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Abstract: The steam generator in a nuclear power plant is a type of heat exchanger in which heat
transfer occurs from the hot fluid in multiple channels to the cold fluid. Therefore, a uniform flow
over multiple channels is necessary to improve heat exchanger efficiency. The study aims at ex-
perimentally investigating the improvement of flow uniformity by the perforated plate in the heat
exchanger used for a sodium-cooled fast reactor stream generator. A 1/4-scale experimental model
for one heat exchanger unit with 33 × 66 channels was manufactured. The working fluid was water.
A perforated plate was systematically designed using numerical simulations to improve the flow
uniformity over the 33 × 66 channels. As a result, the flow uniformity greatly improved at a slight
cost of pressure drop. To validate the numerical results, planar particle image velocimetry mea-
surements were performed on the selected planes in the inlet and outlet headers. The experimental
velocity profiles near the exits of the channels were compared with numerical simulation data. The
experimental profiles agreed with the numerical data well. Both the numerical simulation and the
experimental results showed a slight increase in pressure drop, despite significant improvement in
the flow uniformity.

Keywords: flow uniformity; heat exchanger; perforated plate; sodium-cooled fast reactor; steam
generator

1. Introduction

A sodium-cooled fast reactor (SFR) is a fast neutron nuclear reactor cooled by liquid
sodium. An SFR has advantages and disadvantages. One of the primary advantages is
an efficient utilization of uranium resources and a reduction of a high-level waste volume
and toxicity. However, the main disadvantage is the possibility of large heat and hydrogen
generation if sodium comes into contact with water. Therefore, special care must be taken
to prevent this interaction. However, because the benefits outweigh the disadvantages,
the Generation IV International Forum selected the SFR as one of the advanced nuclear
energy systems, the Generation IV reactors [1]. Moreover, the SFR was evaluated as the
most advanced and feasible system [2].

The Korea Atomic Energy Research Institute (KAERI) created a reactor design with
the final goal of constructing a Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) [3].
The main objective of the PGSFR was to verify transuranic (TRU) metal fuel performance,
reactor operation, and transmutation ability of high-level wastes. One of the biggest
issues in developing SFRs is the possibility of a sodium–water reaction accident in a steam
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generator in which heat is transferred from the hot sodium flow side to the water flow
side. The Korea Atomic Energy Research Institute (KAERI) evaluated three different design
concepts of steam generators in terms of the sodium–water reaction accident and decided
to adopt a copper-bonded steam generator (CBSG) [4].

Figure 1 illustrates the concept of a CBSG in which a number of heat exchanger units
are vertically stacked [5]. Water enters the CBSG from the bottom inlet and passes through
the vertical 33 × 66 channels. Hot liquid sodium enters the CBSG from the top inlet and
passes through the heat exchanger units in a zigzag pattern. For each heat exchanger unit,
water flows through the vertical 33 × 66 channels, and liquid sodium flows through the
horizontal 33× 66 channels. The heat exchanger units are connected by 180◦ return pipings.
The flow uniformity of liquid sodium flow over the horizontal 33 × 66 channels is crucial
for achieving high heat transfer from the hot-sodium side to the cold-water side in the
steam generator.
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Various efforts have been made to improve the flow uniformity of heat exchangers.
The inlet header configuration was geometrically optimized [6], and a flow-distribution
device was installed in the inlet header [7–9]. Lalot et al. (1999) showed experimentally
that a perforated plate with holes of equal diameter in the inlet header increased the heat
transfer efficiency [10]. Recently, numerical studies have been conducted to increase the
thermal performance of heat exchangers and air distribution devices by considering a
perforated plate [11], baffles [12], or varying the transverse and longitudinal pitches of tube
bundles [13].

Jiao et al. [6] conducted an experimental investigation to improve the performance of
flow distribution in a plate-fin heat exchanger. They defined the area of the header and
its equivalent diameter in order to describe the characteristics of the header configuration.
Gajapathy et al. [7] proposed a flow distribution device for an intermediate heat exchanger
in a pool-type fast breeder reactor. The flow distribution device was a perforated plate
with holes in line with the tube sheet holes, and the diameter of the holes was equal to
the inlet diameter of the tubes. Wen et al. [9] performed flow visualization to show the
effect of a baffle with small holes in the header on flow uniformity. The hole diameters
were determined qualitatively based on the flow velocity distribution. Baek et al. [14]
verified the impact of axial conduction and flow maldistribution effects in microchannel
heat exchangers by comparing simulation results with experimental data. Lance et al. [15]
also investigated the flow distribution in microchannel heat exchangers, changing the
inlet header configurations. Khovanskyi et al. [11] performed the three-factor factorial
experiment for an improvement of the design of the air distribution devices. They obtained
the mathematical model for determining the dependence of the average velocity on the
flow rate, perforated plate area, and diameter of holes. Petinrin et al. [12] numerically
investigated the performance of shell-and-tube heat exchangers with single segmental
baffles and varying configurations of concave-cut baffles. Their numerical results generally
showed that shell-and-tube heat exchangers with concave-cut baffles had a lower perfor-
mance as compared with the single-segmental baffle type. In addition, they numerically
studied the effect of tube pitch on heat and flow characteristics from tube bundles in cross-
flow conditions [13]. The tube bundles with decreasing pitches had higher heat transfer
performance, whereas the low friction factor was obtained with increasing pitches, which
also gave good thermal–hydraulic performance.

In most studies, the flow patterns in a heat exchanger with straight inlet and outlet
pipings were investigated [6,9,14,15]. However, as shown in Figure 1, sodium flow is
introduced into the inlet header through a curved piping. Therefore, it is necessary to
consider the asymmetric inflow into the inlet header to investigate the flow uniformity.

Previously, numerical simulations were performed to design a full-scale perforated
plate [5] in which the hole diameters were determined based on the local flow velocities.
The study aims at experimentally investigating the improvement of flow uniformity by
the perforated plate in the heat exchanger used for a sodium-cooled fast reactor stream
generator. To this end, particle image velocimetry (PIV) measurements were conducted
using a 1/4-scale model.

2. Research Methodology
2.1. Numerical Design of a Perforated Plate

Before the experiment in a 1/4-scaled geometry model with one heat exchange unit, a
perforated plate was designed using numerical simulations based on the method suggested
by [5].

Figure 2 illustrates the sodium flow simulation domain, including one heat exchanger
unit. There are 33 × 66 horizontal channels inside the heat exchanger unit. Considering
the experiment in the laboratory, the 1/4-scale geometry model was used in this study,
compared to the original model in [5]. There are two main differences from the original
geometry shown in Figure 1. The pipings connecting the upper and lower heat exchanger
units are curved in Figure 1, whereas straight pipings are additionally attached to the
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curved pipings in Figure 2. This modification was made for a simple experimental loop
and was not expected to affect the flow patterns in the inlet and outlet headers signifi-
cantly. Meanwhile, in previous experiments [6,14,15], straight inlet and outlet pipings
were connected directly to the heat exchanger unit. Thus, an asymmetric jet flow into the
inlet header was not reflected. In contrast, the present 1/4-scaled model can reflect an
asymmetric flow jet into the inlet header. Another modification was made to the inlet and
outlet header shapes. In Figure 1, the inlet and outlet headers are three-dimensionally
expanded and contracted, respectively. However, in Figure 2, they are two-dimensionally
expanded and contracted, respectively. This modification was necessary because image
distortion was inevitable when recording flow images through the curved acrylic.
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Figure 2. One-quarter (1/4)-scaled geometry model for the sodium flow side.

In both the numerical design and the experiment, water at 25 ◦C and 1.013 bar was
used as the working fluid. As shown in Figure 2, water was injected through the inlet at
a mean velocity of 0.4813 m/s (400 lpm). The Reynolds number was 6.789 × 104, which
corresponds to 1/100 times the Reynolds number of the prototype flow. The reduced
Reynolds number was the maximum value to avoid the vibration of the experimental
facility. Fortunately, although not shown here, numerical simulations revealed that the flow
pattern with the reduced Reynolds number was quite similar to that with the prototype
Reynolds number, which means that the reduced Reynolds number is acceptable.

Numerical simulations were performed for a steady turbulent flow using ANSYS
Fluent [16]. The mass and momentum conservations are given in Equations (1) and (2),
respectively [5].

∂ui
∂xi

= 0, (1)

uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

(
ν

∂ui
∂xj
− uiuj

)
+ gi, (2)

where u, ρ, p, ν, and g are the mean velocity, density, pressure, kinematic viscosity, and
gravity, respectively. The Reynolds stress tensor was calculated using the realizable k–
ε turbulence model. Assuming a fully developed turbulent flow at the inlet, the inlet
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velocity profile was set using the one-seventh power-law equation, a pressure boundary
was imposed on the outlet, and a wall function was applied to the wall.

With respect to the numerical methods, the COUPLED algorithm was used for
pressure–velocity coupling, and the second-order upwind scheme was used for the spa-
tial discretization of the momentum, turbulent kinetic energy, and turbulent dissipation
rate equations. For the convergence criteria, a scaled residual of 0.0001 was used for
all variables.

The dimensions of the sodium channel array in the heat exchanger unit are shown in
Figure 3. The heat exchanger efficiency is significantly affected by the flow rate uniformity
over the 33 × 66 sodium flow channels. Poor flow uniformity may reduce the heat
exchanger efficiency by 5–15% [14]. In this study, the flow uniformity was evaluated using
the coefficient of variation (CoV).

CoV =
1
.

m

√√√√ N

∑
k = 1

(
.

mk −
.

m)
2
/N, (3)

where
.

mk is the mass flow rate in channel k,
.

m is the average value of the mass flow rates
over all channels, and N is the total number of channels. The smaller the CoV, the better
the flow uniformity.
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Figure 3. Dimensions of the horizontal sodium channel array.

Figure 4a shows the vertical and middle cross-sections of the flow domain. The heat
exchanger unit was 400 mm × 400 mm × 400 mm and had 33 × 66 channels inside. To
improve the flow uniformity, a perforated plate was installed in the inlet header, where a is
the distance from the entrance of the heat exchanger unit to the perforated plate. According
to the previous design for the full-scale original geometry [5], when the plate was placed in
the middle of the inlet header, the COV was minimized at a slight cost of pressure drop.
Since the header shapes of the original and model geometries are slightly different, as
shown in Figures 1 and 2, the perforated plate was set to be placed at the middle of the
inlet header, i.e., a = 80 mm.
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A grid test was conducted without a perforated plate. A large number of grids were
required due to the 33 × 66 channels in the heat exchanger unit. Table 1 summarizes the
grid test results, where ∆p is the pressure difference between the inlet and outlet. The result
differences between Cases 3 and 4 were less than 2%. The values of y+ at the grids adjacent
to the wall were less than 300. Consequently, a grid system based on Case 3 was adopted.
The mesh view in the middle plane in the inlet region is shown in Figure 4b, and the mesh
view in the cross-sectional plane of one horizontal flow channel is shown in Figure 4c. The
average mesh density is 1220 cell/cm3. The growth rate is less than 1.2 to ensure smooth
transition between the cells.

Table 1. Simulation results for different grid cases.

Grid Case Number of Cells, 106 CoV ∆p (Pa)

1 46.4 0.2401 490.2
2 94.1 0.2496 410.5
3 108.5 0.2536 378.8
4 122.9 0.2512 379.3
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Figure 5 shows the distribution of the mass flow rates over the 33 × 66 channels. The
mass flow rate ranged from 0.002286 to 0.005383 kg/s, and the CoV was computed to be
0.2536. The flow rate was highest in the region slightly below the center because of the
bending inlet pipe.
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Figure 5. Distribution of the mass flow rates over the 33 × 66 channels when no perforated plate
is installed.

To improve the flow uniformity, the perforated plate was installed at a distance of
a = 80 mm, as mentioned previously. The local hole diameters on the perforated plate were
determined based on the local flow velocities at a = 80 mm when the plate was not installed.
Figure 6 shows the contours of the flow velocity magnitude in the cross-section plane at
a = 80 mm. To determine the local hole diameters on the perforated plate, the velocity
magnitude was divided into five levels. Subsequently, the five different hole diameters
were calculated using di = 2(u/ui)

1/2d, where di is the hole diameter for the i-th level
velocity magnitude, d = 4.5 mm is the length of one side of each horizontal channel, ui is the
i-th level velocity magnitude, and u is the average velocity magnitude in the cross-section
plane at a = 80 mm. The calculated diameters were rounded to standard sizes in practice.
Figure 7 shows the final design of the perforated plate. The hole diameters are 4.5, 6, 8, and
14 mm, the hole distances are 4.5 mm, and the plate thickness is 5 mm.
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Figure 8 shows the distribution of the mass flow rates over the 33 × 66 channels when
the perforated plate was installed in the inlet header. Compared with Figure 5, the flow
uniformity improved considerably. Before the perforated plate was installed, the CoV
and ∆p were 0.2536 and 378.8 Pa, respectively. In contrast, when the perforated plate was
installed, the CoV and ∆p were, respectively, 0.0481 and 477.2 Pa. The CoV was greatly
reduced at a slight cost of pressure drop.
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2.2. Experimental Setup

In principle, the flow uniformity over the 33 × 66 channels can be evaluated only
when the flow rates are experimentally measured in all individual channels. From a
practical point of view, this is extremely difficult or almost impossible. Therefore, the
numerical simulation results are the only way to evaluate the flow uniformity. However,
the numerical results must be validated through a comparison with experimental data.

Experiments were conducted to validate the numerical results. The 33 × 66 channels
were fabricated by stacking aluminum plates. Figure 9 shows the exit side of the horizontal
channels. Each channel has dimensions of 400 mm × 4.5 mm× 4.5 mm, as shown in
Figures 3 and 4.
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sure gauge.

The flow patterns in the inlet and outlet headers were obtained using PIV [17]. An 8 W
green continuous laser was used to illuminate the measurement planes. Figure 12 shows the
locations of the measurement planes. As mentioned before, the measurement of flow rates
in all individual channels is extremely difficult or nearly impossible. Therefore, the middle



Energies 2021, 14, 5846 11 of 17

and side planes were selected as the measurement planes. A comparison of the velocity
profiles between the middle and side planes can provide an indirect evaluation of the flow
uniformity in the lateral direction. As shown in Figure 12, each vertical laser sheet was
traversed to illuminate one column of vertical entrances or exits of the horizontal channels.
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Figure 12. Positions of laser sheets for planar PIV.

Since the cross-section size of each channel was too small (4.5 mm × 4.5 mm) to
reasonably measure the mean velocity for each channel, each measurement plane near
the exits of the channels was divided into five equal parts, as shown in Figure 12. Each
measurement part was recorded using a lens with a focal length of 85 mm. The PIV images
were analyzed using an in-house program [18] adopting correlation-based correction [19]
and the multigrid method [20]. According to the accuracy evaluation through artificial
particle images, the PIV program has less than 0.01 pixel mean error and uncertainty for
shear flow, which corresponds to about 0.25% velocity error and uncertainty.
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3. Results

For each measurement, 10,000 images were recorded at a rate of 200 or 400 Hz, and
the ensemble average velocity field was obtained from 5000 instantaneous vector fields.
Figure 13 shows the velocity fields and contours in the inlet header when a perforated
plate is not installed, and the experimental and numerical simulation results are compared.
In the inlet header, the overall flow pattern was of interest; thus, the PIV measurements
were conducted for the entire inlet header region. The velocities were much higher in the
middle plane than in the side plane. In addition, the highest velocity was observed in the
region slightly below the centerline. This asymmetric flow is attributed to the introduction
of water into the header through curved piping. Moreover, a counter-rotating vortex pair
occurred in the inlet header. The flow distribution before the entrance of the horizontal
channels was not uniform.
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Figure 14 shows the velocity fields and contours in the inlet header when the designed
perforated plate is installed, and the experimental and numerical simulation results are
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compared. The perforated plate with various hole diameters significantly alleviates the
flow nonuniformity in the region after the perforated plate.
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Figure 14. Velocity fields and contours in the inlet header when the perforated plate is installed:
(a) experiment and (b) numerical simulation.

In the outlet header, the velocities near the exits of the channels were of interest because
they were used to evaluate the flow uniformity over the horizontal channels indirectly. For
this reason, the measurement plane in the region near the exits of the channels was divided
into five equal parts, and the ensemble average velocity fields for different measurement
parts were combined to obtain a velocity field with a high spatial resolution (2.6 mm).
Figure 15 shows the velocity fields in the region near the exits of the channels. As shown
in Figure 15a, when a perforated plate was not installed, the velocity field in the middle
plane was not uniform. Moreover, the velocity fields in the middle and side planes were
not similar. However, as shown in Figure 15b, the flow uniformity in the region near the
exit of the channel improved significantly due to the perforated plate. The velocity field in
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the middle plane was relatively uniform and similar to the velocity field in the side plane.
The flow uniformity over the 33 × 66 channels improved noticeably.
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Figure 15. Ensemble average velocity fields in the region near the channel exits in the outlet header:
(a) in the absence of perforated plate and (b) when the perforated plate is installed.

Next, the experimental and numerical simulation results are compared. In general,
the PIV technique has a limitation in measuring the flow velocity near the wall. The
measured velocity near the exit of the channel is not accurate. Hence, the velocity profiles
at a distance of 20 mm from the channel exit were compared. Figure 15 shows the results
of the comparison. With reference to Figures 14 and 15, the main flow direction is from the
right to the left. However, as shown in Figure 16, the horizontal flow velocity is reversed.
The Y-axis represents the vertical position from the lowest bottom of the outlet header. The
upper two graphs show the results when the perforated plate is not installed. Overall, the
distributions of the experimentally measured velocities tend to be similar to the numerical
simulation data. The velocity distribution is not uniform in the middle plane. In addition,
the velocity distributions in the middle and side planes are not similar. The lower two
graphs show the results when the perforated plate was installed. It can be seen that the
distributions of the experimentally measured velocities tend to be similar to the numerical
simulation data. The velocity profiles in the middle and side planes are similar.
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Figure 16. Comparison of the measured horizontal velocity profiles with the numerical simulation
data: (a) without perforated plate (middle plane), (b) without perforated plate (side plane), (c) with
perforated plate (middle plane), and (d) with perforated plate (side plane).

4. Discussion

Table 2 shows the comparison results between the numerical and experimental velocity
profiles shown in Figure 16. For a quantitative comparison, we calculated the mean absolute
percentage error (MAPE). The MAPE is defined as

MAPE =
1
n

n

∑
i = 1

∣∣∣∣∣ xi
exp − xi

sim

xi
exp

∣∣∣∣∣× 100, (4)

where n is the total number of data, xexp is the experimental value, and xsim represents the
measured and simulation value. For the case where the perforated plate is not installed,
the values of the MAPE in the middle and side planes are calculated to be 27.5% and 27.1%,
respectively. For the case where the perforated plate is installed, the values of the MAPE in
the middle and side planes are computed to be 28.8% and 23.6%, respectively. According
to [21], those MAPE values indicates the reasonable agreement.

Table 2. Comparison of simulation and experimental velocity profiles.

Perforated Plate Position MAPE

Not installed
Middle plane 27.5%

Side plane 27.1%

Installed
Middle plane 28.8%

Side plane 23.6%

After the flow patterns were examined, the pressure drop between the two locations
was investigated, as shown in Figure 11. Table 3 lists the pressure drop results. In the
absence of the perforated plate, the numerical prediction (378.8 Pa) is extremely close to the
experimentally measured value (388.1 Pa). The relative difference is only approximately
2%. When the perforated plate is installed, the pressure drop increased by 20.6% to 477.2 Pa
in the numerical simulation and by 11.1% to 436.7 Pa in the experiment. The numerical
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simulation and experimental results show a slight increase in the pressure drop despite a
significant improvement in the flow uniformity.

Table 3. Pressure drop.

Perforated Plate Numerical Simulation Experiment

Not installed 378.8 Pa 388.1 Pa
Installed 477.2 Pa (20.6% ↑) 436.7 Pa (11.1% ↑)

5. Conclusions

A perforated plate was designed to improve the flow uniformity in a heat exchanger
used in an SFR steam generator. To experimentally validate the improvement of the flow
uniformity, the PIV technique was applied to water flow in the heat exchanger unit.

The flow uniformity over the 33 × 66 channels was evaluated using numerical simula-
tion results. To improve the flow uniformity, a perforated plate was installed in the middle
of the inlet header. The local hole diameters on the perforated plate were determined based
on the local flow velocities when the plate was not installed. As a result, the flow uniformity
over the 33 × 66 channels improved greatly at a slight cost of pressure drop. Since the
flow rate measurement for all individual channels is extremely difficult, experiments were
conducted to validate the numerical simulation results. Planar PIV measurements were
performed on the selected planes in the inlet and outlet headers. When a perforated plate
was not installed in the inlet header, the velocities were much higher in the middle plane
than in the side plane. In addition, the highest velocity was observed in the region slightly
below the centerline. Moreover, a counter-rotating vortex pair occurred in the inlet header.
The flow distribution before the entrance of the horizontal channels was not uniform. Most
importantly, the velocity fields in the middle and side planes in the region near the exits
of the channels were not similar. However, when the perforated plate was installed, the
velocity field in the middle plane near the exits of the channels was relatively uniform and
similar to the velocity field in the side plane, which means that the flow uniformity over
the 33 × 66 channels improved.

The experimental velocity profiles near the exits of the channels were compared
with numerical simulation data. A comparison between the experimental and simulation
velocity profiles showed less than 30% MAPE, which means reasonable agreement. The
numerical simulation and experimental results showed a slight increase in the pressure
drop, despite significant improvement in the flow uniformity.

The newly designed perforated plate is expected to improve the heat transfer efficiency
of the heat exchanger in the SFR steam generator.
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