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Abstract: The rising usage of carbon and glass fibers has raised awareness of scrap management
options. Every year, tons of composite scrap containing precious carbon and glass fibers accumulate
from numerous sectors. It is necessary to recycle them efficiently, without harming the environment.
Pyrolysis seems to be a realistic and promising approach, not only for efficient recovery, but also for
high-quality fiber production. In this paper, the essential characteristics of the pyrolysis process, their
influence on fiber characteristics, and the use of recovered fibers in the creation of a new composite are
highlighted. Pyrolysis, like any other recycling process, has several drawbacks, the most problematic
of which is the probability of char development on the resultant fiber surface. Due to the char, the
mechanical characteristics of the recovered fibers may decrease substantially. Chemically treating
and post-heating the fibers both help to reduce char formation, but only to a limited degree. Thus, it
was important to identify the material cost reductions that may be achieved using recovered carbon
fibers as structural reinforcement, as well as the manufacture of high-value products using recycled
carbon fibers on a large scale. Recycled fibers are cheaper than virgin fibers, but they inherently vary
from them as well. This has hampered the entry of recycled fiber into the virgin fiber industry. Based
on cost and performance, the task of the current study was to modify the material in such a way that
virgin fiber was replaced with recycled fiber. In order to successfully modify the recycling process, a
regulated optimum temperature and residence duration in post-pyrolysis were advantageous.

Keywords: recycling; reinforced composites; pyrolysis; CFRC; GFRC; carbon fiber; glass fiber; sus-
tainability

1. Introduction

Composite materials are composed of two or more different materials having con-
siderably different physical and/or chemical characteristics that, when merged, produce
a material with attributes that differ from the separate elements. Composite materials
are extensively utilized in the automobile, construction, transportation, aerospace, and
renewable energy applications due to their durability, high strength, great quality, minimal
maintenance, and low weight [1–3].

In recent years, a few significant occurrences occurred that significantly increased the
sociotechnical push for long-term composite recycling, particularly:

1. The increased utilization of composites in mass-production automobiles resulting
from the development of high-volume thermoplastic composite-based technolo-
gies [3].
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2. The first significant group of wind turbines made of composite materials approaching
their End-of-Life (EOL) in 2019–2020 and preparing to be dismantled [1].

3. A global prohibition on composite landfilling in several countries [1,4].
4. The COVID-19 epidemic hastening the retirement of airplanes (airplane mass decom-

missioning is predicted in the 2020s) [5].

According to Stella Job, the absence of recycling facilities is an obstacle to the expanded
usage of glass fiber reinforced composite (GFRC) and carbon fiber-reinforced composite
(CFRC) composites [6]. Therefore, the growing usage of these significant materials—along
with landfilling limits and prohibitions—necessitated the development of viable composite
recycling methods [7]. As the EU moves closer to eliminating landfill alternatives, it
is reasonable to predict that such sociotechnical stress will surely increase in the near
future [4], It is also worth noting the ever-increasing number of wind turbines that have
reached the end of their useful life and are ready to be burned or recycled, as well as the
expansion of composite markets and increased composite manufacturing and installation
rates (As presented in Figure 1). Additionally, decommissioning will continue to increase
the number of installed wind turbines, year after year, as it has in the past [4]. As a
result, the motivation to create the most sustainable composite recycling technologies is
undoubtedly critical to the composite industry’s preservation and success. It has been
predicted that this trend will become increasingly significant in the 2020s.
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Figure 1. Added wind capacity in the globe each year for 2001–2020 [8].

The use of composites is most prevalent in the wind energy, marine, aerospace, and
automotive industries. In these cases, recent advancements have led to a greater emphasis
on material EOL management [9].

1.1. Composite Material Applications
1.1.1. Aerospace

Over the next ten years, the International Air Transport Association (IATA) estimates
that 11,000 aircraft will be retired [5]. The COVID-19 pandemic has severely curtailed avia-
tion travel, and this is likely to hasten the decommissioning of these planes, emphasizing
the importance of recycling. Moreover, composite utilization in airplanes has increased
dramatically, as is clear in the commercial aircraft produced by Airbus and Boeing. Take,
for example, the usage of composites in the Airbus commercial aircraft A300 (4.5 wt%,
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1971–2007) and B787 (50 wt%, 2007–present) [10]. By weight, the B787 body is 50% compos-
ites, 10% steel, 15% titanium, 20% aluminum (Al), and 5% other. Meanwhile, the composite
material in B787 consists mainly of carbon sandwich structures, CFRP laminates, and
fiberglass [1]. In the aircraft sector, Al has long been one of the most utilized materials.
However, its utilization rate has dropped from 50% in the Boeing B777 to barely 20% in the
Boeing B787 [11]. Comparisons of tensile modulus and strength characteristics of E-glass
fibers (72 GPa, 3.5 GPa) against Al (68.9 GPa, 0.31 GPa) offer another explanation for the
tendency toward composites [11].

1.1.2. Automotive

Because their light weight allows for the maximum possible performance, composites
have been utilized in sports vehicles. Electric propulsion and self-guiding technologies
have been made possible by recent advancements in mobility. These vehicles require
lightweight materials to achieve higher ranges between recharging (i.e., electric automo-
biles), which has driven the need for high-volume composite manufacturing and EoL
disposal. Another driving force behind the push for recycling is the fact that the automo-
bile and aerospace industries, which produce large quantities of carbon fiber parts, also
waste large percentages of the raw materials used (sometimes as much as 20–40%). One
of the goals of the automobile industry is to have vehicles that are both fuel-efficient and
lightweight. The use of CFRC in automotive components decreases the weight of a typical
vehicle by 30% [2]. The importance of environmental stewardship cannot be overstated.
EU law in the automobile sector mandates that 85% of a car can be recycled. CF scrap may
be collected and transformed into new components with less than 10% of the energies used
to manufacture virgin carbon fiber (CF), meeting legal and environmental goals [2]. CFRC
help to reduce greenhouse gas emissions by reducing fuel usage, since they are utilized to
make lighter automobile and airplane bodies [2]. Cost reduction is a significant motivator
in the composites field [12].

1.1.3. Marine

Composites have proven to be a game-changer in the offshore business. At present,
glass fiber (GF) and carbon fiber (CF) composite materials play a huge role in marine
energy development, shipbuilding, and marine engineering repair. Composite materials
have slowly and steadily replaced upper metal (above water level) in more and more
marine installations, whether new installations or in renovations of existing structures.
Carbon fiber has several advantages in marine engineering construction [13–17], including
lighter weight, high strength, and wear resistance. Most installations use structural parts to
replace traditional building materials, reducing the high freight weight, seawater corrosion,
and the problems arising from rebar materials [18,19]. The following are the primary
advantages of GRP for maritime applications: environmental resistance, durability, cost-
effectiveness, the ability to mold complex, seamless objects, the ability to adjust strength
to load circumstances, excellent strength-to-weight ratio, light weight (about half that
of similar steel constructions), low maintenance/repairability, and excellent long-term
durability [18,19].

1.1.4. Wind Energy

Composites are used in wind turbines because of their high specific strength. Accord-
ing to the GWEC, the total number of utility-scale wind turbines installed throughout the
world has surpassed 330,000, most of which are projected to last 20–25 years. The first
significant group of wind turbines made of composite materials will approach their EOL in
the 2020s [20]. As a result of the approaching challenge of recycling wind turbine blades,
roughly two gigawatts are expected to be replaced in 2019 and 2020 [21]. Denmark, for
example, was a significant participant in the initial implementation of wind turbines, and
has now become one of the first countries to tackle the mass disposal problem [20]. Some
EU nations have prohibited the disposal of composite blades in landfills for environmental
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reasons [4], necessitating the development of novel EOL solutions for composites in this
industry. The used scrap blade materials are anticipated to double in the next decade, from
1,000,000 t in 2020 to 2,000,000 t in 2030 [22]. An estimated 25% of all EOL trash will be
generated in the EU, according to estimates [12].

The majority of turbine rotors feature three blades, with sizes ranging from 12 m to
80 m or more. Several of these blades are expected to be phased out shortly [20]. Siemens
Gamesa Renewable Energy (SGRE) has a capacity of 14 MW wind turbines with Integral
Blades that are 108 m long. The radius of the rotor is 111 m. As we enter the 2020s,
recycling will become increasingly important. Nowadays, about 90% of the entire mass
of wind turbines is recyclable, and the wind energy sector uses about 2.5 million tons of
composite material worldwide [4]. Furthermore, by 2023, about 14,000 blades (weighing
40,000–60,000 tons) will be decommissioned. The wind industry prioritizes the recycling
of these obsolete blades [4]. For disassembly, collecting, transportation, waste disposal,
and restructuring of composite materials into production chains, this challenge requires
both logistical and technical solutions [4].

1.1.5. Construction and Infrastructure

Perhaps the most intriguing application of sophisticated composite materials so far
is a functional bridge on the state highway system. Hollow carbon composite tubes and
lightweight concrete were employed in its construction. ACMs are excellent for seismic
retrofitting because of their flexibility and ease of application. They are now a valuable
resource for retrofitting and improving processes in forensic engineering. Glass and carbon
fibers are most commonly used in epoxy resin matrixes [23].

Additionally, after wind turbines, WPCBs are one of the fastest-growing worldwide
waste sources, accounting for a major portion of overall electronic waste and containing
27.4–45.55 wt% GF. Owing to the existence of hazardous metals and organic substances, as
well as GFs, the recovery of WPCBs to retrieve GFs is a difficult procedure [7,22].

Composite material recycling will become more important in the 2020s and beyond as
efforts are made to cut down on pollution and fulfill demand. Figure 2 shows the global
composite materials’ market size distribution by application in 2020.
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Figure 2. Global composite materials’ market size distribution, by application, in 2020 [2].
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Among composite materials, fiber-reinforced composites (FRC) are the most widely
utilized [24–28]. The remarkable material characteristics of CFRC and GFRC make them
particularly useful in this regard [29–32]. FRC materials are attractive as a replacement
for steel and other materials due to their low weight, high strength, durability, and form
flexibility. CF and GF, with polyester matrix resin as components, were used to create
modern FRC materials in the early 1950s. They’re commonly utilized in the construction
of boats, automobiles, and storage tanks [30]. The international market for composite
materials is growing and is estimated to exceed $96 billion in 2020, up 40% from 2014.
Carbon and glass fibers are the most common materials; CFRC and GFRC products account
for $57 billion and $30 billion, respectively, of the $96 billion [2].

The FRC industry’s expansion has boosted both productivity and consumption. How-
ever, it has also resulted in a large number of EOL materials. The struggle to preserve
and recycle EOL scrap FRC has become a major barrier to the sustainability of a circular
economy. In the past, the industry rushed to use these materials without understanding
how to properly dispose of them. For decades, the two most common disposal techniques
used by the composite industry were landfill and incineration. The drawbacks of these
techniques have led to increased environmental awareness, resulting in the search for
sustainable disposal methods and strategies to avoid trash accumulation [33–39].

Over the past few years, several studies have analyzed market demand for various
composites, as well as the associated quantity of accumulating waste, in order to minimize
the unavoidable negative effects. The market for fiber-reinforced polymer composites
(FRPC) in the United States was about $12 billion in 2020, with a yearly growth rate of
6.6% [40,41]. To meet such a high need for virgin carbon fiber (vCF) and virgin glass fiber
(vGF), the accumulating CFRC and GFRC waste must be recycled effectively, to minimize
environmental consequences while also meeting the demand [42]. However, converting
CFRP and GFRP into useful resources is a difficult problem that threatens the future of the
fiber-based industry [43–46].

As a result, the treatment and recycling of FRC materials such as CFRC/GFRC within
environmental constraints, government regulations, manufacturing costs, resource manage-
ment, and economic opportunity are all critical worldwide problems. The present research
demonstrated the influence of the pyrolysis technique as a rising and feasible technology
for FRC recycling. This research will help to systematize technological knowledge of
CFRC/GFRC recycling processes such as pyrolysis.

Several researchers have dealt with the topic of recycling FRC materials. Krauklis et al.
tried to create clear standards for economically and ecologically viable EOL solutions and
fiber-reinforced composite material recycling [1]. Oliveux et al. examined the life cycle
assessment of composite materials, as well as the economic and environmental implica-
tions of recycling them [25]. Naqvi et al. presented the strong link between recycling
and reusability of fibers, which helped to illustrate the idea of the circular economy and
cradle-to-cradle strategies [40]. Gharde et al. listed mechanical, thermal, and chemical
recycling methods, as well as their efficacy in degrading large amounts of FRP materials [3].
Moreover, Liu et al. devised a technique for deconstructing, recycling, and remanufactur-
ing composite materials that are both sustainable and cost-effective [7]. Pickering et al.
examined thermoset composite recycling systems and detailed some of the major work
in the fields of mechanical and thermal recycling [46]. According to Job et al., GF/CF
plastics (GRP and CFRP) offer outstanding characteristics, but they also found that a lack
of recycling programs was a barrier to their wider usage [6].

The conventional narrative review structure was used in this study. The Scopus
database was primarily used for a complex literature search, with three other databases
(Web of Science, Science Direct, and Research Gate) serving as supplementary support
platforms. The search was restricted to the previous 20 years, with a focus on recent
papers (the last ten years). Keywords used in searches included “carbon fiber”, “glass
fiber”, “pyrolysis”, “CFRC”, “CFRP”, “FRC”, “GFRC”, “GFRP”, “composite recycling”,
“waste composite”, and “thermal recycling”. Finally, suitable papers were carefully chosen
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based on an examination of the title, goal, and original results obtained. Fiber-reinforced
composites (FRC) are the most frequently used composite materials in main applications;
as a result, the selection focused on CFRC and GFRC.

Furthermore, utilizing Microsoft Excel, all of the related papers on the recycling of
CFRC waste (410 papers) and GFRC waste (120 papers) were evaluated and organized
into a private database. The selection was further refined based on the following criteria: a
focus on thermal recycling technologies, particularly Pyrolysis techniques; and the impact
on the environment, economic valuation, recycled fiber quality, and industrial reusability.
Publications that did not meet the outlined selection criteria were removed. Consequently,
the scope of this literature analysis was restricted to include just the most important
pyrolysis-based approaches for recycling CFRC and GFRC waste. The necessity to replace
virgin fibers with recycled fibers was also supported by emphasizing the associated process
parameters and the characteristics of the resulting fibers. The final reference list included
114 publications.

This review provided a summary article detailing known ways for recycling accu-
mulating composite scraps, comprising carbon and glass fiber. The focus was on the use
of thermal recycling technologies, particularly Pyrolysis techniques, for recovering fibers
and determining their preserved characteristics. Pyrolysis approaches were prioritized in
the study on the basis of the following criteria: the impact on the environment, economic
valuation, recycled fiber quality, and industrial reusability. The research also emphasized
the accompanying process parameters and the properties of the resultant fibers in order
to support the need to replace virgin fibers with recycled fibers. Additionally, the current
study revealed gaps and recommened possible solutions.

This work is well-structured and separated into sections as follows. An overview
of the various recycling options can be found in Section 2. Section 3 shows how to re-
cover CFRC/GFRC using the pyrolysis technique. Pyrolysis products and their reuse
are described in Section 4. The research gaps are then explored in Section 5, reviewing
the current study effort on recycling CFRC/GFRC, utilizing the promised approach of
pyrolysis. Finally, in Section 6, the article ends with the authors’ conclusions.

2. Review of Recycling Technologies

Several publications have documented several techniques of CFRC/GFRC for prospec-
tive industries over the last 10 years. The most common ways of recycling composite
material are mechanical, thermal, and chemical recycling [25]. Thermal recycling methods
were detailed in depth in this study along with the economic potential and environmental
effects of the techniques.

Heat is utilized to break down scrap composite during thermal recycling. The mi-
nor volatile elements are likely burned away due to the increased working temperature
(450–700 ◦C), leaving only the valued fibers. The temperature is usually determined by
the kind of resin used in the waste composite. An inappropriate temperature might result
in char on the fiber (undercooking) or a decrease in the thickness of the fibers (over-
cooking) [25,45]. As illustrated in Figure 3, thermal recycling may be divided into three
categories [46].

The underlying idea for utilizing heat to decompose scrap composite remains the
same; however, the outcomes vary depending on the method. Due to the calorific values
of polymeric compounds, electricity may be produced by turning scrap composites into
heat [24,25]. On the other hand, the ash byproduct of the combustion (incineration) process
is a significant disadvantage, since it can only be landfilled as inert waste, at a cost that
varies from country to country. In France, for example, its cost is about 92 €/ton. This
complexity stymies the circular economy’s growth. Furthermore, while converting heat to
electricity, no more than a 35% efficiency rate is attainable. Generally, burning coal rather
than incinerating CFRP is a far superior alternative. Complete fiber recovery utilizing
thermal techniques—such as the fluidized-bed process (FBP) or pyrolysis—have been the
subject of recent research [47].
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Rather than complete incineration of CFRC, management of resin breakdown, at the
right temperature, would yield CF with minimal surface harm. Rodrigues et al. thermally
decomposed resins for two hours at a temperature of 450 ◦C and recovered the CF without
significantly compromising their surface properties [45]. Because of its cross-linked con-
struction, degraded epoxy resin is difficult to recycle. As a result, recycling with minimal
surface damage is a preferable alternative to fully landfilling. Although resin decomposi-
tion utilizing thermal techniques is not as suitable for GF as it is for CF, chemical treatment
of rGF aids in the recovery of characteristics, to an extent [48]. When GF is thermally
recycled at high temperatures (300–600 ◦C), it loses up to 80% of its strength, making
it hard to recover because of its poor reinforcing potential [49,50]. Yang et al. explored
chemical etching and post-sanitation to treat degraded GF. In rGF, the chemical treatment
restored 30–70% of the loss of the mechanical characteristic [49]. By soaking the GF in a
NaOH for 10 min at 90 ◦C, and then neutralizing it with HLC, Thomason et al. were able
to restore 75% of the strength loss. The procedure used in their study is called short-hot
sodium hydroxide solution therapy [48]. Pender and Yang [51] used catalysts such as CuO
and CeO2 to speed up the breakdown of resin. Consequently, the process duration was cut
by 20 min, and energy usage was lowered by 40%. The most efficient method used CuO at
375 ◦C to remove resins, whereas CuO and CeO2 improved the strength retention of GF
by 20%.

Fast, hot air was conducted across the conventional fluidized bed process (FBP).
Typically, a bed of 0.85-mm-sized silica sand is utilized, which is subsequently transformed
into a fluidized bed by flowing air at 0.4–1.0 m/s. The waste composite divides into
fibers and fillers (volatile chemicals) inside a fluidized bed, which are transported out
as individual particles by the air stream [46,52]. Furthermore, using a high-temperature
(1000 ◦C) secondary chamber causes the volatile chemicals to be oxidized, leaving the fibers
alone [46,52]. The method can recover both CF and GF, and it’s very good for recycling
EOL waste composites [25]. However, constraints, such as fiber strength and length
deterioration, were apparent throughout the process’s early development. In addition, the
fibers obtained using this method are puffy [29].

Pickering et al. [52] demonstrated the limits when they studied the capacity of FBP to
recover GF and obtained 67% fiber output. Moreover, the procedure only kept 50% of the
rGF’s tensile strength, compared to vGF. The research also added a financial estimation for
commercializing the method, which predicted a net yearly profit of 0.002 million dollars
for 9000 t per year. In contrary to Pickering et al. [52], Zheng et al. [53] reported having
developed a unique FBP method for recycling WPCBs, claiming to have achieved a 94.8 wt%
and 95.4 wt% GF recovery and purity rate, respectively. Other than the fact that, in their
method, the WPCB were coarsely chopped, rather than standard cutting size (25 mm), the
recycling technique appeared to be almost the same. However, SEM image observations
were used to confirm the findings. Furthermore, no information about the rGFs’ strength
was provided. Pender and Yang [54] utilized CuO to increase the production of rGF, with
the yield increasing from 59 to 70%.

RETRACTED



Energies 2021, 14, 5748 8 of 25

Yip et al. [55] conducted research identical to Pickering et al. [52], using CF instead of
GF. When compared to GF recycling, the data revealed that recycling CF under the same
circumstances was significantly more effective. The length of the rCF was determined by
the initial length of the CF waste, according to the research and, given the non-uniform
orientation, a fiber length of 5.9–9.5 mm could be recovered. Pickering et al. [56] built a
commercial-scale FBP, in line with prior research. The rCF only lost 18.2% of its tensile
strength and had no tensile modulus loss. According to the research, when compared to
any other rCF utilizing FBP, this design showed the greatest efficiency. Furthermore, the
energy required to obtain CF from FBP was approximately 5–10% of the energy required to
produce vCF.

Other researchers [25,29,46] thoroughly described and analyzed the technical compa-
rability and reuse applications of three recycling techniques. Their findings indicated that
the thermochemical technique was suitable for CFRC recycling, due to the rising cost of
CF for high-grade applications like aerospace and structure industries. The mechanical
method was suggested as a preferable method for GFRC due to the low cost of vGF [25,57].
Wong et al. [58] compared the power consumption of the chemical, thermochemical (incin-
eration and pyrolysis), and mechanical techniques. The power consumed during pyrolysis
(30 MJ/kg) was reasonable, as shown by this study, when compared to other frequently
used industrial applications. Mechanical separation, incineration, gasification, and slower
pyrolysis (i.e., in a kiln), on the other hand, were either costly or yielded low characteristic
fibers. Pyrolysis seemed, thus, to be a realistic and promising approach for efficient recovery
and high characteristic fiber production. The essential pyrolysis technique variables, their
influence on fiber characteristics, and the utilization of recovered fiber were highlighted in
this paper. The present study identified gaps, and a proposal was presented.

The University of Nottingham in the United Kingdom devised a low-temperature
(450 ◦C) incineration method in an FBP for the recycling of FRC [46,52,53]. This method
recovered fibers while also generating gas for energy recovery. Mixed and polluted ma-
terials can be treated in fluidized-bed reactors. This technique, conversely, necessitated
large quantities of high-temperature air and resulted in a decrease in fiber characteristics
(particularly for GF) due to mechanical activity in the bubbling sand bed. The value of
recovered fibers is an essential consideration in this procedure. Fiber has a high intrinsic
value owing to its large price as a virgin substance, but the high labor costs involved and
the large quantity of energy required undermine the economic case for recycling operations
utilizing a low-temperature incineration FBP. In aeronautical applications, a combination
thermolysis and gasification method for recovering scrap CFRC was employed [59]. How-
ever, the gasification period was too lengthy, resulting in unfavorable changes in the atomic
composition of the CF. The most researched thermal technique for recovering CF/GF
composite waste is pyrolysis in an inert environment [60–62]. To guarantee effective and
maximal recovery of fiber and fuels, as well as chemical synthesis, pyrolysis processes
(slow or rapid) need optimum conditions [63–66]. According to the authors’ knowledge, no
detailed study of carbon/glass fiber recovery utilizing the pyrolysis technique has yet been
published. The current research not only covered the essential elements of the pyrolysis
technique but also emphasized the influence of technique variables on fiber recovery and
fuel generation.

3. Recovery of CFRC/GFRC Utilizing Pyrolysis

Both CF and GF may be recycled efficaciously using this method [40]. The scrap
composites are heated in the absence of air, unlike previous thermal recycling methods.
The disintegrating matrix generates oil and gas, as well as fibers and fillers (solid prod-
ucts) [25,46]. The working temperature for a typical FRC varies between 400 and 700 ◦C,
depending on the composition of the waste composite [24,29]. The oil that results is aro-
matic and has a heating value of 37 MJ/kg, which is comparable to fuels. The pyrolysis
reactor may be renewed with the gas produced. The liquid and gas generated can be
used as a chemical feedstock in a variety of processes. Despite all of this, the technique
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can preserve fibers with superior mechanical characteristics [24,29]. Pyrolysis is the best
researched thermal recycling method [25], and a flowchart of the process is shown in
Figure 4.
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Pyrolysis, like any other recycling process, has several drawbacks, the most prob-
lematic of which is the probability of char development on the resultant fiber surface [29].
Due to the char, the mechanical characteristics of the recovered fibers can be substantially
decreased. Chemical treatment [27,28] and post-heating treatment of the fibers both help to
reduce char formation, but only to a limited extent [67,68]. Carbon dioxide (CO2) and water
vapors have been utilized to eliminate char formation from CFRC in recent research [69].
Additionally, oxidizing the fiber surface results in the development of a surface with high
levels of oxygen, which improves the fiber’s adhesiveness with resins [70].

The UK milled carbon group was successful in building and executing a commercial-
scale furnace with a controlled environment that can totally eliminate char development on
the rCF [29,62]. Additionally, a German company (CFK) currently employs a continuous
pyrolysis reactor. Both businesses recycle CFRC trash in different forms. They may also
recover longer and cleaner CFs, thanks to the large furnaces and continuous flow [29].
Meyer et al. [60] demonstrated this phenomenon in previous research by recycling aircraft
CFRC scrap, in which lab-scale pyrolysis was scaled up to industrial pyrolysis. Using
a larger oven, the scientists were able to recreate industrial plant operations with rCF,
preserving 96% of its initial tensile strength. Although the rCF was sufficient to replace vCF,
a supplementary combustion chamber was developed to remove the leftover char. Overall,
the process results could be influenced by a regulated environment in the pyrolysis reactor.

3.1. Pyrolysis: Controlled Atmospheres

To extract fibers from solid pyrolysis products, sophisticated, regulated air conditions
were introduced with the development of pyrolysis technologies. Evidence of such ap-
proaches were shown in several works in the literature released since 2010. Pyrolysis’ basic
principle remained unchanged. Air conditions inside pyrolysis reactors, on the other hand,
have been continually changing to achieve greater yields. In pyrolysis, typical atmospheric
conditions include nitrogen, vacuum, and superheated steam.

3.1.1. Vacuum Atmosphere

Organic vapors’ residential period within a vacuum pyrolysis reactor is reduced be-
cause of the low degradation temperature that is adequate to recover GF without disrupting
surface quality [71,72]. VP was evaluated as a replacement for the mechanical technique by
Zhou and Qiu, and used to recycle WPCBs [71]. vacuum pyrolysis (VP) was judged as an
alternative approach to mechanical recycling. The liquid and gas products (can be used
as chemical feedstock) along with solid products (GF and metal components) were found
to increase the interests of researchers when compared to mechanical recycling [71–73].
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The researchers used a two-step pyrolysis technique to extract GF from WPCBs, using VP
and VCS. Long et al. [73] utilized VP to separate the GF from metal portions, utilizing
GS and nonmetal portions and a calcination procedure. There was no examination of the
mechanical characteristics of rGF in that research, which focused on recycling WPCBs in a
vacuum environment. Table 1 lists the process’ yields. Due to the lack of relevant research
on CF, this procedure was confined to GF alone.

3.1.2. Nitrogen Atmosphere

Pyrolysis in a nitrogen environment—unlike vacuum pyrolysis—may recycle both
CFRC and GFRC [62]. Until Zhou et al. [72] published their work in 2010, the most common
pyrolysis technique used to recycle WPCBs was pyrolysis under nitrogen atmosphere (NA).
WPCBs were recycled via vacuum pyrolysis, resulting in a maximal rGF. After studying the
benefits of NA, Onwudili et al. [74] improved the method and succeeded in recycling CFRC
scrap, recovering 98% of rCF. According to the study, a rise in reaction time may have
resulted in a reduction in the mechanical characteristics of rCF. The inadequate reaction
time may also have resulted in the formation of char on the fibers. Table 1 shows the yield
from the procedure.

In 2016, Onwudili et al. [62] used NA with a semi-batch reactor to investigate the
mechanical characteristics of both recycled CFRC and GFRC waste. Chemical alterations
of the surface of rCF and rGF fibers may have improved fiber characteristics, according
to the study. Secondary combustion (SC) was also utilized in both experiments [62,74]
to oxidize the char on the pyrolyzed fibers. When analyzing the findings, it was discov-
ered that oxidized fibers preserved the highest mechanical characteristics, compared to
nonoxidized fibers.

3.1.3. Superheated Steam Atmosphere

In most cases, the steam is created by heating saturated steam at a steady pressure.
To attain superheated levels, the steam is heated many times over its saturation point
during the transition period. In pyrolysis, using a superheated steam atmosphere improves
heat transmission, which accelerates the thermal breakdown and supports the removal
of oxygen from the pyrolysis reactor [75]. In comparison to other pyrolysis atmospheres,
recycling CFRC with superheated steam leads to high retention of CF mechanical charac-
teristics [76–79]. Chemical treatments can also decrease a considerable percentage of char
development on the resultant rCF and rGF [68].

Shi et al. [76] discovered that the rCF had a major quantity of char on its surface,
which rendered the fibers unusable. According to the study, the higher the quality of rCF,
the lower the pyrolysis temperature. Shi et al. [68] expanded their earlier study to CFRC
and GFRC, eradicating char on rCF and rGF utilizing chemical treatment. Using NMP,
the bending strength rose from 49–78% for rCF and 26–94% for rGF. Using fast pyrolysis,
Jeong et al. reported that 66% of the strength and 100% of the tensile modulus were retained
after recycling CF [78].

Ye et al. [79] combined VP and mild gasification for recycling CFRC scrap to maintain
maximal tensile strength (TS) for rCF. In both laboratory and semi-industrial sizes, the
method preserved 90% of its TS. According to the study, an increase in degradation in the
polymer matrix resulted in a drop in the TS of the fibers. Kim et al. [77] used an FBP at
550 ◦C for 60 min and preserved 90.42% of the TS. According to the study, increasing the
steam temperature improved the elimination of char. Kim et al. [80] utilized superheated
steam to eliminate minor resins with CO2, maintaining more than 80% of TS.

3.2. Microwave Pyrolysis

Microwave radiation is used to replace the traditional heating source in microwave-
assisted pyrolysis. This modification enhances the heat transfer while consuming a min-
imum quantity of energy, without conflicting with the basics of pyrolysis. The method
may recycle both CFRC and GFRC fibers while preserving greater mechanical character-
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istics [66]. Obunai et al. [81] removed all the resin after 300 sec utilizing a 700 W with
2.5 L/min argon environment. Tensile strength in the rCF was just 0.7% lower than in the
vCF. Similarly, Jiang et al. [82] recycled CFRC for 30 min at 500 ◦C using a 0.70 m3/min N2.
The rCF had a clean fiber surface and mechanical characteristics similar to vCF.

3.3. Pyrolysis on Wind Turbine

Pyrolysis was commonly favored in studies concentrating on GF recovery from wind
turbines [83–86]. Aside from basic GF recycling, research has concentrated on maintaining
mechanical characteristics to utilize them in a variety of different applications [26].

Several researchers were successful in preserving 75% of rGF TS by employing the
microwave method in NA [85–88]. Their research claimed that a reduction in TS could be
compensated by recycling it as a hybrid composite, mixing rGF and vGF.

Other researchers emphasized limitations, stating that rGF from wind blades was
discontinuous, thin, and randomly directed. Furthermore, the TS of rGF was lower than
that of vGF [83,84]. Furthermore, other studies concluded that the wind blades would
be useful for both energy and material recovery [26]. Current studies also emphasized
that chemical recycling could be more efficient for the recovery of GF and CF from wind
blades [34].

4. Pyrolysis Products and Their Reuse

As previously stated, the compromised fiber surface with char poses a challenge for
reuse. To separate the fiber, low-temperature combustion and gasification procedures
employ a considerable volume of hot air to eliminate the char. A post-pyrolysis treatment
is required to purify the surface of the recovered fiber before it can be recombined to create
a new composite. The treatment is accomplished by oxidization, carried out at a regulated
temperature and residence duration. The optimum temperature and residence time are
significant issues.

XPS is utilized to assess the surface properties of recovered fibers [88]. Surface charac-
teristics may have an effect on interfacial bonding performance. Both the oxidizing (air)
and thermal (N2) atmospheres are important in determining surface properties. Surface
defects have been discovered in oxidizing atmospheres, resulting in a decrease in TS and
crystallite size. As a result, in order to allow a successful recycling process, a regulated and
optimum temperature and residence duration in post-pyrolysis is advantageous [89].

Recycling CFRC/GFRC by pyrolysis has great potential, since it recovers the precious
fibers and produces both gas and liquid products. A gas analyzer can be utilized to evaluate
the gas mixture produced by the pyrolysis process. Because of the significant secondary
cracking, the produced gas may be composed of, according to the literature, H2, CH4, CO,
and CO2. The quantity of these gases is mostly determined by the pyrolysis mode (slow
or rapid), temperature, and residence duration. Additionally, researchers discovered that
the breakdown of oxygen-rich components contained in the resin formulation produce
carbon oxides in greater concentrations at higher temperatures. The produced liquid is
mostly aromatic. The major components of the organic fraction were detected by GC–
MS as ethylbenzene, benzene, styrene, toluene, and p-xylene. Aside from aromatics,
pyrolysis oil contains oxygenated species [88–92]. The major gaseous and oil components
are summarized in Figure 5.RETRACTED
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Figure 5. Major oil and gas products from pyrolysis of CFRC/GFRC [88–92].

TGA was frequently utilized to evaluate breakdown behavior [90]. TG and DTG
graphs demonstrated the mass loss of the resin with increasing temperatures. Accord-
ing to published research, the breakdown temperature of the resin was complete be-
tween 450–500 ◦C in the case of GRFC [91,92], while CFRC breakdown temperatures were
between 450–600 ◦C depending on kind and whether the materials were cured or un-
cured [77,93]. For post-pyrolysis in air atmosphere, 500–600 ◦C was found to be the optimal
temperature for oxidizing char and cleaning the fiber surface [59,77]. In comparison to
virgin material, attenuated total reflection, combined with FTIR, proved to be a reliable
technique for identifying functional groups existing on recovered fibers [94]. To maxi-
mize the effect of the recycling process, mechanical characteristics were measured [95–97].
SEM, Raman, and XPS studies were used to examine the morphology of the retrieved
fibers. Image analyses for fiber length [10] and micro-bond testing for interfacial adhesion
among various pyrolysis parameters for recovered fibers and polymers [73] were used for
additional studies. Table 1 shows the yield from the procedure.
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Table 1. GF and CF recovery from composites by Pyrolysis.

No. References Material Reactor
Pyrolysis Products (wt%)

Application Process Parameters Oxidation
TreatmentSolid Liquid Gas

1 Onwudili et al. [62] CF from reinforced thermosets
Lab-scale

batch
reactor

73.1 23.8 2.3 Commercial LDPE
N2: 5 dm3/h,

500 ◦C,
45 min

500 ◦C

2 Onwudili et al. [62] GF from reinforced thermosets
Lab scale-

batch
reactor

65.9 25.7 8.4 Commercial LDPE
N2+SC: 500 ◦C,

30 min,
20 ◦C/min

500 ◦C

3 Onwudili et al. [74] Carbon reinforced composite
plastic (CRCP)

300 mL mini
autoclave reactor 72–77 22–25 2–4

N2: 400–500 ◦C,
<30 min

SC: 450 ◦C, 2 h.
450 ◦C

4 Meyer et al. [60] High tenacity CF Lab scale TGA - - - Aerospace N2: (60 mL/ min), 900 ◦C,
10 ◦C/min

600 ◦C
60 cm3/min

5 Giorgini et al. [92] GF from laminates waste Batch reactor 40–45 35–40 15–20 500–600 ◦C
150 min

500 or 600
◦C 10 to 60

min

6 Giorgini et al. [93] (1) Uncured T700S, 12 K CF
(2) Cured T700S, 12 K CF Batch Pilot plant 65–70

55–60
10–15
25–30

15–20
15–20 New composit 450–600 ◦C

150 min, 8 ◦C/min 500–600 ◦C

7 Zhou and Qiu [71] WPCBs (GF) A lab-scale reactor 75.7 20 4.3 - VP: 600 ◦C, 30 min -

8 Zhou et al. [72] WPCBs (GF) A lab-scale reactor 72.2 21.45 6.35 - VCS: 400 ◦C, 1200 rpm,
6–10 min -

9 Bradna and Zima [98] Epoxy resin with CF Py-GC/MS - - - - 700 ◦C

10 Nahil and Williams
[99]

Polybenzoxazine resin with
woven CF

Static bed batch
reactor 70–83.6 14–24.6 0.7–3.8 Activated carbon

fibers
N2: 350–700 ◦C,

60 min, 5 ◦C/min 500 ◦C

11 Long et al. [73] WPCBs (GF) - 74.7 15 10.3 -
(1) VP: 550 ◦C, 120 min

(2) GS + calcination: 600 ◦C,
10 min

-

12 Greco et al. [100] Cured CF - - - - Aeronautic 550 ◦C, 20 min 550 ◦C,
90 min
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Table 1. Cont.

No. References Material Reactor
Pyrolysis Products (wt%)

Application Process Parameters Oxidation
TreatmentSolid Liquid Gas

13 Cunliffe et al. [101]

(1) Thermoset polyester/styrene
resin with GF (12%)

(2) Thermoset polyester/styrene
resin with GF (30%)

(3) Phenolic resin with GF (31%)
(4) Phenolic resin with CF

(5) Epoxy resin with GF and CF
(45%)

(6) Polypropylene resin with GF
tape (75%)

(7) Vinylester resin with GF
woven (70%)

Static-Bed reactor

38.3–82.9
32.6

84.4–94.3
65

65.3–81.7
78.9
83.4

14.5–47.4
64.1

5.1–12
30.4

18–31.7
20
15

2.6–14.4
3.3

0.6–4.6
4.6

0.2–3
1.1
1.6

Autombile, electric
and circuit board

N2: 200 cm3/min
350–800 ◦C

60 min
400−800 ◦C

14 Cunliffe and Williams
[102]

Commercial polyester/GF (30%)
automotive waste Fixed Bed reactor 39.3 39.6 5.8 Autombile N2: 3000 cm3/min 450 ◦C,

90 min

Muffle
furnace 450

◦C

15 Stoeffler et al. [103] Cured & uncured CF batch oven - - - Aerospace 400 ◦C -

16 Torres et al. [104] &
Torres et al. [105] GF polyester from SMC Stainless steel

Autoclave 72.6–82.6 9.7–14.9 6.1–12.8 Recovery of GF for
composite

N2: 1 dm3/min 300–700 ◦C
30 min

-

17 López et al. [106] T300/3 k CF pilot-scale 58.4–61.5 28.5–30.7 10–10.9 - 350–700 ◦C 500 ◦C

18 López et al. [107] GF from Polyester fiber glass Thermolytic
reactor 68 24 8 Ceramic 550 ◦C

180 min 1450 ◦C

19 Yun et al. [91] GFRP from the Byproduct TGA - - - -
N2: 200 mL/min

RT-900 ◦C
5–20 ◦C/min

-

20 Yun et al. [108] GFRP from the Byproduct

Batch Type
Pyrolyzer

Thermo Balance
Reactor

Wire Mesh
Reactor

-
-

20–80

-
-

15–50

-
-

5–15

-
-
-

(1) N2: 1 L/min
500–900 ◦C
15 ◦C/min

(2) N2: 0.315 L/min500–800
◦C

N2: 1 L/min
(3) 600–1000 2,4,6,8 and 10 s

-
-
-RETRACTED



Energies 2021, 14, 5748 15 of 25

Table 2 summarizes the characterization methodologies used to investigate thermal,
mechanical, and morphological evaluations of fibers.

Table 2. Characterization methods used in CFRC/GFRC recycling processes [40].

Thermal Analysis Mechanical Testing Morphological Testing Others

TGA
ATR-FTIR

TS (MPa), E(MPa),
Elongation (%) SEM, AFM, XPS Adhesion, Micro bond, fiber pullout, Image analysis

for fiber length distribution

Recycling choices have a major influence on the assessment of mechanical character-
istics of recovered fibers (CF/GF). Poor adherence (to recycled fibers and epoxy resins)
has an impact on mechanical characteristics. Pyrolysis is the only technique that generates
higher mechanical characteristics for recycled fibers and permits commercial-scale use,
according to several studies [24,25,29]. To solve mechanical property concerns, pyrolysis
should be controlled using a regulated temperature with quick heating rates, adequate
residence duration, and appropriate raw material length (Table 3).

Table 3. Mechanical properties of rCF/rGF from pyrolysis of CFRC/GFRC.

Reference Fiber
Output TS (MPa) E (MPa) Elongation (%) Diameter Stiffness Fiber Length

(mm)

Onwudili et al. [62] GF 11 428 - - - -

Stoeffler et al. [103] CF 680–720%
increase

680%
increase 20–35% increase 6.5 - 5.6

Giorgini et al. [92] GF 14 530 - - - -
López et al. [106] CF 2537–2544 210–220 - 6.70–7.00 -

Nahil and Williams [99] CF 2340–3270
910–1250

230–233
182–233

0.91–1.25
-

-
-

-
-

-
-

Greco et al. [100] CF - 8% reduction - 6.2 14% re-
duction -

The poor market potential of recovered GF makes it unsuitable for high-value indus-
tries. Pyrolysis reduced the TS of the recovered CF by 5–10% as compared to combustion
(18%). However, additional study is needed to fully comprehend the mechanisms involved.

It is important to identify the material cost reductions that may be achieved by using
rCF. rCFv are indeed cheaper than virgin fibers, but they are also inherently different from
vCF, which has restricted the entry of rCF into the vCF. Based on cost and performance,
the task was to modify the material in such a way that virgin fiber can be replaced with
recycled fiber.

In the case of carbon fiber composite materials, pyrolysis can result in fibers that are
thin, discontinuous, and short in length. There were certain advantages to using these
fibers; they were cost-effective, lightweight, with 3-dimensional complexity in the panels,
and a secondary structure for airplane interiors [25]. Thermochemically converted recycled
fibers demonstrated good mechanical characteristics compared to virgin fibers. When using
the pyrolysis method, fiber strength was reduced by 10%, compared to the combustion
procedure, which resulted in a greater loss of strength at 50%. The electrical conductivity of
pyrolyzed recycled fiber was identical to that of vCF [109–111]. Some oxygenated species
could still be found on the surface after recovery by pyrolysis, and fibers have been shown
to bind effectively to epoxy resin [89] in terms of structure–property connection.

Reinventing composite constructions relies heavily on the fiber reclamation process for
performance. A combination of resin and recovered fiber are compressed into pellets using
direct- or injection-molding techniques. Nonwoven mats for lightweight composite manu-
facturing were made from milled fiber by ELG Carbon fiber in the United Kingdom [9].
Recycled carbon fiber products in automobile applications deliver lighter and stronger
components at high volume manufacturing rates, while also allowing considerable cost
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savings. Nonaligned and short fibers tend to generate excellent quality, 3D complex, and
lightweight constructions for components and panels with complex forms [112]. Recently,
General Electric (GE) launched a bracket competition to enhance the extremely efficient
bracket design [113,114]. The recovered nonaligned fibers have the potential to be part
of improved lightweight products. For recycled fibers, there exists a broad variety of
possible applications.

There are also myriad possibilities for market growth, e.g., nonwoven mats made from
recycled carbon fibers, recycled carbon fibers mixed with thermoplastic fibers, chopped
tow, and milled fiber. As part of a circular economy, carbon fibers are reused for as long as
feasible and recovered for new composites and promising materials for practical uses.

It is the fiber reclamation process, which can supply high-quality fiber to produce
new composites for intermediate commodities, that drives the usage of recovered fibers
in a circular system. In contrast to low-value end-use, high-value end-use encourages the
development of a sustainable supply chain for recovered fiber. With their 3D complex
forms and discontinuous fibers, nonwoven mats with high fiber volume fractions in
composites and minimal fiber breaking during molding can attain exceptional mechanical
characteristics. While rCF may not be able to compete with vCF in terms of performance,
competition is feasible in terms of weight reduction, cost reduction, and the ability to
synthesize complicated shapes acceptable to certain automobile and parts sectors. The
development of an efficient recovery process that can create high-quality fibers under
moderate circumstances and reuse them in new composites is still in progress. Fibers
produced using the pyrolysis process consist of short, discontinuous, fluffy fibers that
have undergone a variety of procedures. Pimenta and Pinho introduced remanufacturing
techniques [29]. The recovered fibers could be reused in different ways, based on their
physical structure and mechanical characteristics, among other factors. Fiber alignment,
fiber content, and fiber breakage reduction during processing still required technical
development. A suitable, effective and low cost fiber recovery process in combination
with suitable re-manufacturing process should be developed to reach the properties and
performance of vCF. For technological demonstrations, Pimenta and Pinho emphasized,
discontinuous, 3D-oriented fiber had the capacity to create secondary components for
the automobile sector, as well as aircraft interiors and tools. When the residual char was
removed from the recycled fibers, their mechanical characteristics were comparable to
virgin substance, notably in the case of rCF [93].

Technical improvements in remanufacturing procedures are needed, notably in fiber
alignment and fiber composition of new composites. The mechanical characteristics of
recovered fibers—mixed with polymers to create new composites with qualities equivalent
to the original CFRC—play a major role in efficient recycling processes.

5. Discussion

Mechanical separation, incineration, gasification, and slower pyrolysis in a kiln, are
costly or yield low characteristic fibers. Pyrolysis seems to be a realistic and promising
approach because it is efficient in recovery and produces high characteristic fibers. The
essential pyrolysis variables, their influence on fiber characteristics, and the reuse of
recycled fiber for a new composite were highlighted in this paper.

Industrial uses employing recycled fibers or resin, according to Oliveux et al., are
uncommon. The authors claimed that this was due to a lack of trust in the quality of
recycled fibers, as well as the fact that each batch of recycled composites comes from a
variety of manufacturers and typically contains various fiber grades. This makes it difficult
to manage the length, length uniformity, surface quality, and source of fibers. However,
this does not rule out the possibility of other uses for recycled fiber [25]. In the same
way, the current study (based on the literature) concluded that there are currently no
commercially viable products created from short, thin, and nonaligned recovered fibers
obtained by pyrolysis. More study on the use of recovered fibers is needed. On the other
hand, according to Naqvi et al. (2018), recycled fibers may be used in a variety of ways
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other than competing with virgin materials, such as accessing new markets or creating
new materials. Pickering et al. came to the conclusion that a rCF/rGF’s worth may be
increased by utilizing its unique features. The course rGF composites, for example, can
be utilized as a core material because of their greater permeability, which acts as a flow
channel [46]. However, based on the literature researched, it is important to identify the
material cost reductions that may be achieved by using rCF. While rCF are indeed cheaper
than virgin fibers, they are inherently different from them, which has restricted their entry
into the market. Based on cost and performance, the task was to modify the material in
such a way that virgin fiber could be replaced with recycled fiber. Similarly, Job et al.
found that because of the reduction in the quality of rCF/rGF, these fibers could only
compete with lower-value materials like aluminum or cheaper virgin material composites.
Additionally, quantity is critical, as economically viable processes need high throughputs.
Market development is required to utilize large quantities of rCF/rGF. This means that
either the rCF/cost must decrease to allow the rCF/rGF to penetrate new markets, or the
rCF/rGF must seek out higher-value end markets [6].

According to Liu et al., optimization strategies may be discovered at all stages of
the composite recycling and remanufacturing process. However, given the potential for
optimization, these applications are still uncommon. Meanwhile, the majority of the
strategies used to adjust parameters are a design of experiments strategies [7]. This is
consistent with what was stated in the research: that there are currently no commercially
viable products created from recovered fibers and that more studies and experiments on
the use of recovered fibers are needed. According to Krauklis et al., pyrolysis is presently
the most prevalent technique for recycling FRCs in the industry. Thermal recycling allows
rCF to be recovered while retaining much of their reinforcing potential, whereas rGF
is severely destroyed [1]. Similarly, this study concluded that pyrolysis seemed to be a
realistic and promising approach because it was efficient in recovery and produced high
characteristic fibers. On the other hand, Gharde et al. stated that recycling procedures
should be chosen based on the kinds of composite materials and their ability to be reused in
future applications. Every recycling process has its own set of benefits and drawbacks [3].

Pyrolysis, like any other recycling process, has several drawbacks, the most problem-
atic of which is the probability of char development on the resultant fiber surface. Due
to the char, the mechanical characteristics of the recovered fibers can be substantially de-
creased. Chemical treatment and post-heating the fibers both help to reduce char formation,
but only to a limited extent.

A successful commercial-scale pyrolysis program was implemented in Germany and
the United Kingdom. As a result of recycled fibers and other products like gas and oil,
which may be utilized as feedstocks, the process has had a green impact. It is difficult
to avoid char development in rGFs. It is also difficult to maintain the full mechanical
characteristics of both CF and GF. A further heat/chemical treatment is required to remove
small resin contaminants from the recovered fibers.

Both the oxidizing (air) and thermal (N2) atmospheres were important in determining
surface properties. Surface defects were discovered in an oxidizing atmosphere, resulting
in a decrease in TS and crystallite size. As a result, for the recycling process to be suc-
cessful, a regulated and optimum temperature and residence duration in post-pyrolysis is
advantageous.

It is critical to figure out how to save money on materials by employing recovered
carbon fibers as structural reinforcement, as well as how to find large-scale high-value
applications for recovered carbon fibers. Although recycled fibers are less expensive than
virgin fibers, they are fundamentally different, and this distinction has hampered their
introduction into the virgin fiber market. The aim has thus been to alter the material such
that virgin fiber is replaced with recycled fiber, based on cost and performance.

Pyrolysis can result in fibers that are short and discontinuous in carbon fiber composite
materials. The use of these fibers has several advantages; cost-effectiveness, lightness, 3-
dimensional complexity in the panels, and a secondary framework for airplane interiors.
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In comparison to virgin fibers, thermochemically transformed recycled fibers showed
superior mechanical properties. Moreover, recycled carbon fiber products in automotive
applications deliver lighter and stronger components at high volume manufacturing rates,
while also allowing considerable cost savings. For components and panels with complex
shapes, discontinuous and thin fibers tend to produce excellent characteristics and 3D,
intricate, low-weight structures.

For recycling CFRC/GFRC, pyrolysis has been classified as the most feasible and
sustainable method for conserving resources and providing efficient recycling. However,
the current study may be used to generate a variety of research topics. The following
perspectives can be used to plan and solve future improvements in pyrolysis for the
recovery of CF/GF:

1. In an appropriate experimental facility, how well does pyrolysis perform for mixed
and polluted scrape? In the majority of the work in the literature, there has been
no mention of an FBR or any other reactor capable of processing mixed and pol-
luted wastes.

2. Determination of the optimal variables of pyrolysis and post-pyrolysis are necessary
in order to better comprehend the impact of pyrolysis. For further enhancement of
the quality of the recovered fibers, research on the optimum variables of pyrolysis
is needed.

3. In the literature, there is a gap in the examination of financial and energy-based
evaluation of pyrolysis. The data will show that recycled fibers are better for the
environment than EOL landfilling. Mathematical modeling may be built to show
how pyrolysis and post-pyrolysis processing changes—as well as other important
parameters—affect the cost and environmental effect.

4. There are currently no commercially viable products created from short, thin, and
nonaligned recovered fibers obtained by pyrolysis. More study on the use of recovered
fibers is needed.

5. When pyrolyzing a recycled composite, there is no information on fiber grading and
fractionation to remove short fibers and retain excellent purity and strength without
losing part of the fiber.

6. How can the original fiber length and strength be preserved following pyrolysis? The
longer the starting fiber, the longer the recovered fiber—although better understand-
ing of the effects of thermal and oxidation treatment is needed to enhance product
quality and lower costs.

7. The lack of sizing on recycled fiber surfaces is a key study topic. This might result
in inadequate adhesion among the polymer and recovered fibers, resulting in poor
mechanical characteristics. The mechanical characteristics of recycled fibers might be
significantly improved by pyrolysis resizing.

8. Pyrolysis improved the mechanical characteristics of recovered fibers when con-
trasted with incineration, gasification, mechanical, and chemical techniques. On the
other hand, an inappropriate set of pyrolysis conditions has a detrimental impact
on these characteristics (such as poor heating rates and high residence time). This
compromise will not be accepted if the recovered fibers are to be used in a high-grade
composite application.

9. It is unclear what effect fiber reclamation has on the performance of composites when
compared to virgin and recovered composites with similar structures.

6. Conclusions and Future Research

The primary objectives of this research were to identify alternative pyrolysis recycling
processes for CFRC and GFRC waste and prioritize the most sustainable techniques,
with respect to financial and environmental considerations. Presently, the fate of waste
CFRC and GFRC is mainly to be landfilled or incinerated, as these are the methods used
by traditional waste disposal companies. However, many waste disposal businesses
have switched to total fiber recovery technologies, considering concerns like sustainable
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alternates, circular economies, and climate change. This shift is taking place because
of the significant contributions of researchers concentrating on the recycling of CFRC
and GFRC waste. This review article briefly discusses these studies, and the results are
summarized below:

1. Mechanical separation, incineration, gasification, and slower pyrolysis in a kiln are
costly or yield low characteristic fibers. Pyrolysis may be a realistic and promising
approach, because it is efficient in recovery and produces high characteristic fibers.
The essential pyrolysis variables, their influence on fiber characteristics, and the re-use
of recycled fibers for new composites were highlighted in this paper.

2. A successful commercial-scale pyrolysis program was implemented in Germany
and the United Kingdom, and they have the ability to recycle CFRC in various
forms. They may also recover longer and cleaner CFs, thanks to the big furnace and
continuous flow.

3. Pyrolysis, like any other recycling process, has several drawbacks, the most problem-
atic of which is the probability of char development on the resultant fiber surface.
Due to char, the mechanical characteristics of the recovered fibers will be substantially
decreased. Chemical treatment and post-heating of the fibers both help to reduce char
formation, but only to a limited extent.

4. Pyrolysis in a nitrogen gas environment, unlike vacuum pyrolysis, may recycle both
CFRC and GFRC.

5. In pyrolysis, using a superheated steam atmosphere improves heat transmission,
which accelerates the thermal breakdown and supports eliminating oxygen from
the reactor. In comparison to other pyrolysis atmospheres, recycling CFRC with
superheated steam leads to high retention of CF mechanical characteristics.

6. According to the study, the higher the value of recycled CF, the lower the pyroly-
sis temperature.

7. Microwave pyrolysis has enhanced the rate of heat while consuming a smaller quantity
of energy, without interfering with the basic principle of pyrolysis. The method may
recycle both CFRC and GFRC fibers while preserving greater mechanical characteristics.

8. Both the oxidizing (air) and thermal (N2) atmospheres were important in determin-
ing surface properties. Surface defects were discovered in an oxidizing atmosphere,
resulting in a decrease in TS and crystallite size. As a result, for a successful re-
cycling process, a regulated and optimum temperature and residence duration in
post-pyrolysis is advantageous.

9. Recycling CFRC/GFRC by pyrolysis has great potential, since it recovers precious
fibers and produces gas and liquid products.

10. According to published research, the breakdown temperature of resin is complete
between 450–500 ◦C in the case of GRFC. Meanwhile, CFRC breakdown temperatures
are between 450–600 ◦C, depending on kind and whether it is cured or uncured.
For post-pyrolysis in the air atmosphere, 500–600 ◦C was found to be the optimal
temperature for oxidizing char and cleaning the fiber surface.

11. It is important to identify the material cost reductions that may be achieved by using
rCF. While rCF are cheaper than virgin fibers, they are inherently different from
them, which has restricted the entry of rCF into the vCF market. Based on cost and
performance, the task will be to modify the material in such a way that virgin fiber is
replaced with recycled fiber.

12. In the case of carbon fiber composite materials, pyrolysis can result in fibers that are
short in length and discontinuous. There are certain advantages to using these fibers,
such as: cost-effectiveness, light weight, a 3-dimensional complexity in the panels, and
a secondary structure for airplane interiors. Thermochemically converted recycled
fibers demonstrate good mechanical characteristics compared to virgin fibers.

13. Recycled carbon fiber products in automobile applications deliver lighter and stronger
components at high volume manufacturing rates, as well as considerable cost sav-
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ings. Nonaligned and short fibers tend to generate excellent quality, 3D complicated,
lightweight constructions for components and panels with complex forms.

The following identified research gaps and future prospects might be investigated or
created and resolved for further developments of this technique to recover fibers:

1. How effective/feasible is pyrolysis for mixed and polluted composite wastes?
2. It is necessary to gain a better understanding of the influence of operational factors

(heating temperature, reaction time, chemical solvent) on CF/GF. Further research
into the optimum parameters is necessary to improve the quality of CF/GF.

3. The impact of fiber recovery on composite quality (in comparison to vCF/vGF and
remanufactured composites with rCF/rGF using the same structures) is unclear.

4. How can rCF/rGF strength and length be compared to vCF/vGF using this method?
Additional performance improvements will need a better understanding of pyrolysis
interactions with chemical treatment.

5. How could the total costs of the recycling and remanufacturing of composites be
lowered so that pyrolysis may be used as a recycling technique on a large scale?

6. The use of rCF/rGF after recovery from pyrolysis is a current field of study; such stud-
ies may play a major role in enhancing the characteristics of the products generated
from them.

7. Crosslinking of fibers also limits reusing of rCF/rGF in new composites. If RFs are
re-aligned in the same way as vCF/vGF, their potential uses could be improved.

8. Chemical treatment plays a role in improving the mechanical and physical charac-
teristics of rCF/rGF. This involves research into the reaction of functional groups to
resin interactions. Chemical treatment at the connection between these functional
groups and the resin matrix may also be involved.
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Abbreviations

ACMs Advanced Composite Materials
Al Aluminum
ATR Attenuated total reflection
CF Carbon fiber
CFRC Carbon fiber-reinforced composite
CFRP Carbon-fiber reinforced polymer
DTG Differential thermogravimetry
E Young modulus
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E&E Electrical and Electronic equipment
EOL End-of-Life
FBP Fluidized-bed process
FRC Fiber-reinforced composites
FTIR Fourier-transform infrared
GC Chromatography
GF Glass fiber
GFRC Glass fibre reinforced composite
GFRP Glass-fiber reinforced polymer
GS Gravity separation
IATA International Air Transport Association
MS Mass spectroscopy
NA Nitrogen atmosphere
NMP N-methyl-2-pyrrolidinone
PP Polypropylene
rCF recycled carbon fiber
rGF recycled glass fiber
RT Room Temperature
SC Secondary combustion
SEM Scanning electron microscope
SGRE Siemens Gamesa Renewable Energy
SMC Sheet molding compound
TG Thermogravimetric analysis a
TGA Thermogravimetric analysis
TS Tensile strength
vCF Virgin carbon fiber
VCS Vacuum centrifugal separation
vGF Virgin glass fiber
VP Vacuum pyrolysis
WPCBs Waste printed circuit boards
XPS X-ray photoelectron spectroscopy
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