiency initiatives is to compare the energy usage of the facility before and after
the application of the intervention, while also implementing the required adjustments
to account for possible changes in conditions. In M&V, there are two main guidelines
that are globally recognized: the International Performance Measurement and Verification
Protocol (IPMVP), and the ASHRAE Guideline 14 [14]. Both these protocols are based
on the adoption of a baseline energy model to compare the energy performance of the
investigated facility before and after the implementation of an energy efficiency measure.
The baseline model has the goal of characterizing the starting situation of the facility and
it is used to separate the impact of a retrofit program from other factors that might be
simultaneously impacting the energy consumption.

1.2. Bayesian Paradigm in M&V

Bayesian methodologies have been proven to hold great potential for M&V, by pro-
viding richer and more useful information using intuitive mathematics [15]. As this article
is mainly focused on Bayesian applications in the M&V setting, a full explanation of the
theory behind the Bayesian paradigm is out of its scope. Readers are instead referred to
the following texts: [16-18]. The added value provided by Bayesian inferential methods is
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linked to their coherent and intuitive approach to the M&V questions, as well as to their
probabilistic nature, which enables automatic and accurate uncertainty quantification when
estimating energy savings [19]. Shonder and Im [20] showed the Bayesian approach to be
a coherent and consistent methodology that can be used to estimate savings and savings
uncertainty when performing measurement and verification calculations. Lindelof et al. [21]
tested the Bayesian approach to estimate the savings coming from an ECM implementation,
and stressed the clear interpretability and communicability of the results obtained with the
Bayesian method. The advantages of communicating to decision makers not only point
estimate results, but whole probability distributions with the additional information included.
Grillone et al. [22] gathered together the latest Bayesian specifications for M&V. Among the
different reviewed techniques, Gaussian mixture regression [23] and Gaussian processes [24]
stand out because of their ability to capture nonlinear relationships between variables.

1.3. Multilevel Models

One of the model specifications implemented in this work is multilevel regression.
Multilevel (also known by the names of hierarchical, partial pooling, or mixed effects)
models are interesting model specifications that prove useful when the analyzed data can
be grouped into clusters of similar behavior. More specifically, multilevel models allow the
pooling of information between the different clusters present in the data, meaning that the
model learns simultaneously about each cluster while learning about the population of
clusters [16]. In recent years, also thanks to the increase in computing power, multilevel
models have attracted great interest and have been applied in many different fields of
science and technology [25]. In the energy field, they have found application in the
calibration of building energy models [26,27], the forecasting of electricity demand [28-30],
estimation of overhead lines failure rate [31], estimation of photovoltaic potential [32],
and the analysis of the degradation of electric vehicle batteries [33]. In the M&V setting,
Booth et al. [34] used a hierarchical framework to generate energy intensity estimates for
various dwelling types. These estimates were then used to calibrate the parameters of an
engineering based bottom-up energy model of the housing stock.

1.4. Present Study

Although some research has been carried out on the use of Bayesian methods for M&V,
to the best of the authors’ knowledge, no paper has introduced a Bayesian linear regression
model, with clear interpretability of the parameters and providing high granularity predic-
tions. Some published works proposed a Bayesian approach with physical interpretability
of the coefficients [21], but only providing predictions with monthly granularity, while
others focused on extending the Bayesian approach to high frequency time-series predic-
tions, at the cost of reducing the model interpretability [23,24]. Our scope in the present
work is to introduce a Bayesian linear regression model that can be easily interpreted
and explained to stakeholders, but that at the same time can be applied to time-series
with high granularity and can provide accurate and dynamic hour by hour consumption
and uncertainty estimates. The model proposed was tested on one of the largest publicly
available datasets of non-residential building energy consumption, creating in this way a
benchmark for future studies.

The model proposed in this article uses time features and coefficients marking the
temperature dependence of the building, while also including information about its typical
consumption profile patterns, detected using a clustering algorithm. All the parameters
of the model have a clearly interpretable meaning, and the Bayesian approach is able to
automatically estimate what the heating and cooling change-point temperatures of the
building are, that is, the outdoor temperatures below /above which a significant relationship
between the building’s energy consumption and the outdoor temperature conditions is
detected. The methodology comes with several advantages:
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1.  The model is explainable and its coefficients have a clearly interpretable meaning,
a feature which is highly valued by investors in building energy renovation and other
stakeholders of the industry.

2. As the model is probabilistic, uncertainty is estimated in an accurate, automatic,
elegant and intuitive way:.

3. The model coefficients and target variables are expressed in terms of probability
distributions instead of point estimates, providing a range of additional actionable
information to stakeholders.

4. The provided uncertainty ranges are characterized by dynamic locally adaptive
intervals, reflecting how the uncertainty is not symmetrically distributed around the
mean of the predictions, and that the values can vary depending on the distribution
of the explanatory variables.

5. The methodology provides extra useful information for stakeholders, such as the
typical consumption profile patterns of the building, as well as the probability distri-
butions of the heating and cooling change-point temperatures and of the heating and
cooling linear coefficients.

6.  Since Bayesian models are fit to provide reasonable results even when the training
data available are scarce, the methodology is well-fit to solve M&V problems, where
it is not always feasible to obtain long training time-series with high granularity.
Furthermore, the model also has high applicability since the data required is limited
to hourly electricity consumption and outdoor temperature values, which are fairly
easy to obtain.

The mentioned advantages represent a significant advance to the state-of-the-art,
widening the scope of M&V applications and providing the necessary risk mitigation
required by financial institutions, thanks to an automatic, dynamic and accurate estimation
of uncertainty intervals. Furthermore, the possibility of computing locally adaptive uncer-
tainty ranges can be of fundamental value in those projects where the time-allocation of
the savings is as important as the savings themselves. The approach was tested on an open
dataset containing electricity meter readings at an hourly frequency for 1578 non-residential
buildings. The dataset was collected within the framework of the Building Data Genome
Project 2 [35] and was partly used in the Great Energy Predictor III competition hosted
in 2019 by ASHRAE [36]. Different model specifications were tested on the buildings
contained in the dataset, in an attempt to identify their effect on the final accuracy of
predictions. This model comparison process was structured in four consecutive phases,
which are described in detail in Section 2.2. The article is structured as follows. First, the
methodology is described in detail, together with the model comparison process. Then,
the case study is presented and the results obtained are displayed and discussed. Finally;,
conclusions are drawn and future work recommendations are made.

2. Methodology

In the present article, a Bayesian linear regression methodology capable of providing
detailed characterization of building energy consumption, as well as high granularity
baseline energy use predictions, is introduced. Different Bayesian model specifications were
tested and mapped to changes in the accuracy of hourly energy consumption predictions
for a dataset of more than 1500 buildings. Various model variables, prior distributions,
and posterior estimation techniques were compared, as well as the effect of implementing
a multilevel regression in place of a classical single-level model. The different model
specifications were tested on the same dataset, and the results were compared in terms of
CV(RMSE) and coverage of the uncertainty intervals. In the following paragraphs, first,
the characteristics of the proposed Bayesian approach are presented in detail. Then, the
procedure and metrics used to perform the model comparison are discussed.
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2.1. Bayesian Methodology

The main aim of the Bayesian inference methodology proposed in this article is to
characterize the energy consumption dynamics of individual buildings by means of a linear
regression model that uses time and weather features as predictors. The development of
such a model enables a deeper understanding of the analyzed buildings’ energy perfor-
mance and the generation of baseline energy use predictions. In the framework of Bayesian
inference, this model is estimated by applying Bayes’ theorem [17] as follows:

P(D|M)P(M)

P(M|D) = P(D)

)
where M are the model parameters and D are the measured data. P(M|D) is the conditional
probability of the model parameters’ values, given the measured data from the building; this
is also called posterior distribution. P(D|M) is the probability of measuring the observed data,
conditional on the model parameter values; it can also be called likelihood. P(M) represents the
prior knowledge of the modeler about the plausible distribution of the model parameters; this
is referred to as the prior probability distribution. P(D) represents the probability of observing
the data and is usually called marginal probability or marginal likelihood. In practical terms, we
define a regression model, aimed at estimating building energy consumption values based
on time and weather features, then we provide to this model a set of measurement data,
a prior probability distribution of the model parameters (based on our previous knowledge of
building physics) and a likelihood function for the observed data. Through the formula in (1),
the Bayesian inference model is then able to provide a posterior probability distribution of the
model parameters and of the target variable (electricity consumption). The model and target
variable posteriors can then be used to characterize the energy consumption of the analyzed
building and to generate baseline energy consumption predictions and uncertainty bands.
The flowchart in Figure 1 represents the structure of the proposed methodology, including the
initial phase of data pre-processing in which a clustering algorithm is used in order to detect
recurrent daily load profiles in the building, which then are used as data for the regression
model. In the following, the technical details of the presented methodology are presented
and discussed.

2.1.1. Data Pre-Processing

The first step of the proposed Bayesian approach is a data pre-processing phase that
is critical in order to build the dataset that is used in the analysis. The pre-processing
workflow consists of the detection of clusters of days that have similar electricity usage
patterns. In order to implement the pattern recognition algorithm, the data are first
transformed through the following steps:

1.  The original frequency of the consumption data is resampled (aggregated) to have
one value per 3 h (8 values per day);
2. For each day in the time-series, the consumption values Q“bs are transformed into
Q.
):teday Q?bs ’
3. A matrix of relative consumption values is generated, having as rows the days of the
time-series and as columns the 8 parts of the day defined in point 1;

4.  The values in the matrix are transformed with a normalization between 0 and 1.

norm,rel __
day,dh

daily relative values Q". Q} =

This enables more accurate predictions with the clustering algorithm. Q
Qg’uly/dh —min(Qf)
max(QEil’)—min(Qgﬁ'j .

To detect the profile patterns, a spectral clustering methodology is implemented [37].
This specific clustering technique is performed by embedding the data into the subspace of
the eigenvectors of an affinity matrix. This is done through the use of a kernel function,
specifically, the one used in this application was a radial basis kernel, also known as a
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Gaussian kernel. Using this kernel, an affinity matrix A;; that is positive, symmetric
and depends on the Euclidean distance between the data points is defined:

Ajj :exp(—zx”xi—x]-Hz). 2)

Then we define the degree matrix D = 2;7 a;j, a diagonal matrix that summarizes the
affinity of each element of A with all the other elements of the matrix. Using the affinity
and the degree matrices we can calculate the unnormalized graph Laplacian:

L=D - A. 3)

If the analyzed data are actually spaced so that there are different clusters, the Lapla-
cian L will then be approximately block-diagonal, and each block will define a cluster.
From the analysis of the eigenvalues and eigenvectors of L, it is possible to estimate what
the optimal number of clusters is.

Once the recurrent daily profiles have been detected for the training year, a classifica-
tion algorithm calculates the cross Euclidean distance matrix between the detected cluster
centroids and the load curve of each day of the test year, assigning them to one of the
identified clusters.
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Figure 1. Methodology flowchart.

2.1.2. Regression Model

The linear regression model developed in this work is based on several coefficients
aimed at capturing the dynamics that drive the energy consumption of the analyzed
buildings. The hourly energy consumption of the building is supposed to be partially
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dependent on time-features such as the hour of the day, and partially on thermal dynamics
driven by outdoor temperature variations. In the estimation of the temperature-dependent
term, a heating change-point temperature and a cooling change-point temperature are
defined—the outdoor temperatures below/above which a significant relationship between
the building’s energy consumption and the outdoor temperature conditions is detected.
This model structure is based on the concept of linear change-point models, first introduced
in the literature with the PRISM method [38]. The coefficients of the model, with the
exception of the change-point temperatures, are supposed to vary depending on the load
profile of the day (detected with the clustering algorithm previously introduced), or on the
day-part, a fictitious variable generated after dividing the day in 6 day parts of 4 hours each.
The mathematical description of the Bayesian linear regression model used follows, where
the square brackets notation has been used to represent the variables that have a different
value for each profile cluster k or day-part j. The likelihood assigned to the observed variable
(hourly electricity consumption) was a normal distribution with mean y; and standard
deviation o

y; ~ Normal(u;, o) 4)
pi = o) + fani + Bejli) + (Toi— Tepe) - de - depei+ Bujfi) = (Tep, — Toi) - dn - deppg, (5)
o ~ Exponential (1) (6)

where:
*  ay is the intercept of the model, one for each profile cluster k detected,

*  fani=Yp 5k,p[,-]sin(2np%) + Vipli] cos(an%) represents the effect of the hour of
the day h, following a Fourier decomposition with n harmonics. J ,; and 7y [
are the linear coefficients that mark the weight of each hour on the final electricity
consumption; one for each profile cluster k detected and for each harmonic p.

* B and By, ;) are the coefficients that represent the piece-wise linear temperature
dependence of the model, one for each day-part j previously defined.

* (T, — T,;) and (T,; — Tcp,) are the difference between the outdoor temperature and
the change-point temperatures detected by the model for heating and cooling.

* dyxandd are logical variables making sure that the temperature-dependent term is
only evaluated when the outdoor temperature is above/below the cooling/heating
change-point temperature:

)1 if (Tep, — T,5) >0 )1 i (T, — Tep.) >0
"0 i (Tup, — Tp) <0 ©0 i (T~ Tep) <0
* depyy and dep. i are two logical coefficients that are automatically optimized by
the model and that mark whether or not a certain profile cluster k has heating or
cooling dependence.

The predictors used in the regression model were one of the model specifications
that were evaluated in the model comparison stage. More specifically, the inclusion of
a wind speed predictor was also tested when comparing different model specifications.
The mathematical formulation of the second model tested in the comparison stage (with
the addition of the wind speed term) follows:

i = ogfi) + fani + Bejfi) © (Toi— Tepe) - de - depei+ Bujii) - (Tep, — To,i) - dn - depp + Wsi - Bus jfil @)

where linear dependence between the energy consumption and the wind speed W; were
supposed, with coefficient S5, depending on the day-part j. Finally, it is important to note
that, for both regression models, a log-transformation of the target variable was performed,
in order to improve the prediction accuracy.

2.1.3. Prior Probability Distributions

An important step of Bayesian modeling is to choose the prior probability distribu-
tions of the model parameters. These values express the belief the modeler has about
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the probability distribution of the parameters before analysing the data. If no previous
information is known about the probability distribution of the parameters, then a uniform
prior with a lower and an upper bound is a common choice, meaning that all the values
contained between the two boundaries have the same prior probability. In order to test the
effect of more or less informative priors on the accuracy of the model predictions, the model
was first run with uniform priors on most of the parameters. The uninformative priors set
were the uniform distributions with different lower and upper bounds:

ay ~ Uniform(—100,100) 8)

Skp s Yipr Bejs Brj ~ Uniform(=5,5) )
depcy , depyy ~ Uniform(0,1) (10)
Tepy » Tepe ~ Uniform(—50,50). (11)

In the model comparison stage, a set of regularizing prior distributions was also
implemented, in order to test their impact on the accuracy of the model predictions.
A presentation and discussion of the regularizing priors used the following:

&k, Okp » Vk,p ~ Normal(0,1) (12)
BejsBhjs Buwsj~ HalfNormal(1) (13)
depp ., depc ~ Bernoulli(0.5) (14)
Tepy, » Tepe ~ Uniform(Tyin, Tinax)- (15)

For the model intercept a; and the time features coefficients J; , and 7y ,, a weakly
regularizing normal prior distribution, centered in 0 and with a standard deviation equal
to 1 was set. For the heating and cooling coefficients . ; and By, ;, a half-normal prior with
a standard deviation equal to 1 was used. This prior distribution assigns zero probability
to negative values of the temperature coefficients, according to the intuition that outdoor
temperature deviations above the cooling change-point temperature, or below the heating
change-point temperature, will result in the electricity consumption of the building either
increasing (8 > 0) or staying unchanged (8 = 0). For the change-point temperatures,
a uniform prior was used, ranging between the minimum and the maximum outdoor
temperatures observed in the training data T),;;, and Ty;ax. The priors of the dependence
coefficients depy, , and dep., were modeled as a Bernoulli distribution with probability
p = 0.5, giving them an equal prior probability of being either 0 or 1.

2.1.4. Pooling Techniques

Previously, a description was provided of how, in the pre-processing phase, the days
of the time-series are clustered according to the shape of the load curves. In the construction
of a model for observations, which are grouped together on a higher level, there are two
conventional alternatives: either modeling all the observations together independently
of the clusters they belong to, or calculating independent coefficients for each of the
clusters. The advantages and disadvantages of these two approaches have been widely
analyzed in the framework of the bias—variance trade-off discussion [39]. In this article,
we decided to explore a third option as well, which is referred to here as partial pooling,
and that also goes by the name of multilevel, hierarchical, or mixed effects regression.
The term partial pooling refers to the action of pooling information between different
clusters during the modeling phase. In our case, a complete pooling approach would be
equivalent to the first of the previously mentioned alternatives—to assume that there is
no variation between days having different load shapes, and to produce a single model
estimate for the model parameters, independently of the clusters. The no pooling approach,
on the other hand, would be to assume that the variation between the clusters is infinite,
therefore nothing learned for days with a certain load shape can help predict days belonging
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to a different cluster. The partial pooling approach produces estimates by including
in the model individual coefficients for each of the detected clusters (similar to the no
pooling case) but with the additional assumption that these same coefficients have a
common prior distribution that is adaptively learned by the model [16]. In other words,
in multilevel regression, although individual model parameters are estimated for each
cluster, the information provided by each cluster can be used to improve the estimates for
all the other clusters.

When translating this into a mathematical formulation, the only difference from a
traditional Bayesian regression model without multilevel structure is that, instead of the
usual prior distributions, an adaptive prior is defined. The adaptive prior is a function of
two additional parameters, often referred to as hyperparameters, and that in turn have
a prior distribution, called a hyperprior. In the context of this article, we decided to test
whether pooling information among different clusters when estimating the intercept and
time features coefficients could improve the model performance. The following adaptive
priors were tested in the model comparison stage, in place of the regularizing priors defined
in the previous section:

ax ~ Normal(&, o) (16)
Ok,p ~ Normal(5,0) (17)
Yk,p ~ Normal(y,0) (18)
&,6,7 ~ Normal(0,1). (19)

The advantage of multilevel regression is that it is still possible to include in the model
the variability caused by the higher level variables (load shape clusters in this case) but, at
the same time, overfitting is avoided by stating that the priors of the model coefficients
related to those variables are drawn from a common distribution. The partial pooling
estimates will be less underfit than the average coefficient from the complete pooling
approach, and less overfit than the no-pooling estimates. This turns out to be particularly
strong when there is not so much data available for some of the categories, because then
the no pooling estimates for those clusters will be especially overfit [16]. On the the other
hand, when there are plenty of data for each of the groups, the effect of implementing
multi-level regression turns out to be less influential on the final result; this is why we
decided to test whether or not implementing this technique might have a positive effect on
the accuracy of the model predictions.

2.1.5. Posterior Estimation Methods

According to the theory of Bayesian statistics, after defining the required variables,
Bayesian models update the prior distributions previously set to obtain the posterior dis-
tribution. A unique posterior distribution exists for each combination of data, likelihood,
parameters, and prior. This distribution represents the relative plausibility of the possible
parameter values, conditional on the data and the model. Historically, being able to effec-
tively estimate the posterior has always been one of the main practical issues of Bayesian
modeling. Starting from the 1990s, thanks to the access to cheap computational power,
Markov chain Monte Carlo (MCMC) [40] methods started being the prevailing technique
used for posterior estimation purposes in Bayesian modeling. MCMC approaches fol-
low the idea that, instead of computing a direct approximation of the posterior, which is
many times unfeasible from a computational point of view, such an approximation can
be obtained by drawing samples from the posterior. The samples drawn provide a set of
possible parameter values, and their frequency represents the posterior plausibilities. One
of the most popular MCMC algorithms used in practical applications is the Hamiltonian
Monte Carlo (HMC). Originally proposed in 1987 by Duane et al., this algorithm is able
to draw samples more efficiently by reducing the correlation between them thanks to the
simulation of Hamiltonian dynamics evolution [41]. In the present research, HMC is one of
the techniques used for posterior estimation. More specifically, the No-U-Turn Sampler
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(NUTS) algorithm was used: an extension of the HMC algorithm that provides accurate
and efficient posterior samples without needing user intervention or tuning runs [42].

One of the drawbacks of MCMC methods is that when models start having a very
high number of variables and data points, their computational cost becomes extremely
high. Automatic Differentiation Variational Inference (ADVI) is an alternative technique
that resolves the problem of the computational bottleneck by turning the task of computing
the posterior into an optimization problem [43]. First, for a given set of model parameters
6 and observations x, a family of distributions g(), parametrized by a vector ¢ € @ is
hypothesized. The optimization is then aimed at finding the member of that family that
minimizes the Kullback-Leibler (KL) divergence to the exact posterior:

" = arg min KL(4(6;¢) || p(6]x)). (20)

Since the KL formulation involves the posterior, and therefore does not have an
analytic form, rather than minimizing the KL, the analysis is aimed at maximizing the
evidence lower bound (ELBO):

Z(9) = Eqo)[log p(x,0)] — Eqgg)[log q(0, ¢).] (21)

Z(¢) is equivalent to the opposite of the KL divergence, up to the constant log p(x),
hence maximizing the ELBO is equal to minimizing the KL divergence [44].

When comparing MCMC methods to ADVI, the first are often more computationally
intensive, but they have the advantage of providing (asymptotically) exact samples from
the posterior. Variational inference, on the other hand, is aimed at estimating a density
that is only close to the target and tends to be faster than MCMC. This makes ADVI the
best choice when the objective of the analysis is testing many different models on large
datasets. MCMC is often used with smaller datasets, when computational time is not an
issue, or in specific situations where the higher computational cost is not considered a
problem compared to the added value of obtaining more precise posterior estimations [45].

In this article, the computational cost of MCMC methods was recognized as a possible
issue, therefore ADVI was used as the main posterior estimation technique. Only in the last
phase of model comparison, considering the fact that ADVI is an optimization algorithm
that does not guarantee to provide exact samples from the target density, the posterior
was estimated with both ADVI and MCMC sampling techniques. This allowed us to
evaluate whether or not the ADVI approximation was producing models that performed
significantly worse for our use-case.

2.1.6. Uncertainty Intervals

One important difference between Bayesian statistics and traditional frequentist meth-
ods is related to how they quantify uncertainty. More specifically, when defining un-
certainty intervals for model predictions, Bayesian methods give rise to credible intervals
while frequentist methods generate confidence intervals. Although having similar names,
the meaning and interpretation of these statistical concepts are profoundly different. This
is connected to the inference problems that these two approaches to statistics are seeking to
answer. The Bayesian inference problem is the following: given a set of model parameters
 and observed data D, what values of 0 are reasonable given the observed data? On the
other hand, the inference question asked by the frequentist approach is: are the observed
data D reasonable, given the hypothesised model parameter 6? This results into two
different approaches to the modelling process: while frequentists consider 6 to be fixed
and D to be random, Bayesians consider 6 to be random and D to be fixed [46]. This gives
rise to the different interpretation the credible and confidence intervals have: computing
a 95 % credible interval is equivalent to stating “given the observed data D, there is 95%
probability that the model parameter 6 will fall within the credible interval”. On the
other hand, since in the frequentist approach, the parameters are fixed, while the data
are random, computing a 95% confidence interval means stating “if the data-generating
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process that produced D is repeated many times, the computed confidence interval will
include the true parameter § 95% of the times”. Therefore, while the Bayesian solution
represents a probability statement about the parameter values, given fixed interval bounds,
the frequentist solution concerns the probability of the bounds, given a fixed parameter
value. Credible intervals capture the uncertainty in the parameter values and can therefore
be interpreted as probabilistic statements about the parameter. Conversely, confidence
intervals capture the uncertainty about the computed interval (i.e., whether the interval
contains the true value or not). Thus, it is not possible to interpret confidence intervals
as probabilistic statements about the true parameter values. The frequentist method is
not wrong, it is just answering a different question, that usually tells us nothing about the
specific dataset we have observed. In fact, when dealing with one specific dataset (which
is usually the case in the M&V setting), all that a confidence interval can say is: “for this
specific dataset, the true parameter values are either contained or not contained in the
confidence interval”.

In order to better clarify these concepts, a practical example of the energy baseline
modelling case will be presented. We suppose that two energy baseline models have
been estimated—one Bayesian and one frequentist—with the corresponding uncertainty
intervals. In the Bayesian case we are able to state the following: given the training
data observed (energy consumption and outdoor temperature time-series), there is 95%
probability that the estimated model parameters (and therefore the predictions) will fall
within the calculated credible interval. On the other hand, the corresponding frequentist
statement would be: if we could repeat many times the data-generating process that leads
to the energy consumption and outdoor temperature values that we observed, 95% of
times the estimated model parameters would be included in the calculated confidence
interval. It is evident that, for the case in analysis, the Bayesian interpretation is the one
which is the most reasonable and coherent. Despite this, it is fair to state that, for many
common problems, such as linear regression, the Bayesian and frequentist intervals can
coincide. This is also the reason why, in many contemporary scientific studies, Bayesian
interpretation is (erroneously) applied to frequentist confidence intervals. Unfortunately,
this match ceases many times when the models start becoming more complex than stan-
dard linear regression [47]. An additional feature of Bayesian credible intervals is that,
while confidence intervals are delimited by two (random) numbers, credible intervals
are represented by probability density functions, which are visibly more suited to risk
assessment or uncertainty quantification problems [15].

In many Bayesian studies, including this article, credible intervals are represented
as highest posterior density intervals (HDI or HPDI), defined as the narrowest interval
containing the specified probability mass. This means that a 95% HDI will be represented
by the narrowest interval containing 95% of the probability mass. Frequentist confidence
intervals are equal-tailed, since they are generally computed by adding or subtracting
a fixed number from the mean. While this can work for symmetrical distributions, real
data are often asymmetrical and frequentist equal-tailed intervals will lead to, including
unlikely values on one side, while excluding more likely values on the opposite side. HDIs
solve this problem by providing local adaptive uncertainty bands with equally likely (but
not symmetrical) lower and upper bounds [19].

2.2. Model Comparison

In this section, the structure of the model comparison that was performed is discussed.
The comparison was carried out in four consecutive test phases, which are summarized
in Table 1. The specifications that are tested in each phase are highlighted in the table.
The first model run was the benchmark model, to which the others were compared. In the
second phase, the goal was to test the use of regularizing priors, while in the third phase the
inclusion of a wind speed feature in the regression model was assessed. Finally, in the fourth
phase, two different techniques for the posterior estimation were tested, and a comparison
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was performed between regular regression and multilevel regression. In each consecutive
phase, the best performing specification previously tested was then implemented.

Table 1. Model comparison overview.

. Wind Speed Posterior .

Phase  Prior Feature Estimation Pooling

1 Uninformative No ADVI No pooling

2 Regularizing No ADVI No pooling

3 Best a ccording to Yes ADVI No pooling
previous results
Best according to  Best according to  ADVI, Partial p.oohng,

4 : . No pooling,
previous results  previousresults ~ NUTS Complete pooling

2.2.1. Model Comparison Phases
Phase 1

The first test was run using the benchmark regression model with time and tempera-
ture features and uniform priors. The coefficients were supposed to have different values
according to the detected load profile cluster, but no pooling was performed between the
different clusters. The posterior distributions were estimated using the ADVI technique.
This is the benchmark model specification to which the following versions were compared.

Phase 2

In the second test, the same regression model of Phase 1 was used, but this time with
regularizing priors in place of the flat priors previously used. Again no pooling was per-
formed, and the posterior distributions were estimated using ADVI. This phase was aimed
at understanding whether the use regularizing priors, selected using domain knowledge
about building energy consumption modeling, could improve the prediction accuracy.

Phase 3

In the third set of model tests, a wind speed predictor was added to the linear regres-
sion model, as described in Section 2.1.2. Regarding the prior choice, it was decided to use
whichever priors were granting higher accuracy between the ones tested in Phase 1 and 2.
The pooling and posterior estimation techniques used were the same used in the previous
phases. This model comparison phase was aimed at understanding whether adding a wind
speed feature could improve the prediction accuracy.

Phase 4

In the last model comparison phase, the regression model providing the best accuracy
between the one including and excluding the wind speed predictor was used. The best
performing priors, already used in Phase 3, were selected again. Different pooling tech-
niques were then compared (partial pooling, no pooling, complete pooling), as well as two
different methods to estimate the posterior distributions—ADVI and a HMC sampling
through the NUTS algorithm. This phase had the goal of testing whether implementing
multilevel regression in place of regular regression could bring added value in terms of
model accuracy or uncertainty bands estimation for our use case. At the same time, it was
possible to evaluate the goodness of the ADVI posterior approximation by comparing it to
the one obtained with the sampling approach.

2.2.2. Comparison Metrics

Three main metrics were used in order to compare the different models tested.
The CV(RMSE) was used to assess the prediction accuracy of the model, while the
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coverage and adjusted coverage parameters were analyzed to evaluate the uncertainty
bands estimated.

CV(RMSE)

The coefficient of variation of the root mean square error (CV(RMSE)) is a metric
frequently employed to evaluate the accuracy of energy baseline models:

[1 NN, 5.2
CV(RMSE) = VL ;y’ i) x 100 (22)

7

with N being the total number of hours of the time-series, y; the measured energy consump-
tion value at hour i, ij; the energy consumption predicted using the regression model, at the
same hour, and 7 the average hourly energy consumption across the whole time-series.
Equation (22) shows how the CV(RMSE) is nothing but a normalization of the root mean
square error by the mean of the measured energy consumption values f, representing a
comparison between the model error and the average energy consumption values for the
selected building or facility.

Coverage

In order to compare the accuracy of the uncertainty intervals estimated with the tested
model specifications, the concept of coverage probability was used. When evaluating
uncertainty intervals, the coverage probability represents the proportion of times that the
real observed value is contained within the estimated interval.

1 N
Coverage N i;)ybl x 100, (23)

where: hich
1 ifglw <y <9

L i~
v {O else )

with N being the total number of hours of the time-series, y; the measured energy con-

sumption value on hour i, yfihlgh and ]Qil"w the higher and lower bounds of the predicted
uncertainty bands for hour i. One problem of this metric is that, in its evaluation, it does
no take into account the size of the estimated uncertainty intervals. A disproportionately
large interval would always have 100% coverage, but this can be an indication that the
model that generated such interval is misspecified. In order to solve this issue a new
metric, called adjusted coverage, was defined. This newly defined metric modifies the
traditional coverage concept with additional terms that have the objective of penalizing
larger intervals.

high
. 1Y log(9;"")
Adjusted coverage = — ) $i——"F—, (25)
N g “log(y!ov)
where: ik
log(y;—p;"® . . high
og% (yy,-’)*) +1 ify; > 9"
— 1 glow_y, o
¢ = Oggi/é(yi)y) +1 if yilow > v (26)
1 else.

This additional metric enables a more accurate comparison of the different Bayesian
inference models tested. The traditional coverage concept, which simply checks whether
the real value lies within the predicted uncertainty interval, does not provide enough
information to correctly compare the bands. The adjusted coverage solves the issues of the
coverage metric by adding two penalization terms. The first of these terms is included in
¢;, a variable representing whether or not the metered value y; is contained in the interval.
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If y; is within the interval, then ¢; is equal to 1, otherwise it is equal to 1 plus a term that
is proportional to the distance between the closest bound and the metered value. In this
way ’bigger errors’ of the model are penalized more. The second penalization term is
log(3,"")
log(§;"")
terms are expressed as a ratio of logarithms, in order to prevent the adjusted coverage from
reaching very high values when the metered y; or the ]Qil"w are close to zero. This metric,
although not suitable for a comparison between different buildings, serves the purpose
of comparing uncertainty intervals predicted by different models for the same building
well. Among models with equal coverage, those having smaller adjusted coverage are to

be preferred, since this represents a lower overall model uncertainty.

, which is proportional to the size of the predicted uncertainty interval. Both

3. Case Study

The presented approach was tested on an open dataset containing electricity meter
readings at an hourly frequency for 1578 non-residential buildings. It was decided to test
the approach on this dataset because of the generally recognized need, in the building
performance research community, of testing novel techniques on common datasets [48].
This helps providing meaningful comparisons of accuracy, applicability, and added value
between methodologies. The dataset is part of the Building Data Genome Project 2, a wider
set that contains readings from 3053 energy (electricity, heating and cooling water, steam,
and irrigation) meters from 1636 buildings. Of the original 1636 buildings, only the 1578
containing electricity meter readings were selected, since the proposed methodology has the
goal of modeling hourly electricity consumption. A thorough description and exploratory
data analysis of this dataset is available in Miller et al. [35]. A summary of the remarks that
might be of interest follows:

e the buildings belong to 19 different sites across North America and Europe, with en-
ergy meter readings spanning two full years (2016 and 2017);

* there are five main primary use categories: education, office, entertainment/public
assembly, lodging /residential, and public services;

* the weather data provided includes information about cloud coverage, outdoor air
temperature, dew temperature, precipitation depth in 1 and 6 hours, pressure, wind
speed and direction;

e  for most of the buildings, additional metadata such as total floor area and year of
construction are available.

Table 2 contains an overview of the sites present in the dataset and the number of
buildings having electricity meter readings. Each site is assigned an animal-like site code
name and each building is characterized by a Unique Site Identifier consisting of the site code
name, an abbreviation of the building primary space usage, and a human-like name unique
for each building. An example of a building’s unique site identifier is: Rat_health_Gaye.

In this case study, the year of 2016 was used to train the model. Validation of the model
prediction accuracy was then performed on data from 2017. The CV(RMSE), coverage
and adjusted coverage were calculated between 2017 model predictions and observed
meter readings.

Table 2. Overview of the sites from which the meter data were collected and number of buildings
having electricity meter readings for each site.

Site Actual Site Name Location Buildings
Panther Univ. of Central Florida (UCF) Orlando, FL 105

Robin Univ. College London (UCL) London, UK 52

Fox Arizona State University (ASU) Tempe, AZ 137

Rat Washington DC—City Buildings Washington DC 305

Bear Univ. of California Berkeley Berkeley, CA 92
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Table 2. Cont.

Site Actual Site Name Location Buildings
Lamb Cardiff—City Buildings Cardiff, UK 146
Eagle Anonymous N/A 106
Moose Ottawa—City Buildings Ottawa, Ontario 13
Gator Anonymous N/A 74
Bull Univ. of Texas—Austin Austin, TX 123
Bobcat Anonymous N/A 35
Crow Carleton Univ. Ottawa, Ontario 5
Wolf Univ. College Dublin (UCD) Dublin, Ireland 36
Hog Anonymous N/A 152
Peacock Princeton University Princeton, NJ 45
Cockatoo Cornell University Cornell, NY 117
Shrew UK Parliament London, UK 9
Swan Anonymous N/A 19
Mouse Ormand Street Hospital London, UK 7
4. Results

The Results section is divided into two parts. First, the model comparison results are
analyzed and the model specifications that produced the highest prediction accuracy are
pointed out. Then, the results obtained for two individual buildings are presented in detail,
highlighting the outputs of the methodology, such as the clustering of the daily profiles,
the change-point temperatures and coefficients detected, as well as predictions for the full
test year. All the coverage and adjusted coverage estimations provided in this section are
referred to 95% HDIs. Regarding the software used for the analysis, the consumption profile
clustering was performed with the kernlab library [49] in the R programming environment,
while the Bayesian models were calculated using the python library PyMC3 [50].

4.1. Model Comparison

The results obtained for each of the model comparison phases are presented here
in form of boxplots for the CV(RMSE), coverage and adjusted coverage variables. It is
important to note that the dataset that was selected for the case study contains various
buildings for which the test year data are very different from the training year data.
Examples of this are buildings with flat consumption in the whole test year or in large parts
of it, as well as buildings having completely different energy consumption trends in the
training and test year, meaning that no baseline model could provide accurate predictions.
In Figure 2, the electricity consumption time-series of one of these ‘outlier’ buildings is
shown. In order to not manually exclude any building from the analysis, while the results
for all the buildings were calculated, in the boxplots the outlying values were hidden,
meaning values 1.5 IQR above the upper quartile or below the lower quartile are not
shown. The analysis performed in this section is based on median values and boxplot
analyses that are not affected in any way by the exclusion of the outlier buildings from
the plots.

Figures 3 and 4 show the results in terms of CV(RMSE) and coverage for the first three
phases of model comparison. In the second phase of the analysis, the benchmark model of
Phase 1 was updated with regularizing priors in place of the uninformative ones previously
used. In the third phase, the model from Phase 2, which proved to be better than the
benchmark model both in terms of CV(RMSE) and adjusted coverage, was complemented
with an additional term marking the effect of wind speed. From Figures 3 and 4, we can
see that while the use of regularizing priors caused only a slight decrease of CV(RMSE),
the uncertainty bands were highly affected by this change. A quick analysis of Figure 4
shows that, while the model with uninformative priors had the highest coverage, this was
mainly due to the estimation of disproportionately large uncertainty bands. The addition of
the wind speed term, on the other hand, seems to have no effect on neither the CV(RMSE)
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nor the coverage of the model, meaning that for this dataset using wind speed as a predictor
variable for electricity consumption does not provide any benefit.

50 -
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. .
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Date

Electricity consumption [kWh]

Figure 2. Electricity consumption time-series for the building Lamb_assembly_Delilah.
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Figure 3. CV(RMSE) results obtained in Phases 1, 2 and 3 of model comparison.
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Figure 4. Coverage and adjusted coverage for the 95% HDIs obtained in Phases 1, 2 and 3 of

model comparison.

The first three phases of the model comparison helped to prove that the regression
model and prior distributions used in Phase 2 were the ones providing the highest accuracy
with the smallest number of predictor variables. Phase 4, on the other hand, was aimed
at testing the performance of multilevel regression and different posterior estimation
techniques. In Phase 4, the model of Phase 2, originally characterized by the use of a no
pooling approach and ADVI estimation, was compared with specifications that used the
same regression model and prior distributions of Phase 2, but implementing complete
and partial pooling as well. The use of the NUTS (MCMC sampling) algorithm for the
estimation of the posterior distribution was also tested, using 2000 tuning steps and then
sampling four chains with 5000 samples each. Figures 5-7 show the boxplots obtained for
the final phase of model comparison, while Figure 8 allows to simultaneously analyze the
CV(RMSE) and adjusted coverage metrics. The first clear conclusion that can be drawn
is that complete pooling is the least performing of the three pooling approaches, which
is coherent with the method used to build the regression model (giving high value to the
clustering approach to detect different consumption trends). At the same time, the results
obtained show that the use of partial pooling marks a definite coverage improvement over
no pooling for the NUTS estimation case, while when using ADVI the two models are
practically equivalent. When comparing the posterior estimation techniques, the use of
MCMC sampling yields comparable CV(RMSE) and slightly better adjusted coverage over
the variational inference approach: Figure 8 provides a helpful visualisation in this regard.

Regarding the computational time difference between ADVI and NUTS, the analysis
was run on a remote server with 125 GB of RAM and an Intel Xeon Processor with 2.60 GHz
base frequency, using 12 of the 32 available cores. The average computational times required
for the analysis are summarized in Table 3, which also presents the median CV(RMSE),
coverage, and adjusted coverage obtained with each model of Phase 4. It appears that
NUTS estimations require around 35 times more computational power than the ADVI case,
while providing only modest improvements in terms of adjusted coverage. It is worth
mentioning that, for the no pooling and partial pooling cases, the computational time
required to model one building is directly proportional to the number of different load
profile patterns detected by the clustering algorithm, since each additional load profile
increases the number of variables that need to be estimated in the model.
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Figure 5. CV(RMSE) results obtained in Phase 4 of model comparison.
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Figure 6. Coverage for the 95% HDIs obtained in Phase 4 of model comparison.
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Figure 7. Adjusted coverage for the 95% HDIs obtained in Phase 4 of model comparison.



Energies 2021, 14, 5556

19 of 29

3.0
(]
(@]
S 27
(]
>
o
o
]
L
3 24
e]
@©
c
8 NP ADVI
g

21

NP NUTS

2l1 2l4 2l7
Median CV(RMSE) [%]

Figure 8. Median CV(RMSE) vs. median adjusted coverage obtained in Phase 4 of model comparison.

Table 3. Results obtained in Phase 4 of model comparison. Median CV(RMSE), coverage and adjusted
coverage are shown, as well as the average computational time required to estimate the model for a
single building of the dataset.

Model CV(RMSE) (%)  Coverage (%) éd]usted Computational Time
overage

NP ADVI ~ 18.95 92.54 2.03 155

PP ADVI 18.93 92.61 2.04 16s

CP ADVI  28.62 93.25 3 9s

NP NUTS  20.34 90.82 2.06 8 min

PP NUTS 18.95 89.94 1.87 9 min

CPNUTS  27.56 91.18 2.57 1.5 min

4.2. Individual Buildings

In this section, the model results obtained for two individual buildings are analyzed,
in terms of consumption predictions, weather dependence and posterior distributions
identified for the model parameters. The results shown are the ones obtained using partial
pooling and ADVI posterior estimation.

The first building analyzed is Rat_health_Gaye, a healthcare facility located in Wash-
ington DC with a total floor area of 2220 square meters. The five recurrent load profiles
identified by the clustering algorithm for this building are represented in Figure 9, with the
red lines representing the profile centroids and the black lines the load profiles of days
belonging to that cluster. In Figure 10, the electricity consumption time-series for both the
training and test years (2016 and 2017) is shown.

At first glance, it appears that this building is using electricity for the cooling system,
while a different energy source is used for heating, since the consumption is quite constant
during the winter months and peaks in the summer period. An analysis of the change-
point temperatures estimated by the Bayesian regression model can help confirm this
hypothesis. Figure 11 shows the posterior distributions estimated for the heating and
cooling change-point temperatures, both the mean value and the 94% HDIs are marked.
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Figure 9. Recurrent daily load profiles identified for the building Rat_health_Gaye.
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Figure 10. Electricity consumption time-series for the building Rat_health_Gaye.
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Figure 11. Posterior distributions estimated for the heating and cooling change-point temperatures
for the building Rat_health_Gaye.

In order to better understand these results, it can be useful to visualize the electricity
consumption and outdoor temperature time-series, together with the heating and cooling
change-point temperatures estimated by the model. Figure 12 shows this relationship for
the training year, with the estimated mean heating and cooling change-point temperatures
marked as a dotted line, and their 94% HDISs represented by the shaded area. This plot
confirms the initial hypothesis and validates the results of the model. The building has
cooling dependence: it can be seen how the electricity consumption starts increasing once
the outdoor temperatures exceed the estimated cooling change-point temperature. At the
same time, the model detected no heating dependence, showing that the heating change-
point temperature would correspond to the lowest temperature observed in the training
year. This conclusion is confirmed by studying how the electricity consumption does not
react to changes in temperature below T, .
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Figure 12. Electricity time-series vs. outdoor temperature values for the building Rat_health_Gaye.
The heating and cooling change-point temperatures estimated by the model are shown in red and
blue with the corresponding 94% HDIs.

In Figure 13 the electricity consumption time-series of the test year is shown (in black),
together with the model predictions and 95% uncertainty bands (in red). In order to better
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visualize the uncertainty bands and predictions, Figure 14 shows a segment of this same
plot that includes only predictions for the month of July 2017, where the building energy
consumption is being affected by the outdoor temperature values. Overall, the model is
able to accurately predict the consumption time-series of the test year and to capture the
temperature dependence dynamics of the building. This model was characterized by a
CV(RMSE) of 15.2%, a coverage of 96.7% (for the 95% HDI) and an adjusted coverage
of 1.94.
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Figure 13. Test year metered electricity time-series (in black) and model predictions (in red) for
Rat_health_Gaye.
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Figure 14. July 2017 metered electricity time-series (in black) and model predictions (in red) for
Rat_health_Gaye.

The second case presented is that of a building that has both heating and cooling
consumption dependence. The building analyzed is Rat_education_Royal, a school in
Washington DC with a total floor area of 7218.6 square meters. The building electricity
consumption time-series for the training and test year is shown in Figure 15 where it is
possible to observe that the consumption is peaking both in summer and winter months,
a tendency that is more pronounced in the training year than in the test year.
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Figure 15. Electricity consumption time-series for the building Rat_education_Royal

2018-01

Figure 16 shows the posterior distributions estimated by the model for the heating
and cooling change-point temperatures Tcy,, Tcp, and for the linear coefficients B, B.
The estimated heating impact on the consumption is lower than the cooling one, with a
mean 3, of 0.0066 vs. a mean S, of 0.021. Another interesting point is that the cooling de-
pendence posterior has a multimodal distribution, while the heating dependence posterior
is unimodal. Since the B;, and B, were supposed to be changing according to the part of
the day, as explained in Section 2.1.2, this characteristic of the posteriors means that while
the heating dependence was estimated to be very similar for each day-part, the impact of
cooling on the overall consumption was detected to be stronger in certain parts of the day

rather than others.

94% HDI
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mean=00066

94% HDI
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Figure 16. Posterior distributions estimated for the heating and cooling change-point temperatures

(upper panels) and for the heating and cooling linear dependence coefficients (lower panels) in

Rat_education_Royal.
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In Figure 17, the electricity consumption time-series is represented, together with
the outdoor temperature values and the T¢p. From this graph, the heating and cooling
dependence of the building appears evident, and it is also possible to notice the increased
effect of cooling over heating depicted by the estimated B; and B., by comparing the
consumption peaks with the corresponding temperature differences.
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Figure 17. Electricity time-series vs. outdoor temperature values for the building Rat_education_Royal.
The heating and cooling change-point temperatures estimated by the model are shown in red and
blue with the corresponding 94% HDIs.

In Figure 18, the electricity consumption time-series of the test year is shown (in black),
together with the model predictions and 95% HDI (in red). Overall, the model provides a
good fit to the metered electricity consumption time-series, with most of the data points
being included within the 95% HDI. The model was characterized by a CV(RMSE) of 10.9%,
a coverage of 95.2% (for the 95% HDI) and an adjusted coverage of 1.55.
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Figure 18. Test year metered electricity time-series (in black) and model predictions (in red) for
Rat_education_Royal.
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5. Discussion

The results obtained in the four model comparison phases provided important insights
into the predictive capabilities of various model specifications. The first three phases
enabled an analysis of the effects of different prior distributions and of the potential
improvement generated by the inclusion of wind speed as a predictor variable in the
model. The last phase of comparison used the best performing priors and regression model
identified in the previous phases in order to test the effect of multilevel regression and
different posterior estimation techniques. The main conclusions that can be drawn from
the results obtained are the following:

¢ The use of regularizing priors based on building physics knowledge improves the
model both in terms of CV(RMSE) and coverage;

e  The addition of a regression term to take into account the wind speed did not improve
the model predictive capabilities;

®  The use of MCMC sampling techniques to estimate the posterior distribution yields
comparable results to the variational inference method, despite being characterized
by a more than 30-fold increase in computational time;

¢  When looking at the ADVI case, partial pooling has an almost negligible effect on the
prediction accuracy, providing only a very modest median CV(RMSE) and coverage
improvement, and a slightly worse adjusted coverage;

* In the NUTS case, the partial pooling regression seems to have a stronger impact,
improving the CV(RMSE), but at the same time reducing the coverage of the model;

e The computational requirements of the partial pooling regression are comparable to
the ones of the no pooling case.

The individual building analysis also provided interesting insights that showcase the
strengths of the proposed methodology. The results of the profile clustering algorithm
and of the Bayesian regression model unlock insights that can be used to depict a clear
image of the consumption habits of the building in analysis. The results allow for a detailed
characterization of the energy consumption trends, including the typical daily load profile
patterns, the heating and cooling change-point temperatures, as well as the impact of
the heating and cooling terms on the total electricity usage. For the buildings analyzed,
the posterior distributions of the model coefficients obtained, shown in Figures 11 and 16,
accurately represented the trends depicted by the consumption and outdoor temperature
time-series. These posteriors allow to gain insight on the weather dependence of the
analyzed buildings, unlocking actionable information in terms of energy performance.
In Figures 12 and 17, it is possible to see how the posteriors identified for Tcp,, Tcp,, Be, B
are actually an accurate representation of the relationship between outdoor temperature and
electricity consumption for the two showcased buildings. Such results open very interesting
possibilities in terms of energy management improvement, as well as recommendations
for energy retrofit plans. Comparing change-point temperatures and heating and cooling
coefficients from a portfolio of similar buildings can disclose actionable insights about the
analysed buildings, enable targeting and prioritization of energy renovation strategies,
and help energy managers to make decisions backed by data.

The model also proved to be very accurate at predicting the electricity consumption
baseline for the showcased buildings, while also providing small uncertainty bands, as seen
in Figures 13 and 18. The accuracy of this baseline means that this model can be imple-
mented in several practical applications, such as anomaly detection, energy performance
analysis, or dynamic measurement and verification of energy efficiency savings. In fact,
valid estimations of the effects of implemented energy conservation measures are impossi-
ble without a model able to provide accurate baseline model predictions. Nevertheless, it
is important to highlight that, because of the daily profile classification used, the proposed
methodology is only able, in the form presented in this article, to detect hourly changes
in consumption within days that kept an overall similar load shape compared to the one
they had before the implementation of the measure. In the case of being interested in
evaluating energy retrofit actions that completely altered the consumption profile of the
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building energy use, the present methodology should be coupled with an algorithm able to
predict, depending on time and weather features, the consumption profile that a building
would have had, on a certain day, if the energy retrofit measure was not applied. Such an
algorithm was devised and presented in [51], and could be seamlessly coupled with the
proposed methodology.

6. Conclusions and Future Work

In this article, a Bayesian methodology to model electricity baseline use in tertiary
buildings was presented. The methodology has the feature of being based on Bayesian
linear regression with interpretable terms, while at the same time being able to accurately
predict electricity consumption time-series with high granularity. In order for the proposed
approach to work, the only required data are historical electricity consumption and outdoor
temperature values. The approach is based on a data pre-processing phase, in which the
training data are analyzed in order to identify recurrent electricity load profiles, a mod-
eling phase, in which the Bayesian linear regression model is run, and a results analysis
phase, in which the posterior distributions estimated by the model are used to obtain a
characterization of the building energy consumption and to generate baseline predictions.

When performing Bayesian regression, the quality of the results can depend on many
different factors, such as the prior distributions specified, the covariates included in the
regression model, or the technique used to estimate the posterior distribution. In order to
compare different possible model specifications, a model comparison strategy, structured
in four consecutive phases, was devised. The methodology was tested on the Building Data
Genome Project 2, an open dataset containing 3053 energy meters from 1636 non-residential
buildings. Within this dataset, 1578 buildings having electricity meter readings at hourly
frequency for the years 2016 and 2017 were selected. For each building of the dataset,
the Bayesian regression model was trained on the first year of data and then validated on
the second year. The model comparison stage provided valuable results: regularizing priors
performed better than uninformative ones, while the wind speed predictor did not have
any effect on the model. Regarding the posterior estimation, the use of an MCMC sampling
technique provided comparable results to the variational inference case, despite the almost
30-fold increase in computational time required, while multilevel regression provided a
slight improvement in terms of CV(RMSE) and adjusted coverage, with differences that
are more evident when using the MCMC sampling technique to estimate the posterior.
At the same time, a more in-depth analysis of the results presented for the two showcased
individual buildings demonstrated that the proposed methodology is able to provide
a detailed characterization of the analyzed buildings” energy use, as well as accurate
baseline predictions, characterized by effective uncertainty intervals. The possibility of
associating Bayesian credible intervals to the estimated posterior distributions represents a
fundamental feature that allows to implement the results obtained from this methodology
in risk assessments for energy renovation projects.

The results presented highlight several possible applications for the proposed method-
ology, including energy performance improvement, energy use intensity characterization,
quantification of energy conservation measures and risk mitigation in energy retrofit
projects. An accurate, non-intrusive and scalable methodology, such as the one presented
in this article, can help drive down measurement and verification costs for energy efficiency
projects, hence increasing their feasibility and profitability. Furthermore, reliable real-time
measurement and verification is a requirement for many innovative energy efficiency
models in which payments are handed out only when the savings are demonstrated and
verified. To conclude, four main strengths were identified for the presented approach:

1. The explainability of the model and the interpretability of its coefficients even for
non-technical audiences;

2. Anelegant, efficient, dynamic and coherent estimation of uncertainty, that makes it
apt to be used in financial risk assessments of retrofit strategies;
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3. The ability to provide a detailed building energy use characterization that can em-
ployed by energy managers to improve the performance of their facilities;

4.  High scalability to big data problems, because of the low computational complexity
and the limited data requirements.

The features presented for the proposed methodology make it appealing for many
different real-world applications in the field of energy efficiency, but at the same time it is
also evident that this research is still in an initial stage and more work is needed in order to
refine the approach. Future work might involve the testing of different likelihoods, such as
the Student-t likelihood, which might be helpful in specific cases where high resiliency to
outliers is required. The intersection of this methodology with Bayesian Additive Regres-
sion Trees (BART) might also be tested, as well as the effect of different predictors, such as
solar radiation or the implementation of alternative clustering techniques. The posterior
estimation techniques could also be an object of further study; understanding whether the
quality of predictions can improve by increasing the number of MCMC samples would
be of great interest, as well as a quantification of the computational power that would be
required for such estimations. Finally, it would be valuable to see this methodology in
action in a real-world measurement and verification protocol, in order to evaluate how it
ranks compared to other similar methodologies built for this purpose.
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