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Abstract: Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising
method for thermal energy storage applications. However, one of the most common disadvantages of
using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue
affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed
different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat
pipe as a super heat conductor to increase the charging/discharging rate was investigated. The
temperature of PCM, liquid fraction observations, and charging and discharging rates are reported.
Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-
assisted PCM storage systems. Both experimental and numerical investigations were performed to
determine the efficiency of the system in thermal storage enhancement. The proposed system in the
charging/discharging process significantly improved the energy transfer between a water bath and
the PCM in the working temperature range of 50 ◦C to 70 ◦C.

Keywords: phase change material (PCM); latent heat thermal energy storage (LHTES); heat pipe;
energy storage

1. Introduction

The world energy demand has been increasing fossil fuel usage. However, due to the
environmental impacts, the usage of fossil fuels has been discouraged and the use of passive
techniques, renewable energies, energy storage, and electric vehicles has increased [1–10].
Therefore, the usage of thermal energy storage became more popular. Meanwhile, latent
heat thermal energy storage (LHTES) is classified as a high energy storage density that
decreases the storage volume compared with sensible thermal energy storage (STES)
systems, which can result in less expensive thermal energy storage systems [11–17]. Phase
change material (PCM) is known as a famous substance that is widely used for LHTES.
PCMs are classified into organic and non-organic materials, like paraffin wax and salts.
They can be used in many applications such as solar thermal energy, electronic and battery
cooling, waste heat recovery, and building heating and cooling systems [18–22].

Recently, utilization of renewable and clean solar energy has been growing at a quick
pace. LHTES is a perfect case in a solar power plant because of its constant storage
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temperature and high energy storage density [23]. The operation of an LHTES includes the
exchange of energy between solar energy and PCM through the charging and discharging
processes. Cooling and heating can be produced by solar radiation through one or two
energy conversion steps.

Kuravi et al. [24] prepared a review regarding the thermal energy storage technologies
for concentrating solar power plants. Behi et al. [25] experimentally and numerically
investigated the possibility of using PCM in two different configurations for cold and
heat storage. They connected the PCM storage to the evaporator and condenser. They
considered the average performance of the system in a cooling/heating capacity, COP, and
total efficiency. Nevertheless, the physical design of the LHTES applied in solar energy
lacks new changes. Farid et al. [21] classified the thermal storage unit as an indirect or direct
contact type in the PCM, in line with the physical design, though the primary heat transfer
mechanism for both manners is almost the same. Most LHTES suffers low efficiency of
the thermal storage because of the low thermal conductivity of the PCMs [21,26]. The
main thermo-physical properties of PCMs, including thermal conductivity and latent heat,
highly affect the performance of the LHTES [27–31].

A number of techniques have been utilized by researchers to increase efficiency
enhancements of PCMs. Adding highly thermally conductive particles [32], nanomateri-
als [31,33–35], fins [36], and heat pipes [37–39] are some examples of tools used to improve
the thermal conductivity of the medium. Heat pipe systems have been widely used in
various energy storage and heat transfer systems because of their suitability in the role of
heat delivery and passive operation [40–45]. They can be used in many thermal storage
applications. Nithyanandam and Pitchumani [46] designed gravity-assisted heat pipes
for concentrating solar power. They considered the transient numerical simulations and
the effect of the design and operating parameters on the system’s dynamic charge and
discharge performance. Tiari et al. [47] numerically investigated the effect of the finned heat
pipes on the discharging process of latent heat thermal energy storage. They studied the
effect of heat pipe spacing, natural convection, and fin length on the discharging rate of the
PCM. Liang et al. [48] experimentally and numerically considered the latent thermal energy
storage effect by flat micro-heat pipe array–metal foam configuration. Wang et al. [49]
experimentally studied the heat transfer performance of the heat pipe on Nano PCM
thermal energy storage. They experimentally considered the effect of fan power, thermal
conductivity, and mass fraction of the nanocomposite.

Moreover, many studies have been conducted [50,51] on structural designs and heat-
transfer improvement of indirect-contact thermal storage units using numerical simulations.
There have been fewer studies regarding direct contact heat storage units than indirect
contact ones.

This study considered the charging/discharging of the heat-pipe-assisted thermal
storage system so that the evaporator and condenser of the system are in direct contact
with the heat pipe. During the charging process, the water tank plays the role of a heat
source and the PCM container as heat storage. The heat is efficiently transferred from
the surface of the heat pipe to the PCM storage in direct contact. During the discharging
process, the heat is transferred from the PCM storage to the water tank. The new design
prepares the direct evaporation and condensation in the system, which avoids conduction
and convection between materials and makes the thermal storage system very efficient.
The RT42 from Rubitherm was used as a PCM in this study. The results revealed that the
system prepared in this study has good thermal storage characteristics, indicating that the
heat-pipe-assisted PCM has excellent potential for thermal storage applications.

2. Experimental Material Setup

To consider the performance of the heat pipe-assisted PCM storage system, an ex-
perimental test rig was built. The schematic of the setup and the illustration of the actual
structure are shown in Figure 1a,b, respectively. The test rig comprised a transparent glass
cylinder with an inner diameter and height of 42 mm and 190 mm. A cylindrical aluminum



Energies 2021, 14, 6176 3 of 19

block with a diameter of 70 mm and a height of 100 mm with a hole diameter of 25 mm,
and a height of 97 mm drilled from the bottom was selected as a holder. The holder was
placed in the source with a constant temperature bath.
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Figure 1. (a) The picture of testing inside the thermal bath, (b) location of the thermocouples, and (c) picture of the test setup.

A length of 190 mm of the heat pipe was put inside the PCM cylinder and the
remaining (100 mm) was exposed to the thermal bath at a constant temperature. The
plastic washer was used to control the leaks. The top of the cylinder was enclosed with a
lid with a hole for adding the PCM. The storage and the lid were connected to the block
by three long pins. A thermal insulation cover was used to insulate the PCM storage
to minimize ambient heat transfer. Figure 2 displays the schematic of the test setup. A
cylindrical copper heat pipe with distilled water as a working fluid was used to perform
the experiment. Table 1 represents the main features of the heat pipe.

A total of eleven K-type thermocouples were utilized to record all temperatures. In
order to record the temperature at a different location of the PCM, six thermocouples
were attached in a radius of 6 mm and 13 mm from the center of the cylinder and heights
of 50 mm, 100 mm, and 150 mm of PCM cylinder. Thermocouples A, B, and C were
placed for the radius of 6 mm and α, β, and θ for the radius of 13 mm for mentioned
heights. In addition, three thermocouples were attached on the surface of the heat pipe
at heights of 50 mm, 100 mm, and 150 mm, which have been specified by AH, BH, and
CH. Holder constant temperature was measured by the average of two thermocouples
attached to the holder. All thermocouples were cautiously calibrated, and the expected
error of temperature was ±0.2 ◦C.
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Figure 2. Schematic diagram of the experimental system. (1) Water bath, (2) test rig, (3) data logger, and (4) personal computer.

Table 1. The important properties of the heat pipe.

Parameter Value

Producer Thermacore Co.
Envelope material Copper

Diameter (mm) 6
Wall thickness (mm) 1

Working fluid Water
Working temperature (◦C) 0–100

Heat pipe length (mm) 290
Wick Structure Screen Mesh

The melting process has been measured for 50 ◦C, 60 ◦C, and 70 ◦C temperatures. The
experiments were limited to a single PCM (RT42) from Rubitherm Company. A number of
essential properties of RT42 are provided in Table 2.

Table 2. The important properties of the PCM [52].

Parameter Value

Melting area (◦C) 38–43
Heat storage capacity ±7.5% (kJ/kg) 165

Specific heat capacity (kJ/kg.K) 2
Density solid (at 15 ◦C) (kg/L) 0.88
Density liquid (at 80 ◦C) (kg/L) 0.76

Heat conductivity (both phases) (W/m.K) 0.2

Physical Model

As shown in Figure 3, the system consisted of a cylindrical heat pipe and PCM storage
that covered 190 mm of the heat pipe. The storage part was filled with RT42 as PCM. The ra-
dius and length of PCM storage were 21 mm (rs) and 190 mm (ls), respectively. Additionally,
the radius and length of the heat pipe were 3 mm (rh) and 290 mm (lh), respectively.
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Figure 3. The physical configuration of a PCM storage system embedded with vertical heat pipe.

3. Experimental Results and Discussion
3.1. Performance of the Heat Pipe

The heat pipe as a super heat conductor can transfer heat with high efficiency.
Figure 4a describes the temperature variation of the heat pipe in a constant hot tempera-
ture of the bath. In the charging process, the bath temperature provided a constant 70 ◦C,
whereas the PCM storage had a temperature of 23 ◦C. On the other hand, Figure 4b presents
the wall temperatures of the heat pipe with a constant cold temperature of the bath. In
the discharging process, the PCM was fully charged (70 ◦C), whereas the thermal bath
was set at 23 ◦C. According to Figure 4a, at the beginning of the charging process, the heat
pipe wall temperature increased rapidly due to its high thermal conductivity. Thus, it can
explain the rapid rise of the heat pipe wall temperature during this step. However, as soon
as the wall temperature of the heat pipe was more than the PCM phase change temperature,
heat was transferred to the PCM through pure conduction. Therefore, the temperature rise
rate slowed as the process continued. Figure 4b represents the discharging process. At the
beginning of the process, the heat pipe wall cooled very quickly and transferred the heat
from the PCM to cold water. Some non-uniformity can be seen in the heat pipe surface
temperature during the discharging process. In this manner, the temperature gradient was
low on the surface of the heat pipe. However, the heat pipe working flow had to flow
against gravity because the condenser part of the heat pipe was located in the bath.
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Figure 4. The temperature of the heat pipe in different heights during the (a) charging and (b) discharging processes.

3.2. Charging Curves and Phase Change Interfaces

In order to do the charging test, the PCM storage was filled with liquid PCM several
times to confirm the absence of air bubbles. Next, the storage was kept at 23 ◦C for 24 h to
reach the uniform temperature. To start the charging process, the bath temperature was set
at 70 ◦C. Broad experiments were performed to test the performance charging of the PCM
storage system embedded with a vertical heat pipe. Therefore, many melting curves of the
PCM were obtained.

Figure 5 displays the typical PCM temperatures at different radii of A, B, C, α, β, and
θ in the axial direction, which were given in Figure 1, for a bath water temperature of 70 ◦C.
As it can be seen, the phase change happened approximately between t = 600 s to t = 800 s
in Figure 5a; however, it happened almost at t = 1000 s in Figure 5b. This phenomenon
was more evident in comparison to thermocouples in the radius of 6 mm and 13 mm in
Figure 5c–e.

Energies 2021, 14, x FOR PEER REVIEW 7 of 22 
 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

A

B

C

Holder
20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

α

β 

Ө

Holder

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

A
α

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

B

β 

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

C

Ө

Figure 5. Cont.



Energies 2021, 14, 6176 7 of 19

Energies 2021, 14, x FOR PEER REVIEW 7 of 22 
 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)
Time (s)

A

B

C

Holder
20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

α

β 

Ө

Holder

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

A
α

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

B

β 

20

30

40

50

60

70

0 600 1200 1800 2400

T
e
m

p
e
r
a

tu
r
e
 (
°c

)

Time (s)

C

Ө

Figure 5. Scheme of experimental charging temperature evolution plots as a function of the axial position versus time
(70 ◦C), (a) thermocouples in the radius of 6 mm, (b) thermocouples in the radius of 13 mm, (c–e) temperature comparison
of the thermocouples in 6 mm and 13 mm.

Figure 6 displays the temperature profile of the heat pipe and PCM for the charging
process at t = 1200 s. It is obvious that the temperature difference in the axial direction of the
heat pipe was less than 0.5 ◦C, which was tremendously smaller than the radial direction
(more than 2 ◦C). This phenomenon demonstrates high efficiency, excellent temperature
leveling ability, and minimal applied heat pipe thermal resistance in the axial direction [51].

3.3. Influences of Increasing Bath Water Temperature

As was expected, the hot water temperature had an imposing effect on the melting
operation processes. Therefore, a significant number of experiments were done to study
this effect. Figure 7a,b summarizes a number of typical results and shows the effect of hot
water temperature on PCM temperature variation.
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According to Figure 7, the increasing bath water temperature had a significant and
direct influence on PCM temperature. Increasing the water temperature directly affected
the inlet temperature of the evaporator, which was influenced by PCM temperature. It is
observable that phase change time for the temperature of 70 ◦C decreased tremendously
for both radii. The experimental results in Figure 7 demonstrate that the phase change the
time for inlet temperature of 60 ◦C was less than 1600 s, which reduced to 800 s for 70 ◦C.
On the other hand, the phase change time for a temperature of 50 ◦C was more than 2400 s.

3.4. Discharging Curves and Phase Change Interfaces

The solidification process is an application of the PCM that results from heat pipe
cooling. In this manner, a section of the heat pipe located in the PCM plays the role of the
evaporator. The group of solidification curves for different heights and radius can be seen
in Figure 8.
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According to Figure 8, PCM cooled down and changed from the liquid to the solid
state, which represents a normal solidification process. The discharging process was
divided into three different areas, which are shown in Figure 8c. In the initial area, heat
extracted from the PCM via the heat pipe (1500–2000 s) reached the phase change point.
The heat that was absorbed by cold water was mainly the sensible heat of liquid PCM.

Due to the fact that heat storage capacity in the sensible area (1, 3) was really lower
than latent heat area (2), the diminishing rate of the PCM temperature was quicker. In the
next step, the process entered the second period (2000–6000 s). The temperature of the PCM
diminished tremendously slower than in the initial period because of the latent heat effect.
Finally, when the solidification of the PCM was complete, again, the heat was extracted as
sensible heat from the PCM, which sped up the decline of the PCM temperature.
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4. Numerical Modeling

In this study, Fluent 14.5 software was used to simulate the PCM storage system’s
temperature distribution and liquid fraction. The geometry of the test setup was drawn
in two dimensions and meshed using the Gambit software. The experimental test section
was modeled using a 2D axisymmetric geometry. Boundary and initial conditions were
defined and transferred into the Fluent software for further process. The liquid fraction and
temperature contour of PCM have been described during the melting and solidification
processes.

4.1. Descriptive Equations for PCM

The basic and fundamental governing equations for the PCM are divided by the
following continuity, momentum, and energy equations [53]:
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The scaled temperature of the PCM can be defined as follows:
T1 as a primary temperature, Tm as a phase change temperature, T2 as a final tempera-

ture (T2 = Tm + ∆T). A phase change (mushy zone) occurs between the solid and liquid
zone within the time interval of ∆T. The phase of the PCM can be defined as below.

T∗ 6 T1 (Solid phase)T1< T∗<T2 (Mushy phase).T∗ > T2 (Liquid phase). (5)
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The heat capacity can be defined as a value of phase change function, which depends on
the PCM temperature [54]:

C =

ct

cs T∗ 6 T1
T1< T∗<T2
cl T∗ > T2

(6)

The heat that the PCM can absorb is evaluated using the following equation:

QPCM = mcs(T1 − Tm) + mL + mcl(T2 − Tm). (7)

In Equation (7), m represents the mass of the PCM, while its thermal conductivity can be
obtainable as follows:

k =


ks T∗ 6 T1

ks+kl
2 T1< T∗<T2
kl T∗ > T2

(8)

For the heat pipe simulation, it was replaced by a solid copper, and the effective thermal
conductivity of components was used in the simulation [41–44,55].

4.2. Validation and Verification

To validate the simulation, the experimental results of the system were compared with
the numerical ones. For both charging and discharging modes, the temperatures of PCM
versus time were validated with experimental results. Figure 9a,b illustrates the average
temperatures of the charging and discharging process versus time. As can be seen, the
numerical results had an acceptable agreement with experimental ones.
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4.3. Charging Process

Pictures taken in this configuration were compared with liquid fractions and tempera-
ture contours obtained with Fluent in Figure 10.
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Figure 10. Experimental melting photos (bottom), numerical temperature contour (middle), and numerical liquid fraction
in PCM (top) during the charging process (T = 70 ◦C).

The PCM first melted surround the heat pipe wall, as expected. At the beginning of
the charging process, PCM received the heat as a sensible form, which was mainly used to
increase the temperature of the PCM to the phase change temperature. The melting process
began when the PCM temperature reached the phase change temperature. First, a thin
vertical PCM layer melted along the heat pipe wall from the bottom to the top, as noted
in the liquid fraction contour at t = 800 s. As seen in the temperature contour at t = 800 s,
the thermocouples in the radius of 6 mm passed the phase change area and reached 45 ◦C.
However, the temperature of the thermocouples in the radius of 13 mm was 33 ◦C and still
is in solid form. At t = 2400 s, thermocouples in a radius of 6 mm reach 55 ◦C and those in
a radius of 13 mm, located in the mushy zone area, reached 42 ◦C. The mentioned modes
are presented in the experimental temperature in Figure 5. Obviously, at t = 800 s, all the
thermocouples that were located in radii of 6 mm and 13 mm, were located in a thin layer
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of melted PCM and solid PCM, respectively. They were approximately at temperatures of
45 ◦C and 33 ◦C, respectively. Moreover, at t = 2400 s, all the thermocouples in radii 6 mm
and 13 mm were almost at the temperature of 55 ◦C and 42 ◦C, respectively.

4.4. Discharging Process

Pictures taken during the discharge process are compared with liquid fraction and
temperature contours in Figure 11.
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Figure 11. Experimental solidification photos (bottom), numerical temperature contour (middle), and numerical liquid
fraction in PCM (top) during discharging process (T = 23 ◦C).

Pictures taken during the discharge process are compared with liquid fraction and
temperature contours in Figure 11. The temperature of the cold water was 23 ◦C. The PCM
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was heated to a given temperature (70 ◦C) with hot water in order to prepare the PCM
storage for the discharging process. When the whole PCM temperature was steady and
uniform, the test rig was put in cold water (23 ◦C), and the discharging experiment started.
The discharging process began when the wall temperature of the heat pipe was equal to or
lower than the solidification point. After a while, a thin layer of solid PCM covered the heat
pipe wall from the bottom to the top, as noted in the liquid fraction contour at t = 1000 s.
As seen in the temperature contour at t = 1000 s, the thermocouples in a radius of 6 mm
were almost located in the phase change area (mushy zone) and reached 43 ◦C. Instead, the
temperature of the thermocouples in the radius of 13 mm was 57 ◦C and they were still in
the liquid form. As seen at t = 4200 s, thermocouples in a radius of 6 mm reached 31 ◦C
and radius of 13 mm, located in mushy zone area, reached 40 ◦C. The mentioned numbers
can be proven by the temperature evolution plots in Figure 8. As specified by dashed
lines at t = 1000 s, all the thermocouples that were in the 6 mm radius were approximately
located in the mushy zone PCM. They were almost at a temperature of 43 ◦C. Moreover,
at t = 4200 s, all the thermocouples in the radii of 6 mm and 13 mm were almost at the
temperatures of 57 ◦C and 40 ◦C, respectively.

4.5. Temperature and Liquid Fraction Contours during the Charging Process

The PCM’s numerical temperature and liquid fraction contours during the charging
process (T = 70 ◦C) can be seen in Figure 12. The vertical axes show the heat pipe wall
(right side) and the horizontal axes show the radius of PCM storage (downside). Thermal
transport was happening between the hot water and the liquid surface of the PCM. At the
beginning time of the melting process, PCM received the heat via the heat pipe from the hot
water in a sensible form. Utilizing this heat, the temperature of PCM gradually increased
to the melting point. The melting process started once the wall temperature of the heat
pipe was equal to or higher than the melting point of PCM. The heat was transferred to the
PCM by pure conduction before melting, and the temperature increased almost linearly
with time.

According to the contours in primary time, due to the high efficiency of the heat pipe
and low thermal conductivity of PCM, the temperature of the heat pipe increased very
quickly. It is noticeable that the temperature rise inside the PCM storage increased with
time, and solidified layer thickness of PCM storage decreased. It can be seen that after
t = 2400 s, 50% of the PCM temperature was more than the melting point, and finally, at
t = 6600 s, the total PCM storage temperature was more than the melting point.

4.6. Temperature and Liquid Fraction Contours during the Discharging Process

Figure 13 depicts the PCM’s numerical temperature and liquid fraction contours
during the solidification process (T = 23 ◦C) from the beginning until the end of the
process. Temperatures contours show the solidification process for seven different periods.
According to the colors, the solidified and melted parts are defined from the blue to red
areas, respectively. Thermal transport occurred at the interface of the liquid surface of
the PCM and cooling water bath. According to Figure 13, PCM was cooled from the
liquid to the solid state. Utilizing the heat pipe, the temperature of PCM decreased to the
solidification point. The solidification process started once the wall temperature of the
heat pipe was equal to or less than the phase change temperature of PCM. Temperature
decreased inside the PCM storage by increasing the time and solidified layer thickness of
PCM increased. It can be seen that more than 50% of PCM was solidified after t = 4200 s
and, finally, at t = 8000 s, total PCM temperature was less than phase change temperature.
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5. Summary and Outlook
5.1. Conclusions

In this study, a heat-pipe-assisted PCM system was built to improve the rate of energy
storage (charging/discharging). Experiments were performed to investigate the thermal
behavior of PCM in the presence of the heat pipe. A 2D axisymmetric numerical model
was built and validated by experimental data. The following conclusions were drawn.

• The wall temperature profile along the heat pipe length at 100 mm, 150 mm, and
200 mm was experimentally considered in the charging and discharging processes. It
was found that the faster temperature changes in the heat pipe may result in higher
thermal efficiency.
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• The PCM temperature evolutions as a function of the axial position in charging and
discharging processes were monitored using the six thermocouples in the radii of
6 mm and 13 mm.

• The influence of the thermal bath temperature (50 ◦C, 60 ◦C, and 70 ◦C) on the
phase change time of the PCM has been investigated. It was found that the hotter
temperature resulted in lower phase change time.

• The PCM storage picture, liquid fraction, and temperature contour have been com-
pared in different charging and discharging times.

5.2. Future Work

The advantage of using the energy storage embedded with a heat pipe was considered
in the present study. Since the heat pipes are gravity-dependent, the heat transfer efficiency
of the presented system can be considered in different inclination angles for future studies.
Moreover, the role of fin, graphite, nanomaterial, mesh, and so on can be considered to
increase the rate of energy storage.
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