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Abstract: This paper presents a multi-agent Double Deep Q Network (DDQN) based on deep
reinforcement learning for solving the transmission network expansion planning (TNEP) of a high-
penetration renewable energy source (RES) system considering uncertainty. First, a K-means algo-
rithm that enhances the extraction quality of variable wind and load power uncertain characteristics
is proposed. Its clustering objective function considers the cumulation and change rate of oper-
ation data. Then, based on the typical scenarios, we build a bi-level TNEP model that includes
comprehensive cost, electrical betweenness, wind curtailment and load shedding to evaluate the
stability and economy of the network. Finally, we propose a multi-agent DDQN that predicts the
construction value of each line through interaction with the TNEP model, and then optimizes the
line construction sequence. This training mechanism is more traceable and interpretable than the
heuristic-based methods. Simultaneously, the experience reuse characteristic of multi-agent DDQN
can be implemented in multi-scenario TNEP tasks without repeated training. Simulation results
obtained in the modified IEEE 24-bus system and New England 39-bus system verify the effectiveness
of the proposed method.

Keywords: transmission network expansion planning (TNEP); deep reinforcement learning; uncer-
tainty; wind power; multi-agent DDQN

1. Introduction

Although countries have actively implemented Nationally Determined Contributions
(NDCs) to alleviate climate deterioration in recent years, global greenhouse gas emissions
are still in the process of continuous growth, and there has not yet been a peak phenomenon.
In order to control the future temperature rise within 1.5 ◦C, the United Nations Environ-
ment Programme advocates that countries around the world should reduce the emissions
to fill the gap between the current greenhouse gas emissions level and the Paris Agreement
provisions [1]. The transformation of energy structure is regarded as the primary way
for emissions reduction by all countries. Many countries have formulated plans to build
a high-penetration renewable energy source (RES) system, which fully releases the high
environmental and economic value of renewable energy by replacing fossil energy [2,3].
There are two main challenges in the RES system construction. One is to solve the time
and space uncertainties caused by the intermittency of renewable energy [4], and the other
is to optimize the network structure for large-scale renewable energy integration [5]. The
transmission network expansion planning (TNEP) is the crucial task of power system
construction, which determines the basic structure and system characteristic. Therefore,
the characteristics of system with high-penetration of RES should be fully considered in
the TNEP task on the basis of ensuring system stability and economy.
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In a high-penetration RES system, as general generators are gradually replaced by
renewable energy, the increase in the penetration rate of renewable energy makes the
system operation state more diversified [6,7], and the uncertainties of the load-side and the
source-side are also amplified. The TNEP task of a high-penetration RES system should first
obtain the description of the renewable energy uncertainty. The uncertainty description
is mainly obtained through the scenario generation method based on probabilistic power
flow and the representative days method based on system operating data. The scenario
generation method does not require a large amount of operation data. It abstracts the
characteristics of renewable energy and variable load fluctuations, and appropriately
estimates operation data according to task requirements. In reference [8], the uncertainty
of renewable energy and demand resources (DR) was decomposed by robust optimization
theory according to the robust intervals on multiple timescales, and the modeling method
was selected in conformity with the characteristics of each component to form the uncertain
model. Furthermore, the relationship between DR and RES was considered in uncertain
model to form a multi-energy hub in [9]. References [9,10] established a model based on
the uncertain characteristics of renewable energy, and studied the electricity market trading
strategy of the RES system. The scenario generation method is intuitive and practical,
which can greatly speed up the problem-solving. However, the accuracy of the uncertainty
description of regional equipment is extremely important in the TNEP tasks [11]. Therefore,
more and more studies have turned to constructing uncertain models from operation data.
Reference [12] studied the relationship between the system’s renewable energy penetration
rate and typical operating conditions based on a data-driven method, and verified that
when the penetration rate increases from 20% to 40%, the system typical states will increase
4 times. Reference [13] improved the K-Means algorithm by taking the maximum and
minimum output of renewable energy as the classification condition, and the classified
representative days data is more in line with the needs of the TNEP task. In addition, the
duration curve of renewable energy was also used to generate the uncertain model, and
the multiple typical scenario duration curves were generated according to seasons, times,
weather conditions and demand levels in reference [14]. Therefore, this paper will use the
system operation data to construct the uncertain model of renewable energy and variable
load to assist the TNEP task solving, and use the data compression method to maintain the
efficiency of the calculation while retaining the main characteristics of the uncertain model.

The huge uncertainties of the source-side and the load-side in the system with high-
penetration of RES make the power shortage more frequent [15]. The transmission stability
in a wide area cannot be maintained only by the local balance of power generation and load.
It is also necessary to build a more compact transmission network structure through TNEP
task to release the potential of power support among various renewable energy sources [16].
The construction of the TNEP model of the system with high-penetration of RES should
fully consider the uncertain characteristics of renewable energy and variable loads, and
improve the stability of system in the most economical way. Reference [17] proposed a two-
stage model of TNEP and the renewable energy generation expansion planning (REGEP),
which can coordinate system stability and renewable energy consumption in complex
situations. On this basis, the system outages and post-contingency control were added to
construct a five-level model in reference [18]. For some special scenarios, environmental
conditions are also used as part of the TNEP model to assist decision-making. For example,
reference [19] constructed an offshore grid planning model based on the typical connection
structure of offshore wind farms. The comprehensive TNEP model can ensure that the
planning scheme meets the various requirements of network construction. The solution
of traditional TNEP model is a complex and large-scale mixed-integer linear program-
ming (MILP) problem [18], and many studies have focused on improving the solution
efficiency. The Benders decomposition method was adopted to reduce the complexity of
model in references [20,21]. Furthermore, combining Benders decomposition method with
the Column-and-Constraint generation method, reference [22] proposed a better method to
obtain the planning scheme with high reliability and economy for RES system. In addition,
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the primal cutting planes algorithm was also used to accelerate the TNEP solution in
reference [23]. With the increase in the scale of the system with high-penetration of RES
and the nonlinear constraints of the TNEP model, the traditional decomposition method
has encountered a bottleneck, which makes the heuristic-learning based method a more
convenient way to obtain planning scheme. Reference [24] used the improved Particle
Swarm Optimization (PSO) to solve the multi-objective TNEP model, which contains the
security and uncertain constraints of photovoltaic power farms. Reference [25] separated
the cost problem from the investment problem in TNEP model, and solved them by PSO
and quadratic programming (QP) methods, respectively. In addition, under the uncertain
scenario, the shuffled frog leaping algorithm (SFLA) was adopted to process the TNEP
task, which obtained a better scheme than PSO in reference [26]. Although the heuristic
learning-based method can solve TNEP problem more quickly than decomposition meth-
ods, the black box characteristic of such methods makes the solution process interpretability
extremely low. At the same time, it requires thorough retraining for different tasks, which
wastes time. Deep reinforcement learning is currently an advanced technology, and it is
widely used in power system load frequency contortion, flow adjustment, and AGC power
order optimization in references [27–29]. However, the application of deep reinforcement
learning to the TNEP tasks is still in the early stage. Reference [30] adopted Deep Q Net-
work (DQN) to solve the TNEP model based on the static system. Nevertheless, when
undertaking the TNEP tasks for the system with high-penetration of RES, the deep rein-
forcement learning environment should contain more uncertain characters of wind power
and variable load. Moreover, the reinforcement learning structure should be redesigned
accordingly to satisfy more complex model solving.

The contributions of this paper are listed below:

• A K-means algorithm that enhances the extraction quality of variable wind and load
power uncertain characteristics is proposed. The proposed method considers the
accumulation and change rate of operational data.

• A calculation method of wind curtailment and load shedding that reduces the com-
putational complexity while retaining the uncertainty of the system is proposed.
The calculation method is based on the typical uncertain scenarios extracted from
operation data.

• A TNEP bi-level model considering the system stability and economy is constructed,
and this model includes the comprehensive cost, wind curtailment, load shedding,
and electrical betweenness.

• Multi-agent DDQN is proposed based on the bi-level model, which is a high-performance
and interpretable machine learning method for the TNEP task.

This paper is organized as follows: Section 2 constructs the bi-level TNEP model to
consider the wind power and load uncertainties. Section 3 builds the multi-agent DDQN
for TNEP task based on deep reinforcement learning. Section 4 takes multi-agent DDQN to
complete TNEP tasks on modified IEEE 24-bus system and New England 39-bus system.

2. TNEP Bi-Level Model Based on Typical Scenarios of Wind Power and Load
Uncertainties

This section constructs a TNEP bi-level model considering the system stability and
economy based on uncertain scenarios. First, the typical uncertain scenarios of wind
power and load data are extracted based on the improved K-Means algorithm. Secondly,
based on the extracted results, a TNEP bi-level model is constructed. This model can
comprehensively evaluate the economic and stability of transmission network under the
scenario of a high-penetration of wind power and variable load.

2.1. Improved K-Means Algorithm Based on Characteristics of Wind power and Load Operation Data

The output power of a wind farm is closely related to the regional weather, and the
load-side behavior also makes the input power of the load variable. The system with
high-penetration wind farms and variable load injection face high uncertainties at the
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source-side and load-side, which greatly affects the stability of the RES system. In the
system to be expanded, there are many combinations of wind farm output power and load
input power recorded in historical operating data, and it is unrealistic to consider each
scenario in the TNEP task. Therefore, this paper uses the improved K-Means algorithm
to extract typical scenarios, which saves a lot of calculation time for TNEP task while
preserving the system uncertainty.

K-Means algorithm is an intuitive and efficient clustering method based on the dis-
tance of data samples. Additionally, when applied to the classification task of large data
sets, its performance is still excellent.

When the K-Means algorithm is used to extract typical scenarios from operating data,
the K value should be given first to determine K cluster centers. Then, through iterative
optimization of K cluster centers, the sum of the distances between the classified samples
and each cluster center is minimized. The traditional sum of the squared errors (SSE) is

SSE = ∑K
n=1 ∑x∈δ

(x− Cn)
2
, (1)

where x is the operation data; δ is the operation data set; Cn is data of cluster center.
However, when traditional SSE is used for clustering task, its morphological-based

clustering objective cannot fully reflect the fluctuation characteristics and accumulation of
operation data, which are quite critical for the TNEP task. Therefore, this paper proposes
to adopt accumulation and change rate as indicators to measure the data uncertainty, and
then use these two indicators as clustering objective to improve the quality of clustering
data.

The cumulation of operation data Dcumulative is

Dcumulative = ∑24
h=1 dh (2)

where dh is value of operation data at h-th hour, and the change rate of operation data
Dchange is

Dchange = ∑24
h=2 (dh − dh−1)/drated (3)

where drated is the rated value of operation data; dh−1 is value of operation data at h − 1-th
hour.

Based on (2) and (3), the clustering objective function SSEnew of improved K-Means
algorithm is

SSEnew = ∑K
n=1 ∑x∈δ

[(Dcumulative,x − Ccumulative,n)
2
+ (Dchange,x − Cchange,n)

2]. (4)

where Dcumulative,x is the cumulation of operation data x; Ccumulative,n is the cumulation of
clustering center n; Dchange,x is the change rate of operation data x; Cchange,n is the change
rate of clustering center n.

2.2. Bi-Level Multi-Objective TNEP Model

The TNEP task of the RES system is a multi-objective problem. It needs to coordinate
economy and stability. In addition, the uncertainties of the system under large-scale wind
power and variable load should also be considered. Therefore, this section constructs a
bi-level model based on the nature of the transmission network evaluation index, and each
layer model is composed of objective function and constraints.

2.2.1. Upper-Level Objective Function

The upper-level model uses the comprehensive cost to evaluate the economy of the
system. The comprehensive cost is composed of construction cost, network loss cost, and
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operation and maintenance cost. The construction cost f 1 of the TNEP task is formed by
the uniform annual investment of transmission lines.

f1 =
rd(1 + rd)

y

(1 + rd)
y − 1∑NL

l=1 λlXl , (5)

where rd is the capital discount rate of line; y is the life expectancy of line; NL is the total
number of lines; λl is the line construction state; Xl is the construction investment of line l.

The transmission network loss refers to the power loss in the form of heat energy
during the power transmission, the transmission network loss cost f 2 is

f2 = ploss∑NL
l=1

P2
l + Q2

l
U2

l
rl , (6)

where Pl is the active power of line l in AC rectangular; Ql is the active power of line l in
AC rectangular; Ul is the voltage of line l in AC rectangular; ploss is the unit electricity price
of network loss.

The operation and maintenance cost of the transmission network should consider
the equipment of line and transformer. However, the transformer operation and mainte-
nance cost is related to the load rate, and the parameters and transmission power of each
transformer in the IEEE RTS-24 bus system are almost equal. Therefore, the transformer op-
eration and maintenance cost have little effect on the scheme choice. The system operation
and maintenance cost f 3 is

f3 = ∑NL
l=1 ηlλlXl , (7)

where ηl is the line operation and maintenance cost coefficient.
The calculation of upper-level objective function is based on the AC power flow

method, which can describe power flow characteristics more accurately than the DC power
flow method used in traditional TNEP methods. The fupper(·) is

fupper(·) = min[ f1(l), f2(l), f3(l)]
T . (8)

2.2.2. Upper-Level Constraints

The upper-level constraints are mainly composed of power transmission and equip-
ment operation constraints. The AC power flow balance constraints are

Pg
j − Pcurt

wind,j −Vj∑k∈j (Gjk cos θjk + Bjk sin θjk) =Pload
j − Pshed

load,j, (9)

Qg
j −Qcurt

wind,j −Vj∑k∈j (Gjk sin θjk + Bjk cos θjk) =Qload
j −Qshed

load,j −Qc
j , (10)

where Pg
j is the generator rated active power output of node j; Pcurt

wind,j is the wind curtailment
active power of node j; Vj is the voltage of node j; Bjk is the susceptance between node j
and node k; G is the conductivity between node j and node k; θjk is the phase angle between
node j and node k; Pload

j is the load active power input of node j; Pshed
load,j is the load active

power shedding of node j; Qg
j is the generator reactive power output of node j; Qload

j is
the reactive power input of node j; Qcurt

wind,j is the wind curtailment reactive power of node

j; Qshed
load,j is the load reactive power of node j; Qc

j is the reactive power of reactive power
compensation device of node j.

The voltage amplitude and phase angle constraints are

Vmin,upper
j ≤ Vj ≤ Vmax,upper

j , (11)

θ
min,upper
j ≤ θj ≤ θ

max,upper
j , (12)
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where Vmin,upper
j and Vmax,upper

j are the maximum and minimum of voltage of node j;

θ
min,upper
j and θ

max,upper
j are the maximum and minimum of phase angle of node j.

Because wind farm has strong reactive power regulation capability, this paper does
not make a special constraint. The wind power and general generator output constraints
are

Pg,min
j ≤ Pg

j ≤ Pg,max
j , (13)

Pwind,min
j ≤ Pwind

j ≤ Pwind,max
j , (14)

Qg,min
j ≤ Qg

j ≤ Qg,max
j , (15)

where Pg,max
j and Pg,min

j are the maximum and minimum of generator active power output;

Qg,max
j and Qg,min

j is the maximum and minimum of generator reactive power output;

Pwind,max
j and Pwind,min

j is the maximum and minimum of wind active power output.
The line transmission capacity constraint is

− Fmax
l ≤ Fl ≤ Fmax

l , (16)

where the Fl is the power flow of line l; Fmax
l is the power flow transmission maximum line

j.
The wind curtailment constraint is

0 ≤ Pcurt
wind,j ≤ min(µwind

j Pwind
j , Pcurt,lower

wind,j ), (17)

where µwind,j is the minimum output ratio; Pcurt,lower
wind,j is the wind active power curtailment

of lower-level model.
The load shedding constraint is

0 ≤ Pshed
load,j ≤ min(µload

j Pload
j , Pshed,lower

load,j ), (18)

where µload,j is the minimum load ratio; Pshed,lower
load,j is the load activate power shedding of

lower-level model; Pcurt,lower
wind,j is the wind active power curtailment of lower-level model.

2.2.3. Lower-Level Objective Function

The lower-level model is based on typical uncertain scenarios. It evaluates renewable
energy consumption of system through load shedding and wind curtailment calculations,
and the system stability is evaluated by the improved electrical betweenness. Based on the
bi-level model structure, the upper-level model obtains a Pareto set composed of better
economical lines, and the lower-level model only needs to calculate the scheme in this
set. Then, the upper-level model further optimizes the TNEP scheme after receiving the
calculation results of lower-level model. This mechanism satisfies the constraints between
the bi-level models and improves the computational efficiency.

The transmission network is a real-time balance system, but high-penetration wind
power and variable load will affect this balance. Hence, when the wind farm output power
is greater than the maximum absorbable power of the system or the adjacent lines of the
wind farm do not have enough capacity to transmit the power flow, the excess wind power
needs to be curtailed to ensure the balance. On the contrary, when the system load power
exceeds the sum of the power of wind farm and the general generator set or the adjacent
lines of load node are blocked, the excess load will be shed. Figure 1 is the schematic
diagram of wind curtailment and load shedding.
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We set priority wind power output conditions to ensure the maximum wind power
consumption. Therefore, the wind curtailment is determined by the load and the minimum
output of general generator set. The wind curtailment of each hour pcurt

wind,h is calculated by

pcurt
wind,h = ∑Nwind

Pwind
h + ∑NG

Pmin
h −∑NLoad

Pload
h (19)

where Nwind is the total number of wind farms; Pwind
h is the sum of the output of wind farm

at h-th hour; Pmin
h is the sum of the minimum output of general generator set at h-th hour;

Pload
h is the sum of the input of load at h-th hour.

The total wind curtailment of each scenario Pcurt
wind is

Pcurt
wind = ∑24

h=1 pcurt
wind,h. (20)

The load shedding of each hour Pshed
load,h is

pshed
load,h = ∑Nwind

Pwind
h + ∑NG

Pmax
h −∑NLoad

Pload
h , (21)

where Pmax
j,h is the maximum output of general generator set j at h-th hour.

The total load shedding of each scenario Pshed
load is

Pshed
load = ∑24

h=1 pshed
load,h. (22)

The wind curtailment and load shedding can evaluate the operation economy of
system structure under uncertain scenarios. However, the high-penetration wind power
and variable load may cause the line with excessive power flow to be cut off, which will
lead large-scale power flow transfer and even cause a cascading failure. We propose
to apply the improved electrical betweenness to measure system power flow balance in
uncertain scenarios, and use it to evaluate the system stability.

The stability evaluation of the transmission network based on the electrical between-
ness integrates the power flow characteristics into the topology analysis. This method uses
electrical betweenness to indicate the transmission power of each line in multiple scenarios,
and the large electrical betweenness means that the line is more important in the power
flow transmission. When it is forced to be cut off, the system will be severely affected.
Therefore, it is necessary to balance the power flow transmission by constructing new lines
to improve the system’s ability to withstand uncertainties of wind power and variable
load.
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The electrical betweenness is based on two assumptions:

Assumption (a): The line power flow is a linear additive model, and the line transmission
capacity is shared by each generator set and load.

Assumption (b): The power flow transmission occurs in any line between the generator set
and the load.

The calculation of electrical betweenness first requires the system to be divided into a
combination of a single generator set and a single load. Then, the combination is required
to transmit unit power with the complete line structure. The active power flow Pl,unit and
reactive power flow Ql,unit of line l under transmitting unit power are

Pl,unit = V2
j,unit(Gj0 + Gjk)−Vj,unitVk,unit(Bjk sin θjk,unit + Gjk cos θjk,unit), (23)

Ql,unit = −V2
j,unit(Bj0 + Bjk) + Vj,unitVk.unit(Bjk cos θjk,unit − Gjk sin θjk,unit), (24)

where Vj,unit and Vk,unit are the voltage of node j and node k under transmitting unit power;
Gj0 is the conductivity between node j and ground points; Bjk is the susceptance between
node j and node k under transmitting unit power.

Second, the coefficient ω of unit power flow is determined by the smaller value of
the generator set and load in the selected combination. The unit power coefficient is
calculated by

ω =


min

{
Pwind, Pvari

load
}

i f the combination contains wind generator and variableload
min

{
Pwind, Pconst

load
}

i f the combination contains wind generator and constantload
min

{
Pg, Pvari

load
}

i f the combination contains general generator and variable load
min

{
Pg, Pconst

load
}

i f the combination contains general generator and constantload

, (25)

where Pvair
load and Pconst

load are the power of variable load and constant load.
Third, all combinations in the system should be traversed, and the electrical between-

ness of lines can be obtained from the sum of the unit power flow distribution. The electrical
betweenness (EB) is

EB = ∑s∈Φ ω(Pl,unit,s+Ql,unit,s), (26)

where Φ is the combination set; s is a combination of one source and one load.
The (26) can compare the power flow of each line in the system, but it is difficult

to intuitively calculate the power flow balance of the system. Therefore, this paper pro-
poses to use the Wasserstein distance to measure the uniformity of electrical betweenness
distribution.

The Wasserstein distance measures the similarity of two distributions by calculating
the distance between two distributions. In this paper, the Wasserstein distance between
the electrical betweenness distribution and the absolute equilibrium power flow EBbalance
distribution is used to evaluate the power flow balance of the transmission network.
Additionally, the power flow Wasserstein distance Wass(EB) is

Wass(EB) = inf
γ∼∏(EB,EBbalance)

E(EB,EBbalance)∼γ[‖EB− EBbalance‖], (27)

where inf means infimum; Π(EB, EBbalance) represents the set of all possible joint probability
distributions of EBl,h and EBbalance; ‖A‖ is any norm of A.

The lower-level objective function needs to improve the system’s renewable energy
consumption capacity while ensuring that the system has a small improved electrical
betweenness. Therefore, the lower-level objective function flower(·) is

flower(·) = min
[

Pcurt
wind, Pshed

load , Wass(EB)
]T

. (28)
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2.2.4. Lower Constrains

The lower-level constraints are similar to the upper-level constraints, and they are

Pg
j − Pcurt

wind,j −Vj∑k∈j (Gjk cos θjk + Bjk sin θjk) =Pload
j − Pshed

load,j, (29)

Qg
j −Qcurt

wind,j −Vj∑k∈j (Gjk sin θjk + Bjk cos θjk) =Qload
j −Qshed

load,j −Qc
j , (30)

Vmin,lower
j ≤ Vj ≤ Vmax,lower

j , (31)

θmin,lower
j ≤ θj ≤ θmax,lower

j , (32)

Pg,min
j ≤ Pg

j ≤ Pg,max
j , (33)

Pwind,min
j ≤ Pwind

j ≤ Pwind,max
j , (34)

Qg,min
j ≤ Qg

j ≤ Qg,max
j , (35)

− Fmax
l ≤ Fl ≤ Fmax

l , (36)

0 ≤ Pcurt
wind,j ≤ µwind

j Pwind
j , (37)

0 ≤ Pshed
load,j ≤ µload

j Pload
j . (38)

The solution of this model is to find a transmission network structure that meets
various constraints and maximizes the performance of the objective function. The method
based on deep reinforcement learning determines the construction value of each line based
on Markov decision to realize the TNEP task. The method based on heuristic learning
achieves the optimization goal by iterating the overall transmission network structure,
while business optimizer such as CPLEX is based on mathematical planning to solve the
task model.

3. Multi-Agent DDQN for Transmission Network Expand Planning

This section proposes multi-agent DDQN based on deep reinforcement learning for
the bi-level TNEP model solving. First, the task environment model of TNEP is constructed
based on the Markov Chain model. Second, an improved multi-agent DDQN is proposed
according to the characteristics of the task model, which realizes the coordinated solution
of the upper-level and lower-level models. Finally, we provide the improved multi-agent
DDQN training process for the TNEP task.

3.1. Task Environment of Transmission Network Expansion Planning Based Markov Chain Model

The TNEP scheme is determined by the current system requirements and the estab-
lished network structure. When each line is constructed, the system structure will be
transformed into a new state, and the operation state will also be improved. This work
can be abstracted into a Markov serialized decision process, and the schematic diagram of
Markov Chain model for TNEP task is shown in Figure 2.
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The Markov Chain model provides a way to solve the task through sequential decision.
The reinforcement learning uses this mechanism to build task environment and agent for
task solving. The task environment can provide the agent with the current task state and
executable actions. The agent chooses actions according to a certain strategy. The task
environment changes the task state according to the selected action, then calculates the
reward of the action and transmits it to the agent. Therefore, the task environment ζTNEP
can be expressed in state space as:

ζTNEP = [S, A, R, γ], (39)

where S is set of task state; A is set of executable action; R is set of action reward; γ is
discount factor.

In Figure 2, the current system structure is considered as the initial state St, and each
line construction is considered as an action At. The probability of transition from state St to
state St+1 is p(St, St+1). When a line is constructed to the state change to state St, the system
operational improvement is considered as a reward Rt. The state value and state-action
pair value are defined as v(St) and q(St, At). When state St transforms into the state SN, the
cumulative reward is G(St).

The Markov decision assumes that the generation of a new state is only related to the
current state, and the state transition probability p(St, St+1) is

p(St+1 | St) = p(St+1 | S1, . . . , St). (40)

When the state St−1 changes to the state St, the reward Rt is

Rt = E[Rt+1|St] (41)

where E[Rt+1|St] means the expectation of all action rewards in the state St.
The transition from the state St to the state St+1 is triggered by action At. The probabil-

ity of action At is selected under the state St is defined as p(At|St). If the action selection is
based on the policy π, the probability of action selection can be written as

π(At|St) = p(At|St), (42)
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The state St has an influence on all subsequent states, but the farther from St, the
smaller the influence. The reward obtained by St in the subsequent state also has this
characteristic. Therefore, the cumulative reward G(St) of each path can be defined as

G(St) =
N

∑
k=0

γkRt+k+1, (43)

where γ is discount factor.
The state value v(St) is expressed by the expectation of cumulative reward obtained

by each path from St based on policy π, and the relationship between G(St) and vπ(St) is

vπ(St) = Eπ [G(St) | St]

= Eπ

[
∞
∑

k=0
γkRt+k+1 | St

]
= Eπ [Rt+1 + γG(St+1) | St]
= Eπ [Rt+1 + γvπ(St+1) | St]

, (44)

The action value of action At under the state St based on policy π is defined as qπ(St,
At). Therefore, v(St) can be written as the weighted sum of action value. That is

vπ(St) = ∑
At∈ψ

π(At | St)qπ(St, At), (45)

where ψ is the action set of state St.
The relation between q(At|St) and v(St+1) is

qπ(St, At) = Rt+1 + γ ∑
St+1∈Λ

p(St+1 | St)vπ(St+1), (46)

where Λ is the state set of state St+1.
Substitute (46) into (45), it obtains

vπ(St) = ∑
At∈ψ

π(At | St)[Rt+1 + γ ∑
St+1∈Λ

p(St+1 | St)vπ(St+1)]. (47)

Both (46) and (47) are Bellman equations, and the value function can be calculated
iteratively through the dynamic programming. If the policy π is determined, the transition
probability p(St+1|St) and the action selection probability π(At|St) are known. Therefore,
we only need to optimize the value function to promote the cumulative reward, and the
TNEP task can be solved according to the optimal state sequence.

3.2. Multi-Agent DDQN Structure

DDQN is a value-based deep reinforcement learning. Its crucial objective is to con-
struct and train an accurate value function for the value prediction of state-action pairs.
The DDQN agent takes the action based on the ε-greedy strategy and value function to
change the task state. Meantime, it modifies the value function through the reward of task
state changes. The principle diagram of DDQN is shown in Figure 3.
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DDQN contains two value functions, Qeval and Qtarget, with the same initial parameters
based on the deep neural networks. This paper uses the Tensorflow platform to build the
deep neural network, and the parameters of DDQN are shown in Table 1.

Table 1. Parameters of DDQN in Tensorflow platform.

Parameters Value

Learning rate 0.01
Discount factor 0.90

ε-greedy 0.90
Maximum number of episodes 200

Number of hidden layers 4
Number of hidden neurons 32, 64, 128, 256

Optimizer Adam
Activation Relu

Qeval is used to select the optimal value action. Through the value perdition of the
action At-state St pair, the best action Amax(St;ωeval) is

Amax(St; ωeval) = argmax
At

Qeval(St, At; ωeval), (48)

where D(a;b) denotes the variable D with respective to the variable a and the parameter b;
ωeval is the parameters of deep neural network Qeval.

Qtarget is used to predict the best action value. The best action value Qmax(St;ωtarget) is

Qmax(St; ωtarget) = Qtarget(St, Amax(St; ωeval); ωtarget), (49)

where ωtarget is the parameters of deep neural network Qtraget.
According to (46), the reward q(St,At) of action At-state St pair can be obtained as

q(St, At) = Rt+1 + γQmax(St+1; ωtarget). (50)

The value function loss Qloss of Qeval is

Qloss = q(St, At)−Qeval(St, At; ωeval), (51)
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after each action is executed, the Qeval update regulation is

Qt+1
eval = Qt

eval + αQloss, (52)

where α is learning rate of DDQN; Qt+1
eval and Qt

eval are the Qeval state at t-th time and
t + 1-th time, and the parameters ωeval of Qeval are copied into Qtarget periodically. This
delayed update mechanism can ensure stable iteration of parameters.

Based on the bi-level model of TNEP, we built a dual of DDQN agent. One set is used
to search the economical transmission network. The upper-level model reward Rupper is

Rupper = Vbase,upper − fupper[ f1(l), f2(l), f3(l)]
T , (53)

where Vbase,upper is the reward baseline of upper-level agent.
The other set is used to optimize the wind curtailment, load shedding, and improve

electrical betweenness of transmission network. The lower-level model reward Rlower is

Rlower = Vbase,lower − flower

[
Pcurt

wind, Pshed
load , Wass(EB)

]T
. (54)

where Vbase,lower is the reward baseline of lower-level agent.
In the optimization of the bi-level model, we stipulate that the upper-level agent needs

to store the top three economical lines to form a Pareto set. The constitution rule of the
upper-level solution set Pareto{At,upper} is

Pareto{At,upper} =
{

First three Amax(St; ωeval,upper) Prob ≥ ε

Three At obtained randomly Prob <ε
(55)

where Prob is the random probability of ε-greedy strategy.
The optimization scope of the lower-level DDQN agent should be in (55). The consti-

tution rule of lower-level action At,lower is

At,lower =

{
Amax(St; ωeval,lower) Prob ≥ ε
One At,upper obtained randomly Prob < ε,
s.t. : At,lower ∈ Pareto

{
At,upper

} (56)

When each selected action At,lower is executed, the Qeval,upper and Qeval,lower update
based on (56). The multi-agent DDQN flow chart of TNEP task is shown in Figure 4, where
Qeval,lower and Qeval,upper is used to select the optimal value action of lower-level agent and
upper-level agent, respectively; Qtarget,lower and Qtarget,upper is used to predict the best action
value of lower-level agent and upper-level agent, respectively; Rt+1,upper and Rt+1,lower is
reward of state St+1 of lower-level agent and upper-level agent, respectively.
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4. Simulation and Verification

In this section, we apply the multi-agent DDQN to solve the multi-scenarios TNEP
tasks of system with high-penetration of RES. The planning scheme and solution process of
multi-agent DDQN are compared with those of DQN, particle swarm optimization (PSO)
and branch-and-bound (B&B) in the modified IEEE RTS-24 bus system and the modified
New England 39-bus system.

4.1. Modified IEEE RTS-24 Bus System with High-Penetration RES

The IEEE RTS-24 bus system is widely used to evaluate the performance of planning
algorithms. This model contains 24 generator or load buses. The initial network consists
of 38 lines with two rated voltages, the north area is 220 kV and the south area is 110 kV.
The load model contains 17 buses with a maximum of 2850 MW. The generation model
contains 32 generator sets, and the range of the output is 12–400 MW.
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Based on the IEEE RTS-24 bus system, a modified IEEE RTS-24 bus system is con-
structed, in which the types of some generator sets and loads are changed to make the
system have the characteristics of renewable energy and variable load. The changes are
listed in Table 2, and the distribution of generator set and loads is shown in Figure 5.
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Table 2. Changes of generator set and load in the modified IEEE RTS-24 bus system.

Node IEEE RTS-24 Bus System Modified IEEE RTS-24 Bus System Power (MW)

1, 13, 18, 23 general generator set wind farm set 192, 591, 400, 660
1, 2, 3, 4, 6, 7, 8, 15, 16,

18, 19, 20 constant load variable load 108, 97, 180, 74,136, 125, 171,
317, 100, 333, 181, 128

It can be seen from Figure 5 that the modified system contains 54.1% renewable energy
and 79.6% variable load, which simulates the high-penetration renewable energy and
variable load characteristic of RES system.

Then, we use the improved K-Means algorithm to extract the typical scenarios. Its
performance is not only related to the setting of the clustering objective function, but also
closely related to the K value. We use the improved K-Means algorithm to cluster the
variable wind power and load operation data of HRP-38-test-system in reference [31], and
the best K value is determined from the curve of SSE based on the elbow method. The
results are shown in Figure 6.
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The results show that the SSEs of wind power and variable load decreases faster when
K value becomes K = 4. If K continues to increase, the change rate of SSE will decrease,
which can be considered as an elbow point. Therefore, this paper adopts K = 4. The
clustering results are shown in Figure 7.
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Figure 7a shows the four operating modes of wind power. Mode 1 and mode 2 are
distinguished by the difference in cumulative energy. Mode 3 and mode 4 have similar
cumulative energy, but the fluctuation characteristics are different. Similarly, in Figure
7b, the cumulative energy of load 1, 3, and 4 modes are different, and the fluctuation
characteristics of mode 2 are more unique. Therefore, the improved K-Means algorithm
realizes the operation data compression of wind power and variable load, which greatly
improves the efficiency of TNEP task solving.

The scenario generation rule is to randomly select the wind farm and load status in
each hour from the extracted mode as the system status and then generate 384 typical
scenarios. Some typical scenarios are listed in Table 3.

Table 3. Typical scenarios in the modified IEEE RTS-24 bus system.

System Status Wind Farm Power Output Variable Load Power Input Treatment

lack of power 0.072506 0.918429 wind curtailment
excess of power 0.730986 0.336237 load shedding

high-level dynamic balance 0.433848 0.471544 None
Low-level dynamic balance 0.719905 0.736917 None

The typical scenarios cover the normal and extreme conditions during the system
operation. This data-driven scenario generation method reduces computational complexity
and ensures the uncertain characteristic.

4.2. TNEP for Multi-Level Renewable Energy Penetration Scenarios in Modified IEEE RTS-24 Bus
System

All the programs are developed using TensorFlow 1.14 and python 3.7. The system
configuration is i9-9900K with 3.6 GHz, a memory of 32 GB, and graphics card of 2080Ti.
DQN and PSO are used for contrast, and the parameters of multi-agent DDQN and DQN
are listed in Table 4. The TNEP schemes of four methods are shown in Tables 5–8, and the
transmission network structure is in Figure 8.
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Table 4. Parameters of multi-agent DDQN and DQN.

Parameter Multi-Agent DDQN Value DQN Value Unit

maximum learning number 200 200 episode
maximum iteration number of each episode 150 150 step

number of neural network layers 50 50 layer
neural network copy parameter interval 200 None step

Table 5. TNEP scheme of multi-agent DDQN in modified IEEE RTS-24 bus system.

Lines Number
and Sequence

Upper Level (Comprehensive Cost) Lower Level

Line Construction
Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

None 0.00 4.01 9.04 0.007154 80.11 227.22
11–15 1.51 3.21 8.95 0.005584 64.60 141.88
22–23 2.20 2.96 8.94 0.005155 60.67 105.43
14–15 2.87 2.90 8.96 0.004927 57.74 95.92
20–22 3.55 2.81 8.98 0.004732 60.21 80.62

1–2 3.67 2.81 8.96 0.004751 60.22 80.62
2–7 4.53 2.81 9.03 0.004795 60.44 57.78

13–15 6.95 2.72 9.13 0.004457 44.20 57.61

Table 6. TNEP scheme of DQN in modified IEEE RTS-24 bus system.

Lines Number
and Sequence

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

Line Construction
Cost (USD
(millions))

Network loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

None 0.00 4.01 9.04 0.007154 80.11 227.22
11–15 1.51 3.21 8.95 0.005584 64.60 141.88
13–15 3.93 3.02 9.04 0.005493 51.57 130.62

7–8 4.57 2.92 9.05 0.005676 51.57 92.16
9–12 6.57 2.93 9.15 0.005813 47.80 90.36

16–17 7.65 2.84 9.19 0.005214 47.20 71.06
14–15 8.32 2.81 9.22 0.004994 46.62 62.68
7–9 10.58 2.81 9.33 0.005108 47.03 51.59

Table 7. TNEP scheme of PSO in modified IEEE RTS-24 bus system.

Lines

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)
Line Construction

Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance

Cost(USD (millions))

7–8

7.81 2.39 9.11 0.00518 86.61 75.64

11–15
12–13
13–20
14–15
14–20
22–23
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Table 8. TNEP scheme of B&B in modified IEEE RTS-24 bus system.

Lines

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)
Line Construction

Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

1–5

10.41 2.64 9.31 0.005182 68.45 65.09

7–8
8–10
11–15
12–23
17–19
18–19
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Figure 8. The transmission network structure of four methods in modified IEEE RTS 24-bus.

Tables 5–8 show that all four methods optimize the stability and economy of the trans-
mission network by constructing lines. The deep reinforcement learning based methods
contain line sequence information, but PSO method only optimizes the structure of the
complete transmission network structure. Among the four schemes, the scheme obtained
by multi-agent DDQN has the lowest construction cost at USD 6.95 M. Due to the scheme
obtained by DQN includes the line 9–12, which contains a set of transformers, the con-
struction cost is the highest at USD 10.58 M. In addition, the four schemes all affect the
system structure and the distribution of power flow through new lines construction, which
decreases the network loss cost. Finally, the objective function of the upper-level model is
to minimize the comprehensive cost. The comprehensive costs of four methods are USD
18.8 M, USD 22.72 M and USD 19.31 M, USD 22.36 M, respectively. The scheme obtained
by multi-agent DDQN has the lowest comprehensive cost, which proves that the one set
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DDQN agent built by the upper-level layer is better than DQN agent in the optimization of
comprehensive cost indicators.

The improved electrical betweenness measures the system stability by calculating the
power flow balance of each line. The scheme obtained by multi-agent DDQN reduces the
improved electrical betweenness from 0.007154 to 0.004457, which reduces the probability
of cascading failures than other three methods. In addition, system with high-penetration
of RES needs to ensure as little wind curtailment and load shedding as possible under un-
certain scenarios. Both multi-agent DDQN and DQN improve the power support capability
through building a tighter transmission network structure. However, the scheme obtained
by PSO is over-searching for a structure with better comprehensive cost performance, and
it ignores the optimization of the improved electrical betweenness, wind curtailment and
load shedding. This is because the heuristic learning-based method is easy to fall into the
local optima problem in TNEP task solving processing. TNEP is a complex non-convex
non-deterministic polynomial (NP) problem. The scheme obtained by B&B still has a
certain gap with the other schemes obtained by three methods. The methods based on
deep reinforcement learning well coordinates the optimization of the lower-level model
indicators, which avoids the impact of the local optima problem to a certain extent, and
confirms the superiority of this type of methods in this task.

Although the sum of the wind curtailment and the load shedding are nearly equal for
scheme obtained by DQN and multi-agent DDQN, the improved electrical betweenness of
multi-agent DDQN is significantly better. The dual DDQN agent structure improves the
optimization capability of each layer, and thus forming a better solution method for TNEP
task.

Figure 9 shows the comprehensive cost changes of the schemes obtained by multi-
agent DDQN and DQN. The construction cost of lines 13–15, 9–12, and 7–9 in the DQN
scheme is relatively high, which makes the construction cost rise rapidly. The scheme
obtained by multi-agent DDQN chooses lines with lower construction cost, so that the
investment in the scheme implementation can be invested more smoothly. Moreover,
the sum of network loss cost and operation and maintenance cost of scheme obtained
by multi-agent DDQN are decreasing faster, which makes the transition process more
economical.
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Figure 9. (a) Comprehensive cost changes of scheme obtained by multi-agent DDQN. (b) Comprehensive cost changes of
scheme obtained by DQN.

Figure 10 is the distribution of line power flow for the two methods. It shows that
the initial power flow is quite uneven, and the power flow of the initial network contains
three lines with more than 300 MW and two lines more than 400 MW. The scheme obtained
by multi-agent DDQN transfers part of the power flow to underloading lines, which
improves the utilization rate of the underloading lines and reduces the probability of
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the cascading failures caused by the overloading lines. For the lines with power greater
than 200 WM in Figure 10b, the multi-agent DDQN controls the line power flow close
to 250 MW. The scheme obtained by DQN reduces most of the line power flow to below
250 MW, but it contains two lines that are much larger than 250 MW. For the lines with
power lower than 200 MW, multi-agent DDQN optimizes the power flow distribution in
the range of 150~200 MW better than DQN method. DQN better increases the power flow
of underloading lines, and multi-agent DDQN tends to limit the power flow of overloading
lines. The lines with high power flow often determine the stability of the system. Therefore,
the scheme obtained by multi-agent DDQN has higher system stability.
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multi-agent DDQN.

Figure 11 shows the changes in wind curtailment and load shedding during the
construction of the two schemes.
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DDQN and DQN.

The initial network structure sheds a mass of load under uncertain scenarios. When
the output of wind farms is reduced, the regional power balance ability is weakened,
and the power support from power generators and wind farms in the other regions of
the system is needed to supplement the regional power shortage. However, when the
congestion occurs in transmission lines connected to the power shortage area, the power
support in the system is difficult to achieve, which forces load shedding. Therefore, it is
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necessary to build new lines to eliminate the occurrence of congestion. The two schemes
obtained by multi-agent DDQN and DQN both reduce the load shedding to the same level
through new lines construction, and multi-agent DDQN is decreasing slightly faster than
the scheme obtained by DQN. The wind curtailment of the multi-agent is lower than the
scheme obtained by DQN, more wind power will be curtailed during the construction
process.

Multi-agent DDQN not only controls the sum of wind curtailment and load shedding
as DQN, but also obtains a scheme with high power flow balance. This demonstrates
that one set DDQN agent built by lower-level model has better performance than DQN
agent for lower-level optimization. Therefore, the dual DDQN agent structure realizes the
hierarchical prediction value of line. One set is used to search the lines with high economy,
and the other set is to search the lines that can improve the renewable energy consumption
capacity and stability of the system. This structure improves the accuracy of the line value
prediction and contributes to the formation of a better TNEP scheme.

Figures 12 and 13 are the indicators (such as wind abandonment and load shedding)
of 7000 network structures constructed by the multi-agent DDQN agent in 200 episodes
of training. Before 1000 steps, the distribution of various indicators in poor areas is more
concentrated, or only some indicators of the network perform well. This is because the
multi-agent DDQN does not have enough data for neural network training now, and there
is a large error in its value prediction. Between 1000 and 2500 steps, the indexes of the
transmission network gradually improve. The neural network achieves sufficient training,
and the prediction error of the line construction value has gradually decreased. After
2500 steps, the indexes are uniformly distributed between the best and the worst. This
is because the multi-agent DDQN adopts a ε-greedy strategy, which allows the agent to
chooses the line randomly without using the prediction result of the neural network under
a certain probability. This training mechanism can prevent local optimal problem and
obtain more accurate value function.
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Figure 13. (a) Indicator of electrical betweenness in the lower-level model. (b) Indicators of wind curtailment and load
shedding in the lower-level model.

Figure 14 shows the sum of value prediction of multi-agent DDQN and DQN. The
value prediction represents the estimation of the construction value estimation of different
lines by the agent, and the sum of value prediction of the multi-agent DDQN is lower than
that of the DQN. This is because the agent of multi-agent DDQN adopts a dual neural
network structure, which makes the optimal line Amax independent of the value prediction
Qmax of the optimal line. This structure avoids the influence of accidental overestimation
to a certain extent and improves the accuracy of line value prediction, which enhances the
ability of multi-agent DDQN to solve TNEP task.
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4.3. TNEP under Unavoidable Interference in Modified IEEE RTS-24 Bus System

During the implementation of the TNEP scheme, unavoidable interference or uncon-
sidered factors may cause a certain line to be unable to be constructed. When this happens,
the heuristic learning-based method requires retraining due to changes in planning condi-
tions. However, the experience obtained from training based on the reinforcement learning
method is to judge the construction value of each line, which is not affected by changes in
conditions. Thereby, multi-agent DDQN can solve new TNEP tasks without redundant
training. We change the fourth line of the scheme obtained by multi-agent DDQN from
20–22 to line 5–6 to simulate the TNEP task scenario under unavoidable interference. Simi-
larly, the fourth line of the scheme obtained by DQN is changed from 9–12 to line 13–14.
The schemes obtained by multi-agent DDQN and DQN are shown in Tables 9 and 10.
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Table 9. TNEP scheme of multi-agent DDQN in modified IEEE RTS-24 bus system under unavoidable interference.

Lines Number
and Sequence

Upper Level (Comprehensive Cost) Lower Level

Line Construction
Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

None 0.00 4.01 9.04 0.007154 80.11 227.22
11–15 1.51 3.21 8.95 0.005584 64.60 141.88
22–23 2.20 2.96 8.94 0.005155 60.67 105.43
14–15 2.87 2.90 8.96 0.004927 57.74 95.92

5–6 4.41 2.89 9.04 0.005171 57.75 95.94
19–21 5.07 2.83 9.06 0.004801 59.60 83.84

5–7 6.44 2.80 9.12 0.004852 59.60 64.69
13–15 8.86 2.72 9.23 0.004659 44.07 61.32

Table 10. TNEP scheme of DQN in modified IEEE RTS-24 bus system under unavoidable interference.

Lines Number
and Sequence

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

Line Construction
Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

None 0.00 4.01 9.04 0.007154 80.11 227.22
11–15 1.51 3.21 8.95 0.005584 64.60 141.88
13–15 3.93 3.02 9.04 0.005493 51.57 130.62

7–8 4.57 2.92 9.05 0.005676 51.57 92.16
13–14 6.33 2.94 9.14 0.005762 43.63 86.68
18–21 7.41 2.94 9.20 0.006050 43.62 88.76
20–21 8.21 2.88 9.23 0.005555 58.51 58.13
15–19 9.14 2.85 9.27 0.005194 56.34 57.72

After the interference, the improved electrical betweenness of the scheme obtained
by multi-agent DDQN immediately deteriorates, and the wind curtailment and load
shedding are hardly improved. This shows that the line 5–6 causes the system power flow
balance to be destroyed, and the scheme is greatly affected by the interference. On the
contrary, although the improved electrical betweenness of the scheme obtained by DQN
slightly deteriorates after the interference, the line 13–14 reduces the wind curtailment
and load shedding. The continued construction of multi-agent DDQN after unfavorable
interference is more positive. The multi-agent DDQN agent reuses training experience to
judge the performance of the current transmission network structure and the construction
value of each line. Then, three high-value lines are selected to form the new scheme.
Although the new scheme obtained by multi-agent DDQN increases the comprehensive
cost under unfavorable interference, it still shows great performance in the improved
electrical betweenness, wind curtailment and load shedding. The comprehensive cost
of scheme obtained by new DQN is USD 0.45 M, which is higher than that of the new
scheme obtained by multi-agent DDQN. In addition, the improved electrical betweenness
of the new scheme obtained by DQN is also larger than that of the new scheme obtained by
multi-agent DDQN, which means the new scheme obtained by DQN has lower reliability of
the system. Even the excellent control of wind curtailment and load shedding in the scheme
obtained by original DQN is weakened. Finally, both methods can complete planning
tasks by reusing the training experience under the unavoidable interference, but the value
prediction of multi-agent DDQN is more accurate, which makes the multi-agent DDQN
better to solve such TNEP tasks.
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4.4. TNEP in Modified New England 39-Bus System

This article extends the application scenario to a more complex modified New England
39-bus system to further evaluate the performance of the proposed methods. Consistent
with the changes in the modified IEEE 24-bus system, we increase the load to 1.1 times,
the capacity of conventional generator sets to 1.2 times, and the capacity of wind farms
to 1.4 times. The node settings of wind farm and variable load are shown in Table 11,
the schemes of the four methods are shown in Tables 12–15, and the network structure is
shown in Figure 15.

Table 11. Changes of generator set and load in modified New England 39-bus system.

Node New England 39-Bus System Modified New England
39-Bus System Power (MW)

30, 32, 33, 34, 38 general generator set wind farm set 1040, 725, 652, 508, 865

3, 4, 8, 16, 20, 24, 27, 29 static load variable load 322, 500, 522, 329, 680, 308.6,
281, 283.5

Table 12. TNEP scheme of multi-agent DDQN in modified New England 39-bus system.

Lines Number
and Sequence

Upper Level (Comprehensive Cost) Lower Level

Line Construction
Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

None 0.00 3.51 14.32 0.007352 350.40 49.49
2–30 2.00 3.53 14.42 0.007649 210.03 49.83

16–19 2.60 3.38 14.44 0.007336 114.82 49.83
2–3 2.90 3.37 14.46 0.007014 74.69 35.88
3–4 3.26 3.34 14.47 0.006559 74.01 35.88
1–2 3.99 3.32 14.51 0.006512 69.48 35.91

10–32 5.99 3.31 14.61 0.006721 39.56 35.88
3–18 6.35 3.28 14.62 0.006197 39.74 35.88

Table 13. TNEP scheme of DQN in modified New England 39-bus system.

Lines Number
and Sequence

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)

Line Construction
Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

None 0.00 3.51 14.32 0.007352 350.40 49.49
16–19 0.60 3.36 14.34 0.007078 252.02 48.23

1–2 1.33 3.33 14.38 0.007083 250.54 47.16
16–17 1.65 3.31 14.39 0.006563 250.54 47.22
2–30 3.65 3.34 14.49 0.006824 69.47 45.99

25–26 4.28 3.31 14.52 0.006550 69.40 39.97
16–24 4.92 3.30 14.55 0.006667 69.40 39.97
2–3 5.22 3.31 14.57 0.006276 69.47 35.91
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Table 14. TNEP scheme of PSO in modified New England 39-bus system.

Lines

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)
Line Construction

Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

1–39

7.16 3.15 14.66 0.006087 74.54 35.89

2–3
2–30
3–4

16–19
17–18
25–37
26–27

Table 15. TNEP scheme of B&B in modified New England 39-bus system.

Lines

Comprehensive Cost
Improved
Electrical

Betweenness

Wind
Curtailment

(MW)

Load
Shedding

(MW)
Line Construction

Cost (USD
(millions))

Network Loss
Cost (USD
(millions))

Operation and
Maintenance Cost
(USD (millions))

2–3, 2–25,
2–30, 3–18,

9–39,
10–11,
16–19

6.76 3.29 14.57 0.006327 75.40 35.88
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The generator sets of the modified New England 39-bus system are settled at the edge
of the system, but the load nodes are evenly distributed. Under the uncertain scenarios, the
initial network structure cannot deliver wind power to the system due to the line blockage,
and the system curtails a large amount of wind power. Therefore, the three methods all
need to optimize the wind farm adjacent line structure to improve the power transmission
capacity under uncertain conditions. The scheme obtained by multi-agent DDQN focuses
on optimizing the network structure near node 30 connecting the largest capacity wind
farm by adding six new lines (2–30, 1–2, 2–3, 3–4, 3–18, 17–18). In addition, the construction
of line 10–32 also raises the upper limit of the transmission capacity of the node 32 wind
farm. Although the schemes obtained by DQN and the PSO optimize the node 30 adjacent
line structure, their ability to select key lines is still insufficient. The scheme obtained by
DQN only optimizes the lines within the distance between two lines near node 30, but
it does not further optimize the structure with longer distances. The PSO and CPLEX
optimize the node 30 network structure is similar to that of multi-agent DDQN, except that
the more influential 1–2 line is ignored. In addition, neither of PSO and DQN optimizes
the line structure near other wind farms, which leads to the poor performance in reducing
wind curtailment. Although the scheme obtained by B&B optimizes the line structure
near the 32-node, it did not choose the 10–32 line that more directly impacts the power
transmission of the wind farm. The scheme obtained by multi-agent DDQN has the best
improved electrical betweenness and better economy, which proves the advantages of
multi-agent DDQN in scheme optimization and multi-objective coordination in complex
TNEP tasks.

5. Conclusions

This paper proposes a multi-agent DDQN for the TNEP task considering the uncer-
tainties of wind power and load. In order to extract typical uncertain scenarios for TNEP
tasks from system operating data, we improve the K-Means algorithm with the cumulation
and the change rate of operation data as the clustering objective function. It improves
computational efficiency while retaining the uncertainty of the system. Based on the typical
uncertain scenarios, we construct a Bi-level multi-objective TNEP model considering the
system renewable energy consumption capacity, economy, stability. Then, we transform
the bi-level model into a TNEP reinforcement learning environment based on the Markov
Chain model, which can support the interactive way to solve the TNEP task.

Based on the bi-level model structure, the proposed method constructs a dual DDQN
agents, which realizes separation of the upper-level and the lower-level objective function
optimization. The comparison of the proposed method with other four methods in multi-
scenario TNEP tasks shows that the multi-agent DDQN is the most high-performance
and flexible method. In addition, it trains by interacting with the reinforcement learning
environment, which makes the training process more interpretable and observable than
the heuristic-learning based methods. This paper only considers the uncertainties of wind
power and load. In future work, we can build a TNEP model that contains more factors
such as electric vehicle to expand the application scenarios of this method. Simultaneously,
it is necessary to increase the computational efficiency by improving the multi-agent DDQN
structure.

Author Contributions: Conceptualization, Y.W., X.Z. and Q.Z.; Data curation, R.H.; Formal analysis,
Y.S.; Funding acquisition, R.H.; Investigation, Q.Z.; Methodology, X.Z. and L.C.; Project adminis-
tration, B.X., Z.Z. and Y.S.; Resources, Y.W. and B.X; Software, Y.S.; Validation, X.Z., L.C. and Z.Z.;
Visualization, B.X.; Writing—original draft, X.Z.; Writing—review and editing, Y.W., Y.S. and Z.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Sichuan Science and Technology Program (2021YFG0026).

Acknowledgments: The authors would like to thank the editor and reviewers for their sincere
suggestions on improving the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 6073 27 of 28

References
1. Fauzy, A.; Yue, C.; Tu, C.; Lin, T. Understanding the Potential of Wind Farm Exploitation in Tropical Island Countries: A Case for

Indonesia. Energies 2021, 14, 2652. [CrossRef]
2. Telukunta, V.; Pradhan, J.; Agrawal, A.; Singh, M.; Srivani, S.G. Protection Challenges Under Bulk Penetration of Renewable

Energy Resources in Power Systems: A Review. CSEE J. Power Energy Syst. 2017, 3, 365–379. [CrossRef]
3. Chen, X.; Leung, K.; Lam, A.Y.S. Power Output Smoothing for Renewable Energy System: Planning, Algorithms, and Analysis.

IEEE Syst. J. 2020, 14, 1034–1045. [CrossRef]
4. Du, E.; Zhang, N.; Hodge, B.; Wang, Q.; Kang, C.; Kroposki, B.; Xia, Q. The Role of Concentrating Solar Power Toward High

Renewable Energy Penetrated Power Systems. IEEE Trans. Power Syst. 2018, 33, 6630–6641. [CrossRef]
5. Amamra, S.; Meghriche, K.; Cherifi, A.; Francois, B. Multilevel Inverter Topology for Renewable Energy Grid Integration. IEEE

Trans. Ind. Electron. 2017, 64, 8855–8866. [CrossRef]
6. Sharma, S.; Verma, A.; Xu, Y.; Panigrahi, B.K. Robustly Coordinated Bi-Level Energy Management of a Multi-Energy Building

Under Multiple Uncertainties. IEEE Trans. Sustain. Energ. 2021, 12, 3–13. [CrossRef]
7. Mohan, V.; Suresh, R.; Singh, J.G.; Ongsakul, W.; Madhu, N. Microgrid Energy Management Combining Sensitivities, Interval and

Probabilistic Uncertainties of Renewable Generation and Loads. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 262–270. [CrossRef]
8. Yi, W.; Zhang, Y.; Zhao, Z.; Huang, Y. Multiobjective Robust Scheduling for Smart Distribution Grids: Considering Renewable

Energy and Demand Response Uncertainty. IEEE Access 2018, 6, 45715–45724. [CrossRef]
9. Wang, W.; Dong, H.; Luo, Y.; Zhang, C.; Zeng, B.; Xu, F.; Zeng, M. An Interval Optimization-Based Approach for Electric-Heat-Gas

Coupled Energy System Planning Considering the Correlation between Uncertainties. Energies 2021, 14, 2457. [CrossRef]
10. Wu, H.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. Demand Response Exchange in the Stochastic Day-Ahead

Scheduling With Variable Renewable Generation. IEEE Trans. Sustain. Energ. 2015, 6, 516–525. [CrossRef]
11. Zou, P.; Chen, Q.; Xia, Q.; He, G.; Kang, C. Evaluating the Contribution of Energy Storages to Support Large-Scale Renewable

Generation in Joint Energy and Ancillary Service Markets. IEEE Trans. Sustain. Energ. 2016, 7, 808–818. [CrossRef]
12. Hou, Q.; Du, E.; Zhang, N.; Kang, C. Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven

Approach. IEEE Trans. Power Syst. 2020, 35, 731–741. [CrossRef]
13. Garcia-Cerezo, A.; Baringo, L.; Garcia-Bertrand, R. Representative Days for Expansion Decisions in Power Systems. Energies 2020,

13, 335. [CrossRef]
14. Montoya-Bueno, S.; Ignacio Munoz, J.; Contreras, J. A Stochastic Investment Model for Renewable Generation in Distribution

Systems. IEEE Trans. Sustain. Energ. 2015, 6, 1466–1474. [CrossRef]
15. Li, D.; Zhang, S.; Xiao, Y. Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertain-

ties. Energies 2020, 13, 3465. [CrossRef]
16. Tang, M.; Wang, J.; Wang, X. Adaptable Source-Grid Planning for High Penetration of Renewable Energy Integrated System.

Energies 2020, 13, 3304. [CrossRef]
17. Moreira, A.; Pozo, D.; Street, A.; Sauma, E. Reliable Renewable Generation and Transmission Expansion Planning: Co-Optimizing

System’s Resources for Meeting Renewable Targets. IEEE Trans. Power Syst. 2017, 32, 3246–3257. [CrossRef]
18. Moreira, A.; Strbac, G.; Moreno, R.; Street, A.; Konstantelos, I. A Five-Level MILP Model for Flexible Transmission Network

Planning Under Uncertainty: A Min-Max Regret Approach. IEEE Trans. Power Syst. 2018, 33, 486–501. [CrossRef]
19. Gu, Y.; McCalley, J.D.; Ni, M. Coordinating Large-Scale Wind Integration and Transmission Planning. IEEE Trans. Sustain. Energ.

2012, 3, 652–659. [CrossRef]
20. Huang, S.; Dinavahi, V. A Branch-and-Cut Benders Decomposition Algorithm for Transmission Expansion Planning. IEEE Syst. J.

2019, 13, 659–669. [CrossRef]
21. Moreira, A.; Street, A.; Arroyo, J.M. An Adjustable Robust Optimization Approach for Contingency-Constrained Transmission

Expansion Planning. IEEE Trans. Power Syst. 2015, 30, 2013–2022. [CrossRef]
22. Bagheri, A.; Wang, J.; Zhao, C. Data-Driven Stochastic Transmission Expansion Planning. IEEE Trans. Power Syst. 2017, 32,

3461–3470. [CrossRef]
23. Dehghan, S.; Amjady, N. Robust Transmission and Energy Storage Expansion Planning in Wind Farm-Integrated Power Systems

Considering Transmission Switching. IEEE Trans. Sustain. Energ. 2016, 7, 765–774. [CrossRef]
24. Cai, C.; Chen, J.; Xi, M.; Tao, Y.; Deng, Z. Multi-Objective Planning of Distributed Photovoltaic Power Generation Based on

Multi-Attribute Decision Making Theory. IEEE Access 2020, 8, 223021–223029. [CrossRef]
25. Ledezma, L.; Alcaraz, G. Hybrid Binary PSO for Transmission Expansion Planning Considering N-1 Security Criterion. IEEE Lat.

Am. Trans. 2020, 18, 545–553. [CrossRef]
26. Alaee, S.; Hooshmand, R.; Hemmati, R. Stochastic Transmission Expansion Planning Incorporating Reliability Solved Using SFLA

Meta-heuristic Optimization Technique. CSEE J. Power Energy Syst. 2016, 2, 79–86. [CrossRef]
27. Yan, Z.; Xu, Y. Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method With

Continuous Action Search. IEEE Trans. Power Syst. 2019, 34, 1653–1656. [CrossRef]
28. Wu, S.; Hu, W.; Lu, Z.; Gu, Y.; Tian, B.; Li, H. Power System Flow Adjustment and Sample Generation Based on Deep

Reinforcement Learning. J. Mod. Power Syst. Clean Energy 2020, 8, 1115–1127. [CrossRef]
29. Xi, L.; Zhou, L.; Liu, L.; Duan, D.; Xu, Y.; Yang, L.; Wang, S. A Deep Reinforcement Learning Algorithm for the Power Order

Optimization Allocation of AGC in Interconnected Power Grids. CSEE J. Power Energy Syst. 2020, 6, 712–723.

http://doi.org/10.3390/en14092652
http://doi.org/10.17775/CSEEJPES.2017.00030
http://doi.org/10.1109/JSYST.2019.2958176
http://doi.org/10.1109/TPWRS.2018.2834461
http://doi.org/10.1109/TIE.2016.2645887
http://doi.org/10.1109/TSTE.2019.2962826
http://doi.org/10.1109/JETCAS.2017.2679030
http://doi.org/10.1109/ACCESS.2018.2865598
http://doi.org/10.3390/en14092457
http://doi.org/10.1109/TSTE.2015.2390639
http://doi.org/10.1109/TSTE.2015.2497283
http://doi.org/10.1109/TPWRS.2019.2929276
http://doi.org/10.3390/en13020335
http://doi.org/10.1109/TSTE.2015.2444438
http://doi.org/10.3390/en13133465
http://doi.org/10.3390/en13133304
http://doi.org/10.1109/TPWRS.2016.2631450
http://doi.org/10.1109/TPWRS.2017.2710637
http://doi.org/10.1109/TSTE.2012.2204069
http://doi.org/10.1109/JSYST.2017.2775610
http://doi.org/10.1109/TPWRS.2014.2349031
http://doi.org/10.1109/TPWRS.2016.2635098
http://doi.org/10.1109/TSTE.2015.2497336
http://doi.org/10.1109/ACCESS.2020.3042010
http://doi.org/10.1109/TLA.2020.9082726
http://doi.org/10.17775/CSEEJPES.2016.00025
http://doi.org/10.1109/TPWRS.2018.2881359
http://doi.org/10.35833/MPCE.2020.000240


Energies 2021, 14, 6073 28 of 28

30. Wang, Y.; Chen, L.; Zhou, H.; Zhou, X.; Zheng, Z.; Zeng, Q.; Jiang, L.; Lu, L. Flexible Transmission Network Expansion Planning
Based on DQN Algorithm. Energies 2021, 14, 1944. [CrossRef]

31. Zhen, Z. Dataset-of-HRP-38-test-system. IEEE Dataport 2019. [CrossRef]

http://doi.org/10.3390/en14071944
http://doi.org/10.21227/ggy4-7497

	Introduction 
	TNEP Bi-Level Model Based on Typical Scenarios of Wind Power and Load Uncertainties 
	Improved K-Means Algorithm Based on Characteristics of Wind power and Load Operation Data 
	Bi-Level Multi-Objective TNEP Model 
	Upper-Level Objective Function 
	Upper-Level Constraints 
	Lower-Level Objective Function 
	Lower Constrains 


	Multi-Agent DDQN for Transmission Network Expand Planning 
	Task Environment of Transmission Network Expansion Planning Based Markov Chain Model 
	Multi-Agent DDQN Structure 

	Simulation and Verification 
	Modified IEEE RTS-24 Bus System with High-Penetration RES 
	TNEP for Multi-Level Renewable Energy Penetration Scenarios in Modified IEEE RTS-24 Bus System 
	TNEP under Unavoidable Interference in Modified IEEE RTS-24 Bus System 
	TNEP in Modified New England 39-Bus System 

	Conclusions 
	References

