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Abstract: This paper proposes an adaptive neuro-fuzzy inference system (ANFIS) maximum power
point tracking (MPPT) controller for grid-connected doubly fed induction generator (DFIG)-based
wind energy conversion systems (WECS). It aims at extracting maximum power from the wind
by tracking the maximum power peak regardless of wind speed. The proposed MPPT controller
implements an ANFIS approach with a backpropagation algorithm. The rotor speed acts as an
input to the controller and torque reference as the controller’s output, which further inputs the rotor
side converter’s speed control loop to control the rotor’s actual speed by adjusting the duty ratio
for the rotor side converter. The grid partition method generates input membership functions by
uniformly partitioning the input variable ranges and creating a single-output Sugeno fuzzy system.
The neural network trained the fuzzy input membership according to the inputs and alter the initial
membership functions. The simulation results have been validated on a 2 MW wind turbine using
the MATLAB/Simulink environment. The controller’s performance is tested under various wind
speed circumstances and compared with the performance of a conventional proportional–integral
MPPT controller. The simulation study shows that WECS can operate at its optimum power for the
proposed controller’s wide range of input wind speed.

Keywords: ANFIS; fuzzy logic; induction generator; MPPT; neural network; renewable energy;
variable speed WECS; wind energy conversion system; wind energy

1. Introduction

Electricity is an undeniable source for the development of any nation. Life cannot be
imagined without electricity in any sector, whether residential, commercial, or industrial.
The generation of electricity depends on fossil fuels such as oil, coal, and natural gases.
About 70% of the world’s electricity generation is done by coal and other fossil fuels. With
the increase in population, the requirement for electricity is also accelerating at an alarming
rate, demanding the increased consumption of fossil fuels. As a result, fossil fuel supplies
exhaust. All these issues can be eliminated promisingly by renewable energy sources.
Wind energy, solar energy, biomass energy, geothermal energy, and tidal energy are some
of the well-established and developed renewable energy sources [1,2].

As a clean and green energy source, wind energy is the most effective option for miti-
gating pollution and meeting energy requirements [3]. Wind energy generation depends
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on weather conditions, so the power generation from wind energy fluctuates and does not
fulfil load demand instantaneously. For reliable operation and performance, an appropriate
control strategy should be adopted. Therefore, the operation of the wind energy conversion
system (WECS) in obtaining optimal power has become critical due to the intermittent
behaviour of wind flow. To resolve this problem and to use WECS more economically and
efficiently, MPPT technology needs to be implemented to extract optimal power at variable
wind speed conditions.

In the literature, mainly two types of wind energy generation (WEG), variable speed
WEG [4], and fixed-speed WEG [5], are available. The variable speed WEG is more
advantageous than fixed-speed WEG; it offers wide wind speed range operation, better
power-capturing capability, and improved overall efficiency. The doubly fed induction
generator (DFIG) is most dominant for variable speed operation applications. It uses
reduced capacity power converters, about one-fourth of the system-rated capacity, and is
less expensive and easier to maintain [6,7]. The DFIG also provides good damping for the
weak grids. The operation and control of wind turbines have been improved today, and
the credit goes to the developments in the power electronics industry.

The drawbacks of both the permanent magnet synchronous generator (PMSG) [8] and
squirrel cage induction generator (SCIG) [9] WECS are that they need a power converter
rated at the total system power rating, which increases their cost. Filters for inverter
outputs and EMI are rated for the rated output power, complicating and increasing filter
design costs. Additionally, converter efficiency has a significant impact on overall system
efficiency throughout the entire operating range.

Most of the WECS are equipped with DFIG using back-to-back power electronic
converters in the wind industry [10,11]. Because the converter does not have to transmit
the total power generated by the DFIG, its power rating is smaller than the overall machine
rating. Such WECS has decreased the cost of inverters because generally, the inverter rating
is one fourth of total system power. Additionally, it decreased the cost of inverter and EMI
filters since filters are rated for one fourth of total system power, and inverter harmonics
represent a smaller proportion of total system harmonics. The higher cost of the wound
rotor induction machine than the SCIG is compensated by the smaller size of the power
converters and increased energy production [12]. The maximum power point tracking
control is implemented utilizing a machine-side control mechanism in such a system.

Maximum power point control (MPPT) algorithms are among the best techniques to
extract the maximum possible power at various wind speeds in wind turbine systems. The
MPPT algorithms protect the system from overload and various lightening surges [13,14].
Additionally, MPPT assists in stabilizing the output voltage in the presence of higher and
lower wind speeds than the rated wind speed.

In the literature [15–17], various MPPT algorithms have extensively been discussed.
The hill-climbing search (HCS), optimum relation-based MPPT (ORB), and the incremental
conductance (INC) are all classified as direct power control (DPC)-based MPPT algo-
rithms. While optimal torque control (OTC), power signal feedback (PSF), and tip-speed
ratio (TSR) algorithms are included in the category of indirect power control (IPC)-based
MPPT algorithms. In addition, fuzzy-logic and neural network-based control has been
developed [18].

HCS, also known as perturbation and observation, is a resilient, unreliable technique
based on previous WT characteristics knowledge. This algorithm provides the local max-
imal point for the given function [19]. The likelihood of identifying the wrong direction
to achieve the most significant power point under a sudden change in wind direction is a
disadvantage of this method. Using a modified version of the HCS method, [20,21] was
able to address the issue of incorrect direction movement under changing wind speeds.

The ideal relationship between quantities such as WT power output, converter DC
voltage, power, current, and speed is required by the ORB-based MPPT algorithm [22,23].
Fast-tracking and no need for sensors are the main advantages of this technique. However,
a thorough understanding of the characteristic curves of turbine power and DC current at
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different wind speeds is required. By observing the optimum current curve, the MPP can
be tracked [24].

The INC algorithms are completely independent of sensor needs and the specifica-
tion of wind turbine and generator parameters. Therefore, systems employed with this
algorithm reduce the system’s cost and improve reliability [25]. According to the authors
in [26,27], the operating point of the MPPT may be determined using the power-speed
slope. The disadvantage of this method is that it becomes unstable when the inertia of
the turbine varies under a variable speed wind scenario [28]. A new method called as
the fractional order INC (FO-INC) is presented in [27] to address the instability issue at
different wind speeds. For fast changes, variable step size is used in tracking the MPP
under variable wind conditions.

The PSF-based MPPT approach makes use of a power control loop which incorporates
information about WT’s maximum power curve [12]. While the TSR-based MPPT controller
is easy to build and highly efficient, it has a high operating cost. The drawback of this
method is it needed optimal power coefficient and optimal tip-speed ratio [29].

The OTC technique involves changing the generator torque based on the most sig-
nificant power reference torque at any given wind speed [18]. The main advantages of
this method are fast response, efficiency, and simplicity. Due to the absence of direct wind
speed measurement, changes in wind speed are not reflected in the reference signal [16].

MPPT control techniques based on fuzzy logic offer the benefits of rapid conver-
gence, parameter independence, and acceptance of noisy and incorrect data [30]. The
articles [31,32] provide a data-driven design approach for generating a Takagi–Sugeno–
Kang (TSK) fuzzy model for MPPT control. Although the fuzzy model offers many
advantages over other techniques, the main drawback is that it cannot be used for ev-
ery issue. Additionally, it necessitates an examination of the parameter used to assign
linguistic variables.

The artificial neural network (ANN) is another method to determine the maximum
power peak by taking various input variables and processing them to obtain the maximum
power [33]. Each neural network (NN) contains an input layer, a hidden layer, and an
output layer. There is really no constraint on the number of nodes assigned, and they
may vary as per the demand. The ANN-based controller is a more efficient and reliable
alternative than conventional controllers for extracting the maximum amount of power
from wind’s available kinetic energy. The disadvantages of NN include their black box
structure, increased computing load, overfitting issue, and empirical nature of model
development. This technique necessitates the use of a look-up table containing predefined
data [34].

The membership function type, number of rules, and correct selection of parameters of
FLC are essential to obtain desired performance in the system. Selecting suitable fuzzy rules,
membership functions, and their definitions in the universe of discourse invariable involves
painstaking trial-error [35]. The adaptive neuro-fuzzy inference system (ANFIS) is a scheme
derived from a synthesis between the neural network and fuzzy inference system [36].
Similar to the method of training a neural network, the membership function parameters
have been fine-tuned using adaptive neuro-learning methods. A neural network enhances
the adaptability of the model. The primary purpose of using the ANFIS approach is to
realize the fuzzy system by using neural network methods automatically. The ANFIS
combines the capability of fuzzy reasoning in handling the uncertainties and the capability
of ANN in learning from processes [36].

In this paper, an ANFIS MPPT controller is used for maximum power tracking. The
generator rotor speed is input to the MPPT controller training input value, and the optimum
torque reference is selected as the target value.

The following is the structure of the paper. Section 1 discusses renewable energy
importance and the literature of MPPT algorithms employed in wind energy conver-
sion systems. The modeling of doubly fed induction generator-based WECS is given
in Section 2. Section 3 deals with rotor side control with maximum power point tracking
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control. Section 4 defines the ANFIS MPPT controller for achieving maximum power
point along with the training process. Section 5 illustrates the performance of the ANFIS
approach. A comparison with another conventional approach is also carried out in this
section. Finally, Section 6 summarizes the conclusion.

2. Modeling of Doubly Fed Induction Generator-Based WECS

Configuration of the grid-connected DFIG-based WECS considered in this study is
shown in Figure 1, which consists of a turbine system connected to the DFIG generator
through a gear system. The stator winding of the DFIG is directly connected to the grid. In
contrast, the rotor of the DFIG is connected to the grid via a back-to-back power converter.
In addition, a MPPT controller is connected to the RSC control of the WECS.
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2.1. Wind Turbine Modeling

The equation for the amount of power derived by the wind turbine from the wind is
expressed in (1) [37]:

Pt =
1
2

ρπR2V3
v Cp(λ, β) (1)

where ρ is the air density measured in kilograms per cubic meter (kg/m3), R is the rotor
radius of the turbine measured in meter (m), Vv presents the wind speed measured in
meter per second (m/s), Cp(λ, β) presents the power coefficient expressed as a function of
the tip-speed ratio (λ) and the pitch angle (β).

λ is expressed in (2):

λ =
Rωt

Vv
(2)

where ωt is the angular rotational speed of the wind turbine rotor (rad/sec).
Cp(λ, β) is expressed by (3) [37]:

Cp(λ, β) = c1

(
c2

λi
− c3β− c4βc5 − c6

)
.e
−c7
λi . (3)

λi is given in (4):

λi =
1

λ + 0.02β
− 0.003

β3 + 1
(4)
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where c1 = 0.73; c2 = 151; c3 = 0.58; c4 = 0.002; c5 = 2.4; c6 = 13.2; c7 = 18.4 The turbine
generated torque is expressed in (5) [37]:

Tt =
Pt

ωt
(5)

2.2. DFIG Modeling

The following equations describe the DFIG model. The voltage vectors of the stator
and rotor are expressed in (6) and (7), respectively [36]:

→
u s = Rs

→
i s +

d
→
ψ s
dt

+ jωs
→
ψ s ⇒

{
uds = Rsids +

dψds
dt −ωsψqs

uqs = Rsiqs +
dψqs

dt + ωsψds
(6)

→
u r = Rs

→
i r +

d
→
ψr
dt

+ jωr
→
ψr ⇒

{
udr = Rridr +

dψdr
dt −ωrψqr

uqr = Rriqr +
dψqr

dt + ωrψdr
(7)

where uds, uqs, udr, and uqr: Voltages at the stator and rotor in the d–q frame, respectively.
ids, iqs, idr, and iqr: Currents in the stator and rotor in the d–q frame, respectively. Rr, Rs, ωs,
and ωr: Stator and rotor phase resistances and angular velocity, respectively.

The flux vectors for the stator and rotor are denoted in (8) and (9), respectively [37]:

→
ψ s = Ls

→
i s + Lm

→
i r ⇒

{
ψds = Lsids + Lmidr
ψqs = Lsiqs + Lmiqr

(8)

→
ψr = Lm

→
i s + Lr

→
i r ⇒

{
ψdr = Lmids + Lridr
ψqr = Lmiqs + Lriqr

(9)

where
→
ψ s,

→
ψr are the flux vectors for stator and rotor, respectively. ψds, ψqs are the fluxes

along the d–q axis stator. ψdr, ψqr are the fluxes along with the d–q axis rotor. Ls, Lr: Leakage
inductances in the stator and rotor phases, Lm: Mutual inductance between stator and rotor,
p: is the generator pole pair count.

The expression of electromagnetic torque is expressed in (10) [37]:

Tem =
3
2

p
Lm

Ls

(
ψqsidr − ψdsiqr

)
(10)

The active and reactive power equations of the stator and rotor are expressed in (11)
and (12) [37]: {

Ps =
3
2
(
udsids + uqsiqs

)
Qs =

3
2
(
uqsids − udsiqs

) (11)

{
Pr =

3
2
(
udridr + uqriqr

)
Qr =

3
2
(
uqridr − udriqr

) (12)

where Ps, Qs presents stator active and reactive power. Pr, Qr presents rotor active and
reactive power. Tem is the electromagnetic torque.

3. Rotor Side Control with Maximum Power Point Tracking

The RSC is responsible for the voltage applied to the rotor winding of the DFIG. To
derive the voltage equation in dq reference frame, from the DFIG model in the previous
section, replacing Equations (8) and (9) in Equation (7) and considering ψqs = 0 we get the
following equation as a function of the rotor currents and stator flux [37]: udr = Rridr + σLr

didr
dt −ωrσLriqr +

Lm
Ls

d|
→
ψ s |
dt

uqr = Rriqr + σLr
diqr
dt + ωrσLridr + ωr

Lm
Ls

d|
→
ψ s |
dt

(13)
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where σ = 1− L2
m

Ls Lr
. Assuming negligible voltage drop in the stator winding resistance

and stator flux are constant because of the constant grid quantities, consequently, zero.
It can be seen from Equation (13) that dq component of rotor current can be controlled
using regulators. The reactive power proportional–integral (PI) regulator represented as
REG-1. The equal PI regulator for both d and q current loop are chosen as REG-2 and
REG-3, respectively. Actual values are considered for tunning of the gain parameters of the
regulators. The gain parameters for all three regulators are presented in Table 1. The control
must be performed on the dq components, so rotor voltage and current are transformed
into dq components using abc–dq transform. Θs is obtained by first estimate the stator
voltage vector and subtracting angle π/2. The phase-locked loop (PLL) is used for grid
synchronization, which also supports in rejection of minor disturbances. The “u” defines
the stator-rotor turn ratio that is 1/3. Figure 2 illustrates the complete vector control of the
DFIM with MPPT controller.

Table 1. The gain parameters of PI regulators in rotor side control.

Gains REG-1 REG-2 REG-3

Proportional 10,160 0.5771 0.5771
Integral 406,400 491.5995 491.5995Energies 2021, 14, 6275 7 of 20 
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The torque expressions in dq frame can be given by:

Tem =
3
2

p
Lm

Ls

(
ψqsidr − ψdsiqr

)
⇒ Tem = −3

2
p

Lm

Ls
ψdsiqr ⇒ Tem = Ktiqr (14)

The stator reactive power expressions in dq frame can be given by:

Qs =
3
2
(
uqsids − udsiqs

)
= −3

2
ωs

Lm

Ls
|
→
ψ s|

idr −
|
→
ψ s|
Lm

⇒ Qs = Kq

idr −
|
→
ψ s|
Lm

 (15)
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Equation (14) reveals that the iqr is proportional to the Tem to control torque with
iqr. Expression in Equation (15) reveals that d component of rotor current idr controls the
Qs. Therefore, because of the orientation chosen, it can be seen that both rotor current
components independently allow us to control the torque and reactive stator power.

4. ANFIS Maximum Power Point Tracking Control

The adaptive neuro-fuzzy inference method is a highly effective technique that in-
corporates both fuzzy control and artificial neural network concepts [31,38,39]. Due to
the combined influence of fuzzy and neural networks, it is an excellent learner and in-
terpreter [40]. The ANFIS controller determines which membership function to use. The
general structure of ANFIS consists of five layers, as shown in Figure 3.
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• Layer 1, the adaptive fuzzification layer is composed of user-specified input variables
and membership functions (MF).

• Layer 2, the fuzzy rule layer checks the degree of MF, and the corresponding fuzzy set
is selected and input to the next layer.

• Layer 3, the firing strength normalization layer evaluates weight for each normalized
node.

• Layer 4, the adaptive implication layer outputs values in accordance with inference
rules, and each neuron is normalized.

• Layer 5, the output layer adds all of the inputs from layer 4 and transforms the fuzzy
values to a crisp value.

The developed ANFIS has single input as rotor speed. The instantaneous torque
reference is determined as the output from the ANFIS network. In the developed MPPT
controller, the ANFIS first-order Sugeno model as well as with fuzzy IF-THEN rules of
Takagi and Sugeno type are used. A backpropagation algorithm trains the ANFIS-based
MPPT controller.

Figure 4 illustrates the block diagram of the proposed ANFIS MPPT control. The
generated optimal torque (T∗em) is used to determine rotor quadrature current reference (i∗qr)
applied to the speed control loop of RSC control that controls the actual rotor speed by
adjusting the duty ratio of the RSC. The control objective of the converter is to maximize
the output power delivered to the grid.

Figure 5 depicts the architecture of the developed ANFIS controller in MATLAB/Simulink
using Neuro-Fuzzy Designer. The ANFIS details are given in Table 2. The trial-and-error
method is used for choosing the number and shape of MFs as there is no exact method
for choosing the MFs in the literature. Seven Gaussian MFs were selected for this study
because they had the lowest root-mean-square error (RMSE) of 0.098280. The primary
reason why Gaussian MFs were chosen is that they have the fewest parameters (Only
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two parameters mean and standard deviation). To define the membership functions and
fuzzy rules, the grid partition method is used, generating input membership functions by
uniformly partitioning the input variable ranges and creating a single-output Sugeno fuzzy
system. Each input membership function combination is represented by a single rule in the
fuzzy rule base.
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Table 2. The ANFIS parameters information.

Parameter Value Parameter Value

Number of nodes 32 Total number of parameters 28
Number of linear parameters 14 Number of training data pairs 10,000,001

Number of nonlinear parameters 14 Number of fuzzy rules 7

Speed is taken as an input to the ANFIS MPPT controller, and it outputs the torque
reference. The controller is trained for 1000 epochs. The controller has one input with seven
membership functions (MFs). The initial generated input speed membership functions for
training are shown in Figure 6, which utilize seven rules. The details of the initial seven
input membership functions derived from Equation (13) are presented in Table 3.
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Table 3. Initial input membership function details.

Membership
Function Name

Type Parameter

Standard Deviation Mean

Very Small (VS) Gaussian 15.047 −3.3549 × 10−13

Small (S) Gaussian 15.047 35.433
Big Small (BS) Gaussian 15.047 70.865
Medium (M) Gaussian 15.047 106.3

Big Medium (BM) Gaussian 15.047 141.73
Large (L) Gaussian 15.047 177.16

Big Large (BL) Gaussian 15.047 212.6

The neural network tuned input speed membership functions is shown in Figure 7.
The tunned membership functions details are presented in Table 4. As the output function
in the Sugeno fuzzy inference system is selected as a linear function of the input, details of
all seven output membership functions are given in Table 5. Figure 8 shows the step size
increase/decrease during the training. The root-mean-square error is shown in Figure 9.
The expression for the Gaussian membership function is given in Equation (13):

f (x, σ, c) = e
−(x−c)2

2σ2 (16)

where σ is the standard deviation, c is mean, and x is input value.
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Table 4. Neural network tunned input membership function details.

Membership
Function Name

Type Parameter

Standard Deviation Mean

Very Small (VS) Gaussian 26.909 5.1594
Small (S) Gaussian 30.952 33.765

Big Small (BS) Gaussian 63.437 89.457
Medium (M) Gaussian 34.224 107.28

Big Medium (BM) Gaussian 33.967 138.56
Large (L) Gaussian 35.116 183.63

Big Large (BL) Gaussian 41.65 199.36

Table 5. Output membership function details.

Membership
Function Name

Type Parameter

Lower Limit Upped Limit

Very Small (VS) Linear 1.9856 1145.1
Small (S) Linear 7.3276 1244.4

Big Small (BS) Linear −4.8424 −5088.7
Medium (M) Linear −124.22 9248

Big Medium (BM) Linear −143.49 15,022
Large (L) Linear −98.038 7647.7

Big Large (BL) Linear −149.91 17,393
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• The first layer consists of an input node as the variable. This layer is responsible
for transform in input value to the next layer. Here, seven gaussian MFs with
minimum = 0 and maximum = 1 are utilized, and corresponding node equations
are given (17):

O1
i = µAi(ei) (17)
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where i = 1, 2, . . . 7, Oi is the output of ith node in layer one, Ai is the linguistic label,
ei is the input to the node.

• The second layer verifies the weights of individual MFs. It accepts the first layer’s
input values and serves as the MF for the corresponding input variables fuzzy sets.
The second layer has non-adaptive nodes that multiply incoming signals and output
the result as in (18):

wj = µAi(e1)× µBi(e2) (18)

where i = 1, 2, . . . 7 and j = 1, 2, . . . 7. The output from each node represents the firing
strength of a rule.

• Each node in the third layer computes the activation level of each fuzzy rule, with
the number of layers equal to the number of fuzzy rules. Each node of these layers
generates the normalized weights. Each node calculates the ratio of the rule’s firing
strength to the total of all rules’ firing strengths, that is, the normalized firing strength
given in (19):

w∗j =
wj

w1 + w2 . . . w7
(19)

where j = 1, 2, . . . 7.

• The fourth layer contains the output values obtained through rule inference. Node
function of the fourth layer is given in (20):

O4
j = w∗j f j = w∗j

(
pje1 + qje2 + rj

)
(20)

The rule base is given as:

If e1 is A1 and e2 is B1 then f1 = p1e1 + q1e2 + r1;

If e1 is A2 and e2 is B2 then f2 = p1e1 + q2e2 + r2;

If e1 is A7 and e2 is B1 then f7 = p7e1 + q7e2 + r7,

where (pj, qj, rj) is the parameter set and in this layer is referred to as consequent
parameters, O4

j = output of the ith node in layer-4, Ai, Bi = fuzzy membership function,
i = 1,2, . . . 7 and j = 1, 2, . . . 7.

• The fifth layer is the output layer; it aggregates all of the fourth layer’s inputs and
converts the fuzzy classification results into a crisp representation. This layer has a
non-adaptive nature, having a single node with the output given in (21):

y =
7

∑
j=1

w∗j f j =
7

∑
j=1

((
w∗j e1

)
pj +

(
w∗j e2

)
qj +

(
w∗j
)

rj

)
(21)

In practice, the proposed controller can be implemented using the Simulink HDL
Coder toolbox that can generate code for the DSP’s and FPGA’s family chips of different
vendors. The complete list of supported chips in the HDL coder and more details on this
can be seen from the MathWorks official website [41].

5. Simulation Result and Discussion

The effectiveness of the ANFIS MPPT controller for DFIG-based WECS under variable
wind speed operation has been verified in MATLAB/Simulink environment. The simu-
lation comparison results of the proportional–integral (PI) controller and the proposed
ANFIS MPPT controller are present in the following figures.

In this work, β is set to zero and designed for the rated wind speed of 11 m/s. The
simulated power characteristics at different wind speeds are presented in Figure 10.
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Figure 10. Power and rotor speed characteristics of WT at different wind speed.

Cp − λi characteristics at different value of β is presented in Figure 9. The design
presents that the maximum value Cp max is 0.4411 and the corresponding λ is 7, as shown
in Figure 11. This value Cp max and λ is the optimum value for capturing peak power from
the available wind power. Parameters of the WT are presented in Table 6.
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Table 6. WECS parameters.

Parameter Value Parameter Value

Nominal wind speed 11 m/s Frequency 50 Hz
Air density 1.225 kg/m3 Rated torque 12,732 N·m

Tip-speed ratio 7 Pole pair 2
Pitch angle 0◦ Inertia 127 kg·m2

Power coefficient 0.4411 Gear ratio 100
Nominal power 2 MW Radius of turbine 42 m

Three case studies are considered to analyze the performance of the proposed con-
troller. Different input wind speed profiles are considered for all three cases. Table 7 shows
an overview of all three cases of wind speed during the simulation study.
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Table 7. Input wind speed in all cases.

Time Duration (s)
Input Wind Speed (m/s)

Case-I Case-II Case-III

0–5 6 12 8
5–8 7 11 10
8–11 8 10 9

11–14 9 9 12
14–17 10 8 7
17–20 11 7 7
20–23 12 6 7

Simulation time responses of rotor speed (ωm), electromagnetic torque (Tem), stator
active power (Ps), DC-link voltage (Vdc), stator voltage (Vs), stator current of a-phase
(Isa), rotor current of a-phase (Ira), q-axis rotor current component (iqr), and d and q axis
rotor voltage component (vdr, vqr) with the change in system input wind speed (Vv) for PI
controller and ANFIS controller are presented in following figures below.

5.1. Case-I: Step Increase in Input Wind Speed

In this case, the input wind speed is increased in step manner as shown in Figure 12a
and according to data presented in Table 5. The rotor speed tracking of conventional control
and the proposed controller is shown in Figure 12b. There was a significant difference in
rotor speed response. The electromagnetic torque response is shown in Figure 12c. The
stator active power is observed in Figure 12d. Figure 12e and f present the DC-link voltage
and stator voltage response, respectively.

The single a-phase stator current response comparison during step wind speed change
at t = 14 s from 9 m/s to 10 m/s is shown in Figure 12g. The proposed controller stator
current response remains sinusoidal without any swell condition in current, whereas;
the conventional controller shows the unbalance operation. Figure 12h shows the single
a-phase rotor current response comparison. It can be observed at t = 14 and 17 s when
wind speed increase occurs. The conventional controller shows an unbalance operation
along with overshoot. The quadrature axis current component of rotor side converter (iqr)
response is shown in Figure 12i. Whenever there is wind speed increase operation, the
proposed controller shows a smooth transition, whereas the conventional controller shows
oscillation at each change instant. The quadrature and direct axis voltage component of the
rotor side converter is shown in Figure 12j.

5.2. Case-II: Step Decrease in Input Wind Speed

In this case, the input wind speed is decreased in a step manner, as shown in Figure 13a
and according to data presented in Table 5 Case-II. The rotor speed tracking of conventional
control and the proposed controller are shown in Figure 13b. The electromagnetic torque
response is shown in Figure 13c. The stator active power is observed in Figure 13d.
Figure 13e and f present the DC-link voltage and stator voltage response, respectively.
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The single a-phase stator current response comparison during step wind speed 
decrease at t = 14 s from 9 m/s to 8 m/s is shown in Figure 13g. The proposed controller 
stator current response remains sinusoidal without any swell condition in current 
whereas, the conventional controller shows current swell. Figure 13h shows the single a-
phase rotor current response comparison. It can be observed at t = 10 and 18 s when wind 
speed decrease occurs, the conventional controller shows unbalanced operation and 
overshoot. The quadrature axis current component of rotor side converter (𝑖 ) response 
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Figure 13. Simulated response under step wind speed decrease: (a) Input wind speed. (b) Rotor speed. (c) Electromagnetic
torque. (d) Stator active power. (e) DC-link voltage. (f) Stator voltage. (g) Stator current of a-phase. (h) Rotor current of
a-phase. (i) q-axis rotor current component. (j) d and q axis rotor voltage component.

The single a-phase stator current response comparison during step wind speed de-
crease at t = 14 s from 9 m/s to 8 m/s is shown in Figure 13g. The proposed controller
stator current response remains sinusoidal without any swell condition in current whereas,
the conventional controller shows current swell. Figure 13h shows the single a-phase rotor
current response comparison. It can be observed at t = 10 and 18 s when wind speed
decrease occurs, the conventional controller shows unbalanced operation and overshoot.
The quadrature axis current component of rotor side converter (iqr) response is shown
in Figure 13i. Whenever there is a decrease in wind speed operation, the proposed con-
troller shows a smooth transition, whereas the conventional controller shows oscillation at
each change instant. The quadrature and direct axis voltage component of the rotor side
converter is shown in Figure 13j.
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5.3. Case-III: Intermittent Change in Input Wind Speed

In this case, the input wind speed is intermittent and shown in Figure 14a, according
to data presented in Table 5 Case-III. The rotor speed tracking of conventional control and
the proposed controller is shown in Figure 14b. The electromagnetic torque response is
shown in Figure 14c. The stator active power is observed in Figure 14d. Figure 14e,f present
the DC-link voltage and stator voltage response, respectively.
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The single a-phase stator current response comparison during step wind speed de-
crease at t = 8 s from 10 m/s to 9 m/s is shown in Figure 14g. The proposed controller stator
current response remains sinusoidal without any swell condition in current, whereas the
conventional controller shows the current swell. Figure 14h shows the single a-phase rotor
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current response comparison. It can be observed at t = 5, 8, 11, and 14 s when wind speed
change occurs, and the conventional controller shows unbalance operation along with
overshoot. The quadrature axis current component of rotor side converter (iqr) response is
shown in Figure 14i. Whenever there is a change in wind speed operation, the proposed
controller shows smooth transition, whereas the conventional controller shows oscillation
at each change instant. The quadrature and direct axis voltage component of the rotor side
converter is shown in Figure 14j. The performance comparison of ANFIS and PI controller
is presented in Table 8 considering rotor speed and stator active power. Considering all
three cases, there is 3.28% improvement in stator active power.

Table 8. Performance comparison of ANFIS and PI controller.

Case
Study

Simulation Time
Instant (sec)

Wind Speed Rotor Speed (rad/sec) Stator Active Power
(MW)

Percentage
Improvement in

Power (%)PI ANFIS PI ANFIS

Case-I

4 6 100.6 103.7 0.4786 0.4878 1.89
7 7 115.9 120.9 0.6261 0.6372 1.74
10 8 133.4 138.2 0.8386 0.8491 1.24
13 9 151.1 155.5 1.0562 1.0683 1.13
16 10 168.2 172.8 1.3150 1.3320 1.28
19 11 185.4 190.2 1.5860 1.6140 1.73
22 12 202.5 207.3 1.8830 1.9200 1.93

Case-II

4 12 195.2 207.3 1.7732 1.8740 5.38
7 11 187.3 190.2 1.5860 1.6380 3.17
10 10 170.5 172.8 1.3150 1.3620 3.45
13 9 153.7 155.5 1.0680 1.1120 3.96
16 8 137.1 138.2 0.8479 0.8894 4.67
19 7 120.2 120.9 0.6533 0.6928 5.70
22 6 101.1 103.7 0.4939 0.5236 5.67

Case-III

4 8 129.1 138.2 0.7889 0.8478 6.95
7 10 165.9 172.8 1.3127 1.3265 1.04
10 9 153.8 155.5 1.0680 1.0970 2.64
13 12 199.9 207.3 1.8830 1.9070 1.26
17 7 120.9 123.4 0.6531 0.7071 7.64

In terms of stabilizing the stator power output, the suggested controller outperforms
the PI controller. In contrast, the PI solution exhibits power oscillations at speed change
instant, while the ANFIS response exhibits smooth tracking.

The voltage reference for the DC-link is 1150 volts. The ANFIS controller DC-link
voltage response is constant during operation compared with the ANFIS response; the PI
response demonstrates that the DC-link voltage oscillates at the instant of speed change
and overshoots at around 3980 volts max, which is 37% greater than the ANFIS response.

6. Conclusions

This paper proposed an ANFIS controller for maximum power extraction from the
wind for grid-connected DFIG-based WECS. The controller has implemented an ANFIS
controller for peak power point tracking. For training, an ANFIS includes input and target
data; in this case, the rotor speed is used as the input data, and the torque reference is used
as the target or output data. The proposed controller has implemented a 2 MW variable
speed wind turbine in MATLAB/Simulink subject to variable wind speed conditions. The
simulation study shows that the proposed ANFIS MPPT controller approach exhibited
good dynamic performance and quick response for wind speed change while ensuring
peak power point tracking. Comparison analysis with a conventional proportional–integral
controller approach showed that the ANFIS approach resulted in smoother power tracking
and reduced chattering than the conventional approach with a wide range of wind speed
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changes. The proposed ANFIS MPPT controller shows a 3.28 percent improvement in
stator active power than the proportional–integral controller.

This research may be further explored, taking into consideration the controller with
multivariable input. The system’s performance may be improved in the future if the
changing pitch angle and the actual power generated are taken into consideration, along
with rotor speed. Furthermore, performance may be compared with that of other intelli-
gent controllers.
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