

Supplementary Data to: Simultaneous Synergy in CH₄ Yield and Kinetics: Criteria For Selecting the Best Mixtures During Co-digestion of Wastewater and Manure from a Bovine Slaughterhouse.

Figure S1. Experimental (B_m) and predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The synergistic effects of AcoD can be observed when comparing B_m and B_p curves. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture.

Figure S1. Experimental (B_m) and predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The synergistic effects of AcoD can be observed when comparing B_m and B_p curves. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Figure S1. Experimental (B_m) and predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The synergistic effects of AcoD can be observed when comparing B_m and B_p curves. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Figure S2. Experimental (*B_m*) and simulated (*B_s*) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture.

Figure S2. Experimental (B_m) and simulated (B_s) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Figure S2. Experimental (B_m) and simulated (B_s) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Figure S3. Predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure with the Modified Gompertz model fit. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture.

Figure S3. Predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure with the Modified Gompertz model fit. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Figure S3. Predictive (B_p) accumulative CH₄ production of AcoD of slaughterhouse wastewater streams and bovine manure with the Modified Gompertz model fit. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater; B: bovine manure) and the number its %VS in the mixture (Continuation).

Mixture ^a	Final NH4 ⁺ (mg L ⁻¹)	Final pH	I ^b (mol L ⁻¹)	γı°	Final NH ₃ (mg L ⁻¹)
S100	244.01	7.80	0.0095	0.90	21.82
O100	86.28	7.92	0.0035	0.94	10.62
P100	99.78	7.71	0.0038	0.94	7.48
B100	213.44	7.38	0.0079	0.91	7.24
S67:O33	175.23	7.80	0.0068	0.92	15.89
S67:P33	184.83	7.80	0.0072	0.92	16.73
S67:B33	137.70	8.07	0.0058	0.92	23.73
S33:O67	126.32	7.93	0.0051	0.93	15.71
S33:P67	150.53	7.66	0.0057	0.92	9.91
S33:B67	154.86	7.99	0.0063	0.92	22.01
O67:P33	86.67	7.83	0.0034	0.94	8.64
O67:B33	83.76	7.71	0.0032	0.94	6.32
O33:P67	99.06	7.66	0.0038	0.94	6.62
O33:B67	122.13	7.76	0.0047	0.93	10.22
P67:B33	171.45	7.63	0.0065	0.92	10.48
P33:B67	214.64	7.44	0.0080	0.91	8.37
S33:O33:P34	118.35	7.13	0.0043	0.93	2.30
S33:P33:B34	182.59	7.32	0.0067	0.92	5.43
S33:O33:B34	133.89	7.05	0.0049	0.93	2.16
O33:P33:B34	108.02	7.06	0.0039	0.94	1.79
S25:O25:P25:B25	132.94	7.27	0.0049	0.93	3.56

Table S1. Summary of NH₃ calculation data.

a. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater;B: bovine manure) and the number its %VS in the mixture.

b. I: ionic strength.

c. γ_1 : activity coefficient

	Standard Err	or	Standard Error			
Minternal	First-Order mo	del⁵	Modified Gompertz model ^b			
lv11xture ^a	Р	k_h	Р	λ	Rmax	
	(m ³ CH ₄ kg ⁻¹ VS)	(d-1)	(m ³ CH ₄ kg ⁻¹ VS)	(d)	(m ³ CH ₄ kg ⁻¹ VS d ⁻¹)	
S100	15.7%	21.1%	1.3%	7.1%	2.4%	
O100	6.4%	13.3%	0.7%	5.1%	2.9%	
P100	3.6%	10.8%	0.5%	5.9%	2.9%	
B100	5.3%	10.1%	1.4%	9.2%	3.3%	
S67:O33	5.9%	10.8%	0.7%	6.5%	2.0%	
S67:P33	5.7%	9.8%	1.7%	46.3%	3.6%	
S67:B33	3.5%	8.0%	0.6%	11.6%	2.1%	
S33:O67	17.9%	24.0%	0.9%	3.2%	1.9%	
S33:P67	3.4%	6.0%	1.0%	41.4%	1.8%	
S33:B67	1.8%	4.8%	0.8%	43.4%	3.4%	
O67:P33	9.7%	16.3%	0.8%	4.6%	2.4%	
O67:B33	5.8%	12.2%	1.0%	2.5%	2.3%	
O33:P67	8.3%	14.7%	0.6%	3.4%	1.9%	
O33:B67	4.2%	9.4%	0.7%	8.9%	2.4%	
P67:B33	0.7%	1.7%	0.8%	20.9%	2.6%	
P33:B67	1.2%	2.9%	0.7%	26.6%	1.8%	
S33:O33:P34	6.2%	11.6%	0.8%	12.2%	2.4%	
S33:P33:B34	1.7%	4.3%	0.7%	70.5%	2.3%	
S33:O33:B34	12.7%	17.4%	2.3%	13.3%	3.5%	
O33:P33:B34	4.4%	7.9%	0.6%	10.2%	1.6%	
S25:O25:P25:B25	6.8%	10.2%	1.5%	15.6%	2.9%	

Table S2. Standard error of the estimated parameters for the first-order model and the modified Gompertz model.

a. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater;B: bovine manure) and the number its %VS in the mixture.

b. P: maximum specific CH₄ yield; *k*_h: apparent hydrolysis rate coefficient; λ: Lag-phase; *R*_{max}: Maximum specific CH₄ production rate.

Waste ^a	Flow (m ³ d ⁻¹)	BMP Assay Duration (d)	λ (d)	HRT Estimated (d)	Digester Volume (m ³)	Electrical Energy Potential (kWh month-1)	Thermal Energy Potential (kWh month ⁻¹)
SWW	4.5	29	2.2	26.8	161.8	1,310.18	4,192.58
OWW	11.2	25	2.0	23.0	341.9	3,898.71	12,475.89
PWW	13.9	21	1.8	19.2	356.8	2,576.33	8,244.25
BM	0.8	28	1.1	26.9	27.6	1,834.55	5,870.57
		Total			888.1	9,619.78	30,783.29

Table S3. Energetic evaluation for the mono-digestion scenario.

a. SWW: slaughter wastewater; OWW: offal wastewater; PWW: paunch wastewater; BM: bovine manure.

Year	Operative Labour (US\$)	Electricity Generator Maintenance (US\$)	Electricity Savings (US\$)	Saving in Waste Management (US\$)	Benefits (US\$)	Cash Flow (US\$)
0	0	0	0	0	-90,892.89	-90,892.89
1	4,379.93	1,710.78	13,210.22	14,233.50	21,353.01	-69,539.88
2	4,548.56	1,710.78	13,718.81	14,781.49	22,240.96	-47,298.92
3	4,723.67	1,710.78	14,246.98	15,350.58	23,163.11	-24,135.81
4	4,905.54	1,710.78	14,795.49	15,941.57	24,120.75	-15.06
5	5,094.40	1,710.78	15,365.12	16,555.33	25,115.26	25,100.20
6	5,290.53	1,710.78	15,956.68	17,192.71	26,148.07	51,248.27
7	5,494.22	1,710.78	16,571.01	17,854.62	27,220.63	78,468.90
8	5,705.75	1,710.78	17,208.99	18,542.03	28,334.49	106,803.39
9	5,925.42	1,710.78	17,871.54	19,255.90	29,491.23	136,294.62
10	6,153.55	1,710.78	18,559.59	19,997.25	30,692.51	166,987.14
					PBP ^a (years)	5
					NPV ^a (US\$)	56,962.88
					IRR ^a (%)	23.28

Table S4. Economic evaluation for electrical energy generation in the mono-digestion scenario.

a. PBP: payback period; NPV: net present value; IRR: internal rate of return.

Year	Operative Labour (US\$)	Gas Natural Savings (\$US)	Saving in Waste Management (\$US)	Benefits (US\$)	Cash Flow (US\$)
0	0.00	0.00	0.00	-85,252.89	-85,252.89
1	4,379.93	10,001.13	14,233.50	19,854.71	-65,398.18
2	4,548.56	10,386.18	14,781.49	20,619.11	-44,779.07
3	4,723.67	10,786.05	15,350.58	21,412.95	-23,366.13
4	4,905.54	11,201.31	15,941.57	22,237.35	-1,128.78
5	5,094.40	11,632.56	16,555.33	23,093.48	21,964.71
6	5,290.53	12,080.41	17,192.71	23,982.58	45,947.29
7	5,494.22	12,545.51	17,854.62	24,905.91	70,853.20
8	5,705.75	13,028.51	18,542.03	25,864.79	96,717.99
9	5,925.42	13,530.11	19,255.90	26,860.58	123,578.58
10	6,153.55	14,051.02	19,997.25	27,894.72	151,473.29
				PBP ^a (years)	5
				NPV ^a (US\$)	50,894.00
				IRR ^a (%)	22.77

 Table S5. Economic evaluation for thermal energy generation in the mono-digestion scenario.

a. PBP: payback period; NPV: net present value; IRR: internal rate of return.

Table S6. Energetic evaluation for the AcoD scenario.

	BMP Flow Assay		λ	HRT	Digester	Electrical Energy	Thermal Energy
Mixture ^a	(m ³ d ⁻¹)	Duration	(d)	Estimated	Volume	Potential	Potential
		(d)		(u)	(111°)	(kWh month-1)	(kWh month-1)
S33:O33:P34	3.5	26	1.1	24.9	117.6	1,356.15	4,339.69
S33:P33:B34	2.5	18	0.2	17.8	59.3	991.90	3,174.07
S25:O25:P25:B25	2.8	26	0.9	25.1	94.3	1,173.92	3,756.55
O33:P67	11.2	23	1.7	21.3	318.8	3,933.23	12,586.32
O33:B67	5.0	21	1.2	19.8	133.0	3,738.51	11,963.23
P100	5.3	21	1.8	19.2	135.5	978.54	3,131.31
	Т	otal			858.5	12,172.25	38,951.19

a. The letter represents the waste stream (S: slaughter wastewater; O: offal wastewater; P: paunch wastewater;B: bovine manure) and the number its %VS in the mixture.

The synergistic mixtures S67:O33 and S33:P67 was not evaluated since SWW has the lowest flow and was totally included in ternary mixtures. Likewise, due to PWW has the highest flow, there is a remnant, which should be mono-digested.

Year	Operative Labour (US\$)	Electricity Generator Maintenance (US\$)	Electricity Savings (US\$)	Saving in Waste Management (\$US)	Benefits (US\$)	Cash Flow (US\$)
0	0.00	0.00	0.00	0.00	-88,053.05	-88,053.05
1	4,379.93	2,164.71	16,715.35	14,233.50	24,404.21	-63,648.84
2	4,548.56	2,164.71	17,358.90	14,781.49	25,427.12	-38,221.72
3	4,723.67	2,164.71	18,027.21	15,350.58	26,489.40	-11,732.32
4	4,905.54	2,164.71	18,721.26	15,941.57	27,592.59	15,860.27
5	5,094.40	2,164.71	19,442.03	16,555.33	28,738.24	44,598.51
6	5,290.53	2,164.71	20,190.55	17,192.71	29,928.01	74,526.52
7	5,494.22	2,164.71	20,967.88	17,854.62	31,163.58	105,690.10
8	5,705.75	2,164.71	21,775.15	18,542.03	32,446.72	138,136.81
9	5,925.42	2,164.71	22,613.49	19,255.90	33,779.26	171,916.07
10	6,153.55	2,164.71	23,484.11	19,997.25	35,163.10	207,079.17
					PBP ^a (years)	4
					NPV ^a (US\$)	79,675.98
					IRR ^a (%)	28.48

Table S7. Economic evaluation for electrical energy generation in the AcoD scenario.

a. PBP: payback period; NPV: net present value; IRR: internal rate of return.

Voar	Operative Labour	Gas Natural Savings	Saving in Waste	Benefits	Cash Flow
Teal	(US\$)	(US\$)	Management (US\$)	(US\$)	(US\$)
0	0.00	0.00	0.00	-82,413.05	-82,413.05
1	4,379.93	12,654.79	14,233.50	22,508.36	-59,904.69
2	4,548.56	13,142.00	14,781.49	23,374.93	-36,529.76
3	4,723.67	13,647.96	15,350.58	24,274.87	-12,254.89
4	4,905.54	14,173.41	15,941.57	25,209.45	12,954.56
5	5,094.40	14,719.09	16,555.33	26,180.01	39,134.57
6	5,290.53	15,285.77	17,192.71	27,187.94	66,322.51
7	5,494.22	15,874.27	17,854.62	28,234.68	94,557.19
8	5,705.75	16,485.43	18,542.03	29,321.71	123,878.91
9	5,925.42	17,120.12	19,255.90	30,450.60	154,329.51
10	6,153.55	17,779.25	19,997.25	31,622.95	185,952.46
				PBP ^a (years)	4
				NPV ^a (US\$)	70,636.35
				IRR ^a (%)	27.71

Table S8. Economic evaluation for thermal energy generation in the AcoD scenario.

a. PBP: payback period; NPV: net present value; IRR: internal rate of return.